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Abstract: This work aims to interpret the EEG signals associated with actions to imagine the pronunciation of words
that belong to a reduced vocabulary without moving the articulatory muscles and without uttering any audi-
ble sound (unspoken speech). Specifically, the vocabulary reflects movements to control the cursor on the
computer. We have recorded EEG signals from 21 subjects using a markers based basic protocol. The dis-
crete wavelet transform (DWT) is used to extract features from the delimited windows, and a subset of them
with frequency ranges below 32 Hz is further selected. These subsets are used to train four classifiers: Naive
Bayes (NB), Random Forests (RF), support vector machine (SVM), and Bagging-RF. The results are still pre-
liminary but encouraging because the accuracy rates are above 20%, i.e. up to chance for five classes. The
implementation process as well as some experiments with their corresponding results are shown.

1 INTRODUCTION

Oral communication is the natural way in which hu-
mans interact. However, in some circumstances, it is
not possible to emit an intelligible acoustic signal, or
it is desired to communicate without making sounds.
In these conditions systems that enable spoken com-
munication in the absence of an acoustic signal are
desirable. This kind of systems are part of a recent
research area called silent speech interfaces (SSI).

Among the SSI technologies described by Denby
(Denby et al., 2010), of particular interest are those
that use EEG because they are non invasive, rela-
tively simple, economical, and insensitive to environ-
ments with large amounts of audible noise. Particu-
larly those associated with unspoken speech, also re-
ferred as internal or imagined speech.

Works using unspoken speech can be divided into
two approaches: by words and by syllables. The first
approach is followed in (Porbadnigk, 2008; Suppes
et al., 1997; Wester and Schultz, 2006). While in
(Brigham and Kumar, 2010; DaSalla et al., 2009;
D’Zmura et al., 2009) only syllables are treated. In
the specific case of works that explore words, where
this study falls, the following problems had been iden-
tified. In (Suppes et al., 1997) was presented a proto-
types based method that is not unsuitable for real-time

processing. While in (Porbadnigk, 2008; Wester and
Schultz, 2006) it is assumed that the extracted features
can be recognized with existing models for common
speech recognition, nonetheless speech acoustic sig-
nal and EEG signals have very different characteris-
tics. In the words approach, the most recent work de-
scribed in (Porbadnigk, 2008) uses a 5 words vocabu-
lary, EEG signals from seven subjects were recorded,
and each word of vocabulary was repeated 20 times.

This research aims to interpret the EEG signals as-
sociated with unspoken speech. Specifically, it aims
to interpret the signals to recognize five unspoken
words of the Spanish language: “arriba”, “abajo”,
“izquierda”, “derecha”, and “seleccionar”, which are
repeated 33 times by each subject. They were chosen
because with them it could be possible to control a
computer screen cursor.

2 METHODOLOGY

The stages of proposed methodology are the follow-
ing: EEG signal adquisition, EEG signal enhance-
ment (Pre-processing), feature extraction, feature se-
lection, and classification.

For EEG signal acquisition an EMOTIV kit is
used. This kit is wireless and has fourteen high resolu-



tion electrodes (channels) whose sampling frequency
is 128 Hz.

2.1 Brain Signals Acquisition

In this stage the EEG kit is used to acquire the
brain signals. According to the Geschwind-Wernicke
model, EEG signals related to speech production
come from specific areas in the left side of the brain
(Geschwind, 1972). Particularly, channels F7, FC5,
T7 and P7 are of interest because they are the nearest
to Geschwind-Wernicke’s model areas.

Moreover, a basic protocol is used to acquire EEG
signals from each subject, a mouse is used to send
markers to the EEG signals acquisition software, to
delimit the start and end of imagining the pronunci-
ation of the words (see Figure 1). A set of samples
between both markers is called window or instance.

Considering that, it is known in what part of the
EEG signal the patterns associated with the imagina-
tion of the word pronunciation should be searched.

Figure 1: EEG signal from F7 channel that it belong subject
S1 while he imagines word pronunciation“abajo” following
the data acquisition protocol.

2.2 Pre-processing

In this stage, the EEG signals obtained from the chan-
nels of interest (F7, FC5, T7 y P7) are filtered using
a finite impulse response (FIR) band-pass filter at the
range 4 to 25 Hz.

It is noteworthy that, similarly to conventional
speech, the duration of the unspoken speech’s win-
dows for each word is variable, for one subject as well
as for different subjects. Thus, it is necessary to es-
tablish an equal size for all windows.

At the end of this stage windows with 256 sam-
ples and a frequency range between 4 and 25 Hz. are
kept and used for the creation of the experimental data
base. Windows lower than 256 samples are completed
with zeroes, and those with more than 256 samples
are discarded.

2.3 Feature Extraction

In (Lotte et al., 2007) it is mentioned that the features
to be used in BCI are not stationary and contain time
information, which makes necessary an adequate rep-
resentation. The discrete wavelet transform (DWT)
provides a highly efficient wavelet representation by
restricting the variation in translation and scale, usu-
ally to powers of two.

In consequence, in this work the discrete wavelet
transform (DWT) with six decomposition levels is
applied, using a second order Daubechies (db2) as
mother wavelet function. With this, a vector with 269
wavelet coefficients is obtained for each window in
each of the interest channels. Subsequently, the co-
efficients in the same time interval that belong to the
four interest channels are concatenated following this
order F7-FC5-T7-P7. At the end of this stage is ob-
tained a vector with 1076 features, and its correspond-
ing class label is obtained.

2.4 Feature Selection

The feature selection problem implies to select a min-
imum subset, with M features, S = (S1, ...,SM) from
original feature set F = (F1, · · · ,FN), where M ≤ N
and S ⊆ F , so that the feature space is optimally
reduced and the classification performance is main-
tained, improved or not significantly degraded.

At this stage, the subset of features greater than
25 Hz. is discarded. Therefore, the feature subset se-
lected consists of the detail coefficients D2 to D6 and
the approximation A6 which reduces the dimension of
the feature vectors, and at the same time reduces the
impact of the curse of dimensionality in the classifi-
cation stage. With this, each window of each channel
is represented with 140 wavelet coefficients. Then,
the DWT coefficients of windows in the same time
interval were concatenated as in the feature extraction
stage.

2.5 Classification

In this work the following three classifiers are trained
and tested: Support Vector Machines (SVM), Ran-
dom Forests (RF) and Naive Bayes (NB). After eval-
uating the individual classifiers, the classifier with the
higher accuracy percentage is selected to use it as the
base classifier in Bagging ensamble.



3 EXPERIMENTATION AND
RESULTS

3.1 Preliminary Experiments

Preliminary experiments consisted in training and
testing the three described classifiers (NB, RF, and
SVM) with the EEG signals recorded from three sub-
jects (S1, S2 and S3). Previously, complete and re-
duced feature vectors are obtained. These experi-
ments aim to evaluate the convenience of using the
complete or reduced vectors, and select the classifier
to be used as a basis for the Bagging classification.
For this purpose, the measure to evaluate the classi-
fiers is accuracy. The classification accuracy is ob-
tained through 10-fold cross validation.

The accuracy percentage for each of the three clas-
sifiers using the complete feature vectors are in table
1.

Table 1: Accuracy percentages obtained for the classifiers
using the complete feature vectors (1076 features).

Accuracy
Subject NB RF SVM
S1 23.35 24.08 23.35
S2 17.09 31.63 24.78
S3 35.75 41.21 18.18

Table 2 presents the accuracy percentage for each
of the three classifiers using the reduced feature vec-
tors.

Table 2: Accuracy percentages obtained for the classifiers
using the reduced features vectors (540 features).

Accuracy
Subject NB RF SVM
S1 24.08 43.78 21.9
S2 18.8 38.46 21.37
S3 33.94 43.64 19.39

The results described in tables 1 and 2 show that,
generally, better results are obtained when using the
reduced feature vectors than when using complete
vectors. Nonetheless, in occasions when better results
are obtained using the whole vectors, the improve-
ment is not significant.

In addition, the tables 1 and 2 show that the clas-
sifier which obtains the best accuracy percentages is
RF, so it was selected to be used for the following
experiments as the base classifier for Bagging. From
here, this ensemble will be denoted as Bagging-RF.

3.2 Experiment with the whole corpus

In these experiments participated 21 right-handed
subjects (S1-S21) to collect a corpus of data. From
each of them 33 instances of each of the five imag-
ined words were recorded. However, those instances
with more than 256 samples (two seconds long), are
discarded in the experimental phase. After that se-
lection process, the remaining instances pass by all
methodology stages.

In the first experiment the instances from each of
the twenty-one subjects (S1-S21) are separately uti-
lized for training and testing the four evaluated classi-
fiers (RF, SVM, NB, Bagging-RF). The accuracy per-
centages are obtained using 10-folds cross validation.
In figure 2 these percentages are shown.

Figure 2: Accuracy percentages for each classifier obtained
after 10-folds cross validation on the data of each subject.

Figure 2 shows that, generally, the accuracy per-
centages obtained by the four classifiers are above
chance for five classes, which is 20%. This accuracy
rate is taken as a lower bound because, according to
(Dietterich, 2000), “an accurate classifier is one that
has an error rate better than chance at the stage of
generalization (testing)”. Furthermore, figure 2 shows
that, according to accuracy percentages, the best clas-
sifier is Bagging-RF and the worst is SVM. Also, it
is important to note that, for all subjects both RF
and Bagging-RF are kept above chance for the five
classes.

Further on, results at word level obtained by RF
and Bagging-RF, utilizing the F-measure, are next
presented. For each subject’s dataset, the classifiers
calculate a F-measure value for each of the words.

Figure 3 shows the average F-measure obtained by
RF and Bagging-RF for each of the words. In the case
of RF, the words order according to the f-measure
from high to low, is: “arriba”, “izquierda”, “selec-
cionar”, “abajo”, and “derecha”. While, in the case
of Bagging-RF according to the same F-measure the
order is: “seleccionar”, “arriba” , “derecha”, “abajo”,
and “izquierda”.



Figure 3: Graph of average f-measure for each word ob-
tained for RF and Bagging RF using 10-folds cross valida-
tion on the subject’s data.

It is important to note that, the words “selec-
cionar” and “arriba” classified by Bagging-RF have a
F-measure above 0.4, which is twice bigger than ran-
dom.

Last, it is worth to mention that in the presented
work the results obtained are relatively comparable to
state of the art similar works, like those reported in
(Porbadnigk, 2008) where the classification was eval-
uated only based in accuracy, reporting 45.95% for
five words. This comparison is mentioned consider-
ing the differences described in section 1.

4 CONCLUSIONS AND FUTURE
WORK

The acoustic speech signal and the EEG signals have
different features, which makes them naturally dis-
similar. In consequence, we explored an alternative
processing and classification approach to treat the
EEG signals, in particular those related to unspoken
speech. Indeed, the problem of interpreting unspo-
ken speech is still far to be solved. However, from
our experiments we obtained evidence to affirm that
the EEG signals actually carry useful information to
allow the classification of unspoken words. We con-
clude this based on the percentages of accuracy in
the classification for the four classifiers, which, are
above chance for five classes (see figure 2). Our re-
sults and experimental procedures are consistent with
those reported in the state of the art, because: we per-
formed experiments with more than one classifier, we
explored a language different to English, we used a
reduced vocabulary with more semantic meaning, and
we worked with features obtained by a feature selec-
tion approach instead a dimensionality reduction ap-
proach. The average f-measure was below the per-
centages due to chance for five classes.

To improve the reported results we propose to ex-
plore how to utilize and compare all windows regard-
less their size. We propose to apply independent com-

ponent analysis (ICA) and assess each independent
component using the Hurst’s coefficient to eliminate
some artifacts as blinks and heartbeats. To select an-
other wavelet family also could help. We also plan to
test another EEG signal representation and combine
them with the DWT coefficients. Finally, it is still
possible to use hybrid intelligent systems, and others
ensemble schemes to improve classification results.
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