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Abstract  
Formal evaluations conducted by NIST in 1996 demonstrated 
that systems that used parallel banks of tokenizer-dependent 
language models produced the best language identification 
performance. Since that time, other approaches to language 
identification have been developed that match or surpass the 
performance of phone-based systems. This paper describes 
and evaluates three techniques that have been applied to the 
language identification problem: phone recognition, Gaussian 
mixture modeling, and support vector machine classification. 
A recognizer that fuses the scores of three systems that 
employ these techniques produces a 2.7% equal error rate 
(EER) on the 1996 NIST evaluation set and a 2.8% EER on 
the NIST 2003 primary condition evaluation set. An approach 
to dealing with the problem of out-of-set data is also 
discussed. 

1. Introduction 
Formal evaluations conducted by the National Institute of 
Science and Technology (NIST) in 1996 demonstrated that the 
most successful approach to automatic language identification 
(LID) uses the phonotactic content of a speech signal to 
discriminate among a set of languages. Phone-based systems, 
such as those described in [1] and [2], typically employ n-
gram language models that capture the phonotactics of the 
token sequences produced by a set of phone recognizers. An 
alternative approach to LID relies on Gaussian mixture models 
(GMMs) to classify languages using the acoustic 
characteristics of the speech signals. Although the GMM 
approach has been successfully employed for speaker 
recognition, its language identification performance has 
consistently lagged that of phone-based approaches [3]. 
Recently, investigators at Lincoln Laboratory [4] and QUT [5] 
have described GMM-based language identification systems 
whose performance matches or exceeds that of phone-based 
ones.  

Both the phone-based and acoustic language recognizers 
rely on generative techniques to create language models from 
estimates of underlying class-conditional distributions. A new 
approach to language identification that uses discriminatively 
trained support vector machines (SVMs) has been proposed 
for speaker recognition applications [6] and has been 
modified for language identification.  
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This paper presents a description of the Lincoln 
Laboratory implementation of the phone, GMM, and SVM 
systems along with evaluations of their performance on 
standardized tests. Section 2 describes the corpora used in this 
study and evaluation guidelines followed for the NIST 1996 
and 2003 language recognition evaluations. Section 3 presents 
descriptions of the phone, GMM, and SVM systems as well as 
that of a recognizer created by fusing the scores of the three 
systems. A fusion system designed to add robustness in out-
of-set conditions is also proposed. Section 4 compares the 
performance of the systems on the NIST language recognition 
evaluations, and Section 5 concludes with a brief discussion 
and summary of the results. 

2. Corpora and Evaluation Methods 
Experiments reported in this paper were performed in 
accordance with the NIST 1996 and 2003 language 
recognition evaluations (LRE), the goals of which were to 
quantify performance of language identification systems for 
conversational telephone speech using uniform evaluation 
procedures [7]. The task in both evaluations was to recognize 
the language being spoken in speech utterances of three 
durations (30s, 10s, and 3s) from a set of 12 target languages1. 
Language model training data consists of twenty 30-minute 
conversations (40 conversations for English, Mandarin, and 
Spanish) obtained from the Linguistic Data Consortium 
CallFriend Train set CDROMs [8]. 

2.1. 1996 NIST LRE 

Development data for the 1996 LRE (“lid96d1”) consists of 
approximately 1200 messages for each evaluation duration, 
with roughly 160 messages each for English, Mandarin, and 
Spanish and 80 messages for each of the other nine languages. 
The 1996 LRE test set (“lid96e1”) consists of approximately 
1500 messages at each duration: 480 for English, 160 each for 
Mandarin and Spanish, and 80 for each of the other nine 
languages. English messages were obtained from both the 
CallFriend corpus (160) and other English corpora (320). The 
development and test sets were both provided by NIST. 

2.2. 2003 NIST LRE 

Development data for the 2003 LRE consists of the lid96d1 
and lid96e1 sets used in the 1996 LRE. The official evaluation 
set contains 1280 messages at each of the three durations, with 
the message breakdown as follows: 80 messages from the 
CallFriend corpus for each of the 12 target languages, 80 
English messages from the Switchboard-1 corpus, 80 English 

 
1 Target languages: Arabic, English, Farsi, French, German, Hindi, 
Japanese, Korean, Mandarin, Spanish, Tamil, Vietnamese. 



messages from the Switchboard-cellular corpus, 80 Japanese 
messages from the CallHome corpus, and 80 Russian 
messages from the CallFriend corpus. Prior to submission, 
LRE participants were unaware of the composition of the non-
CallFriend material. 

2.3. Evaluation methods 

System performance is reported as either the language 
detection equal error rate (EER) or the value of a decision cost 
function. The overall EER for multiple language identification 
experiments is computed from the pooled set of all trial scores. 
The decision cost function (DCF) is given by 
 ))()((*5.0 θθ FalseAlarmMissDet PPC +=   
For each message, LRE participants were required to make 
hard decisions (true or false) for each target language so as to 
minimize the DCF and systems were then ranked based on 
their DCF scores. 

3. Language Identification Algorithms 

3.1. Phone-based LID: PPRLM 

Lincoln’s phone-based LID system is an updated version of 
the PPRLM (Parallel Phone Recognition and Language 
Modeling) system described in [1] that was evaluated in the 
1996 NIST LRE. PPRLM uses a bank of recognizers to 
tokenize an incoming message and a set of tokenizer-
dependent interpolated language models to score the resulting 
phone sequences. The six tokenizers are phone recognizers 
trained from six OGI-TS (Multilanguage Telephone Speech 
[9]) languages (English, German, Hindi, Japanese, Mandarin, 
and Spanish) and use null-grammar, three-state, six-mixture 
HMMs. The updated system uses a 37-dimensional input 
feature vector (12 cepstra, 12 delta-cepstra, 12 delta-delta-
cepstra, and delta-energy) derived from HTK3.1 MFCC 
coefficients. Non-speech frames are removed using a speech 
activity detector, and the remaining feature vectors undergo 
channel normalization using cepstral mean subtraction. 

Phone sequences produced by the tokenizers are used to 
compute gender independent language models (unigram and 
bigram distributions) for each of the 12 target languages. 
Training material for the language models is obtained from the 
12-language LDC CallFriend Train set. During testing, a 
vector of 72 language model scores is produced for each test 
message. Duration-dependent Gaussian backends are trained 
from the 72-dimensional PPRLM score vectors to produce 12 
language scores. Training data for the backend is obtained 
from the 1996 NIST LRE material. Each score produced by 
the backend is converted to a log likelihood ratio by dividing 
it by the average of the other 11 scores. 

The phone-based PPRLM system submitted to the 2003 
NIST LRE incorporated two additional improvements. First, 
phones representing silence and closures were added to the 
symbol set of each language model. Second, trigram 
distributions were added to the language models, with 
language-dependent weights for the trigrams, bigrams, and 
unigrams selected based on development testing. 

3.2. Acoustic LID: Gaussian Mixture Models 

The GMM LID system described in this paper is an improved 
version of the one proposed in [4], where high performance 

was achieved by combining high-order mixture models with 
shifted delta cepstra (SDC) feature vectors. SDC feature 
vectors are created by stacking delta cepstra computed across 
multiple speech frames. SDC computations are controlled by 
four parameters (N,d,P,k), as discussed in [4]. The 7,1,3,7 
SDC parameter configuration (49-dimensional feature vector) 
selected for this study was based on extensive experimentation 
conducted by Kohler [10]. Non-speech frames are removed 
using a speech activity detector and the remaining feature 
vectors undergo channel normalization using RASTA. 

Order 2048 GMM language models are trained for each of 
the 12 target languages using conversations from the LDC 
CallFriend Train set. A single background model is trained 
from the entire train set and language-dependent models are 
adapted from the background model using the language-
specific portions of the data. This method of training allows 
fast scoring to be used for recognition and was proposed in [5] 
for LID. Duration-dependent Gaussian backends are trained 
from the 12-dimensional GMM score vectors to obtain 12 
language scores, and these scores are converted to log 
likelihood ratios, as was done for the PPRLM system, for final 
evaluation. Training data for the backend is obtained from the 
1996 NIST LRE material. 

The GMM system submitted for the 2003 NIST LRE 
incorporated two additional improvements. First, the system 
used the feature mapping technique proposed by Reynolds 
[11] to map each feature vector into a channel-independent 
feature space. The mappings are trained on the Switchboard 
corpora, as described in [11]. Feature mapping is intended to 
provide additional robustness to variations in recording 
conditions and channels. The second modification was the 
replacement of the gender-independent GMMs with gender-
dependent models. These were created by splitting each 
CallFriend conversation into its two sides and adapting the 24 
language-dependent, gender-dependent models from the 
language-independent, gender-independent background 
model. For this system, duration-dependent backends were 
trained from the 24-dimensional score vectors. 

3.3. Discriminative LID: Support Vector Machines 

Both the PPRLM and GMM language recognizers rely on 
techniques that estimate underlying class-conditional 
distributions. Lincoln’s newest LID system uses a support 
vector machine discriminative classifier originally developed 
for speaker recognition [6]. The SVM uses a Generalized 
Linear Discriminant Sequence kernel (GLDS) [6] with an 
expansion into feature space using a monomial basis. All 
monomials up to degree 3 are used, resulting in a feature 
space expansion of dimension 22100. A diagonal 
approximation to the kernel inner product matrix is used, as 
discussed in [6]. Training material for the language models is 
obtained from the individual sides of the 12-language LDC 
CallFriend Train set. Feature vectors are obtained using the 
same scheme as described for the GMM LID system. The 
feature vectors are post-processed using short-time feature 
normalization where each coefficient of each 300 frame block 
has its mean normalized to 0 and its variance to 1. The feature 
vector sequence from each conversation side is divided into 5 
equal sections, and each section is used to produce an average 
feature space expansion. After finding the average feature 
space expansion vectors for all languages, a standard SVM 
tool (SVMTorch) is used to produce language models using 
the GLDS kernel. Language model scores for each test 



utterance are obtained by computing the inner product 
between the language model and the average expansion of the 
utterance. Duration-dependent Gaussian backends are trained 
from the 12-dimensional SVM score vectors to obtain 12 
language scores, and these scores are converted to log 
likelihood ratios, as was done for the PPRLM system, for 
final evaluation. Training data for the backend is obtained 
from the 1996 NIST LRE material. 

3.4. Fusion (FUSE3) 

The language model scores of the three LID systems were 
fused using a duration-dependent Gaussian backend classifier. 
The input vector to the classifier is of dimension 108 (24 
GMM scores, 72 PPRLM scores, and 12 SVM scores). The 
12 output language scores of the classifier are converted to 
log likelihood ratios for final evaluation. Training data for the 
backend is obtained from the 1996 NIST LRE material. 

3.5. Multi-corpus and out-of-set LID (FUSE3-OOS) 

An experimental system submitted for the 2003 NIST LRE 
was specifically designed to add robustness for multi-corpus 
and out-of-set test conditions. The terms multi-corpus and 
out-of-set are used to refer to message characteristics that are 
not represented in the training material. As noted in Section 2, 
a portion of the 2003 LRE test material contained data 
obtained from non-CallFriend sources (CallHome Japanese 
and Switchboard English) and out-of-set languages 
(CallFriend Russian). The identities of the non-CallFriend 
corpora and out-of-set languages were unknown to the LRE 
participants prior to the evaluation. 

The approach that was taken to provide robustness to 
unseen conditions was to train a backend Gaussian classifier 
using the PPRLM, GMM, and SVM scores for the 30-second 
1996 LRE messages and for the 45-second “story” files from 
the OGI-22 corpus [9]. The component systems to the fusion 
were not modified. The OGI-22 corpus contains messages 
from 21 languages, 11 of which are common to the NIST-
LRE target languages (there are no French messages) and 10 
of which are out-of-set. (Russian is one of the OGI-22 
languages.) Thus, 11 Gaussians were trained using both 1996 
LRE and OGI-22 data, 1 Gaussian (French) was trained from 
the 1996 LRE material alone, and a 13th Gaussian was 
trained using all OGI-22 files from the 10 out-of-set 
languages. Twelve of the 13 output language scores of the 
classifier were converted to log likelihood ratios for final 
evaluation. 

4. Results 

4.1. Evaluation using the 1996 test set 

The LID systems described in Section 3 were developed and 
tested using the NIST 1996 data sets (lid96d1 and lid96e1) 
described in Section 2. For all systems, duration-dependent, 
diagonal covariance Gaussian backend classifiers with LDA 
normalization were trained using lid96d1 to produce 12-
dimensional output score vectors. The language identification 
systems were run on the lid96e1 test sets and the output 
scores were converted to likelihood ratios by dividing each 
language score by the average of the other 11 language 
scores. Results in Table 1 show the equal error rates (in 
percent) for the systems described in Section 3 along with 

Lincoln’s 1996 LID system submission. The 95% confidence 
intervals for these values are approximately ±0.8 (30s), ±1.1 
(10s), and ±1.4 (3s). 

4.2. Evaluation using the 2003 test set 

Results shown in Table 1 indicate that the latest LID systems 
provide significant performance improvement over Lincoln’s 
1996 LRE submission. Before being run on the NIST 2003 
test data (lid03e1), the backends were retrained using all the 
available 1996 material (lid96d1+lid96e1). Table 2 shows the 
equal error rates (in percent) for the submitted systems for 
NIST’s primary testing condition (CallFriend messages only, 
no Russian). The 95% confidence intervals for these values 
are approximately ±1.0 (30s), ±1.4 (10s), and ±1.8 (3s). 
Performance is generally in line with results obtained for the 
1996 evaluation data, although several deviations exist.  

Table 1: EER (%) performance of Lincoln language 
identification systems using the 1996 test set. 

SYSTEM 30s 10s 3s 
PPRLM 1996 9.6 17.8 26.4 
PPRLM 5.6 11.9 24.6 
GMM 5.1 8.2 16.4 
SVM 4.2 11.7 24.0 
FUSE3 2.7 6.9 17.4 

Table 2: EER (%) performance of Lincoln language 
identification systems on the 2003 test set for NIST’s 
primary condition (CallFriend messages, no Russian). 

SYSTEM 30s 10s 3s 
PPRLM 6.6 14.3 25.5 
GMM 4.8 9.8 19.8 
SVM 6.1 16.4 28.2 
FUSE3 2.8 7.8 20.3 

 
Table 3 gives the decision cost function (DCF) values for 

the systems at each duration. The actual DCF is the value 
computed from the hard decisions (true or false) assigned to 
each language hypothesis, and the minimum DCF is the value 
obtained by minimizing the DCF using truth. Close 
correspondence between pairs of values indicates that 
thresholds derived from one set of data can be applied to 
another relatively accurately. 

Table 3: Actual vs. minimum (italics) DCF values (%) 
for the Lincoln language identification systems. 

SYSTEM 30s 10s 3s 
PPRLM 6.4/6.4 13.9/13.8 26.0/25.2 
GMM 4.7/4.3 9.8/9.6 19.6/19.5 
SVM 6.0/5.9 16.2/16.1 28.2/27.9 
FUSE3 3.0/2.8 8.1/7.5 20.0/19.8 

4.3. Multi-corpus and out-of-set evaluation 

This section compares the performance of the FUSE3 and 
FUSE3-OOS LID systems on the 2003 NIST LRE evaluation 
data (lid03e1). The analysis will focus on the extent to which 
the FUSE3-OOS system provides robustness to conditions 
and languages not seen in training and the degree to which 



performance is hurt on in-set data. For the FUSE3-OOS LID 
system, a backend was trained using the lid96d1 and lid96e1 
30s messages along with the OGI-22 45s story files. The 
backend was used in evaluating the 2003 test messages 
(lid03e1) at all durations. Table 4 compares the performance 
of FUSE3 and FUSE3-OOS LID for the NIST primary 
condition (CallFriend messages only, no Russian). The 95% 
confidence intervals for these values are approximately ±0.9 
(30s), ±1.4 (10s), and ±1.7 (3s). Although the 30s and 10s 
EERs of FUSE3-OOS are worse than those of FUSE3, the 
differences are statistically insignificant. Thus, the FUSE3-
OOS backend has little or no impact on the in-set data. 

Table 4: EER (%) performance of FUSE3 systems on 
NIST’s primary condition (CallFriend messages, no 
Russian) using the 2003 test set. 

SYSTEM 30s 10s 3s 
FUSE3 2.8 7.8 20.3 
FUSE3-OOS 3.6 8.8 20.1 

 
The next set of experiments investigated the performance 

of both FUSE3 systems on unseen data using an analysis that 
was consistent with the NIST LRE method of evaluation. The 
focus of the evaluation was limited to the non-CallFriend 
English and Japanese utterances and to the CallFriend 
Russian utterances. Using the development data, duration-
dependent thresholds were determined that minimized the 
decision cost function for each of the two LID systems. The 
thresholds were applied to the output scores of each language 
model and produced a true or false decision for each message-
model trial for the 2003 test set. Miss and false alarm rates 
were then computed for these decisions. 

Table 5 compares miss and false alarm rates for the 240 
non-CallFriend English and Japanese utterances (160 
Switchboard English and 80 CallHome Japanese) at each 
message duration, and Table 6 compares the false alarm rates 
for the 80 CallFriend Russian utterances. Statistical 
significance (95% confidence intervals) is given in 
parentheses. In general, the results indicate that the OOS 
system degrades performance for in-set data from unseen 
corpora but significantly reduces the false alarm rates for out-
of-set language utterances. 

4.4. CPU usage 

Twelve-way language identification on a 500 MHz SUN 
Sparc Ultra-60 runs at the following multiples of real-time: 14 
(PPRLM), 0.8 (GMM), and 0.2 (SVM). 

Table 5: Miss and false alarm rates (%) for non-
CallFriend English and Japanese utterances using 
true/false decisions determined from the minimum 
DCF operating points (see text). 

DUR SYSTEM Pm (%) Pfa (%) 
FUSE3 1.7 (0.5–4.2) 1.7 (1.3–2.3) 30s 
OOS 3.7 (1.7–7.0) 1.6 (1.2–2.2) 
FUSE3 5.4 (2.9–9.1) 4.9 (4.1–5.8) 10s 
OOS 16.7 (12.2–22.0) 3.2 (2.6–4.0) 
FUSE3 15.0 (10.7–20.1) 10.0 (8.9–11.1) 

3s OOS 37.5 (31.4–44.0) 6.4 (5.5–7.4) 
 

Table 6: False alarm rates (%) for out-of-set Russian 
utterances using true/false decisions determined from 
the minimum DCF operating points (see text). 

DUR SYSTEM Pfa (%) 
FUSE3 17.9 (15.5-20.5) 30s 
FUSE3-OOS 6.2 (4.8-8.0) 
FUSE3 22.7 (20.1-25.5) 10s 
FUSE3-OOS 8.7 (7.0-10.7) 
FUSE3 22.1 (19.5-24.8) 3s 
FUSE3-OOS 11.4 (9.4-13.5) 

5. Discussion 
The results in this paper demonstrate that significant progress 
has been made in improving the performance of language 
identification systems. The paper presents performance 
results on the 1996 and 2003 NIST test sets for three core LID 
systems, each of which provides performance superior to that 
of Lincoln’s 1996 system. Merging the scores of the core 
systems using a backend classifier produces further 
significant improvements, indicating some degree of 
independence among the decisions being made by the 
individual systems. The paper also reports on a system 
designed to achieve language identification robustness to in-
set languages obtained from unseen corpora and to out-of-set 
languages. The approach taken is to focus all robustness-
enhancing efforts in the backend rather than in the design of 
the core systems. Results of the experiment were mixed, with 
indications that the experimental system could offer some 
degree of rejection of out-of-set language data but was also 
more inclined to reject in-set messages from unseen sources. 
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