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Abstract 

In this paper we present an efficient causal algorithm that can be used in multicast communication 
environments, in particular the overlapping multi-channel case, where a participant can belong and 
communicate through more than one multicast channel. The causal algorithm is built on the paradigm of 
group communication. The groups are established according to the participant channel subscription. In order 
to reduce the amount of control information, we propose an extension of the Immediate Dependency Relation 
(IDR), which was introduced by Peterson in the context of one group. This IDR extension allows us to define 
necessary and sufficient control information to ensure causal delivery in a multi-group environment. We show 
that through the use of the IDR extension, we reduce the amount of control information sent per message 
without imposing restrictions in interaction or execution (e.g. network topology, re-diffusion servers, 
executions models, etc). These characteristics allow our algorithm to be suitable for use in large distributed 
decentralized systems.  We show the efficiency of our causal algorithm in terms of the overhead timestamped 
per message. 
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I. Introduction 

In Multi-party Communication Systems, causal ordering algorithms are an essential tool to exchange 
information. The use of causal ordering provides built-in message synchronization and reduces the non-
determinism in a distributed computation. Causal ordering provides an equivalent of the FIFO property at a 
global multiparty communication level; it guarantees that actions, like requests or questions, are received 
before their corresponding reactions, results or responses. The concept of causal ordering is of considerable 
interest to the design of distributed systems, and can be found in applications of several domains, such as 
distributed cooperative engineering [18], teleconferencing [15], multimedia systems [3], mobile computing 
[16], resource allocating algorithms [21] and security domains [17].  
 
We address in this paper the causal ordering of messages over multicast communication channels based on the 
paradigm of group communication. We consider that the participants are structured in groups according to the 
multicast channel subscription. In our work we consider that a multicast channel defines a group 
communication and that a participant can belong to and communicate through more than one channel 
(overlapping channels, also indistinctly refered as overlapping groups in this paper). The multicast channels 
considered in this paper are characterized by a reliable and asynchronous communication. 
 
Among the various existing causal algorithms that support multi-group environments, we can distinguish two 
types: symmetric and asymmetric ones. While in symmetric algorithms all participants share the same role in 
the system and interact freely without timing or centralized constraints, asymmetric algorithms either 
introduce restrictions in either the mode of interaction or execution.  
 
The present paper proposes a symmetric Causal Multi-Channel Algorithm (CMCA).  The main objective of 
our algorithm is to reduce the amount of control information (CI) per message. The amount of information 
necessary to guarantee causal communication in overlapping groups is θ(G⋅N) in the worst case [5], where G 
is the number of groups and N refers to the number of participants in the system. For large values of N and G, 



the bound of θ(G⋅N) is prohibitively high. An original aspect of our work is the definition and the use of an 
extension of the Immediate Dependency Relation (IDR) [12] [13] to the multi-channel context.  We call this 
extension the Immediate Inter-Channel Dependency (IICD). The IICD allows us, in a symmetric organization, 
to identify  a sufficient control information to ensure the causal delivery of messages in a multi-channel 
scenario. Our CMCA algorithm can be viewed as an extension to the broadcast (one channel) causal algorithm 
presented in [13].  
 
 
The paper proceeds as follows: first, in Section II we overview the related work. In Section III we give the 
basic definitions.  Next in Section IV, we introduce the immediate dependency and our proposed extension to 
the multigroup case. In Section V, the proposed Causal Multi-channel Algorithm is shown in detail. Section VI 
is dedicated to the proofs, which include the proof of the IICD “completeness” property and the proof of 
correctness of the CMCA algorithm.  In Section VII we present a comparison of our algorithm versus other 
important multi-group communication works. Finally, in Section VIII some conclusions are presented. 
 

II. Related work 

As mentioned above, we have surveyed works which aim to reduce the control information needed to ensure 
causal order delivery in symmetric algorithms. The symmetric algorithms consider that all participants share 
the same role and the same degree of responsibility in the system; furthermore, they interact freely without 
timing or centralized constraints.  The symmetric category is concerned with identifying the necessary 
conditions to ensure a causal delivery of messages, and/or with arranging optimal coding to represent and 
transmit this information. The asymmetric category is composed of algorithms that assume a certain network 
topology [19], a particular group structure [2], and/or execution models [11]. The following related works 
involve only the symmetric category, which is the category with which we are concerned. 
 
One of the first algorithms is the work done by Peterson [12]. Peterson introduced the context graph, which 
was designed to represent the causality between messages in a conversation algorithm in a broadcast 
environment (one group).  This graph is directed and acyclic; its vertices correspond to the total set of 
messages, and the arcs represent the causal relationship between these messages.  The reduced graph as 
presented in [12] shows that if the causal ordering of messages is ensured between every pair of immediate 
causal predecessor and successor messages, then the causal ordering among all messages will be 
automatically ensured due to the transitivity of the preceding relation.  
 
The work of Prakash and Raynal [14] extends the immediate dependency property to support multi-party 
environments (no pre-defined groups exist). Prakash’s work does not use nor maintain context graphs to 
ensure causal ordering. To ensure causal ordering, a message m needs to carry information concerning only 
those messages m’ which its delivery is directly dependent upon. This approach is oriented to resolve 
problems in mobile agent applications; it considers multi-party and broadcast communication (one group), but 
not the multi-group communication case. The overhead for the causal multi-party algorithm is θ(N2), where N 
is the number of participants in the system. 
 
Another example of an algorithm is the CBCAST proposed by Birman [5][6 ], which is based on vector time 
clocks. To our knowledge, this algorithm is the only symmetric work that supports overlapping groups. The 
author, in his algorithm, mainly proposes to compress the vector time of a process by attaching only the local 
vector positions on each message: 



1. that have changed since the last local message sent, and 
2. that are not known to be stable (messages known to be received). 

Due to its importance, we present a comparison of our work with this one in Section VIII. 
 
Finally, the work proposed by Maddi and Dahamni [1] uses the immediate dependency property and the 
second constraint of the previous one.  It sends less overhead than Prakash and Raynal [14] in the order of 
(N2-N-2)/2; nevertheless, it uses a point-to-point communication scheme for multi-party environments. 
Consequently, the algorithm first needs to construct a different causal history for every destination before 
sending a message, and second, it needs to send n-copies of such message, one for each destination. 
 

III. Preliminaries 

Participants and Channels. The application under consideration is composed of a set of participants P 
that are structured into groups according to the multicast channel organization. We consider that a 
multicast channel defines a group communication; for this reason, in this paper we refer to them 
indistinctly. The participants communicate through multicast channels that are characterised by a reliable 
and asynchronous communication. We denote by C the set of channels, the mapping Memb: C→2P 
defines for each channel the group of connected participants, and the mapping Conn:P→2C defines for 
each participant the set of channels to which it is connected. Each participant maintains an integer local 
clock which is incremented each time it performs an action (send or receive).    
 
A (finite) behavior of such a system is defined by a set of events executed by the participants, partially 
ordered by a “causal” relation defined below. These events may be emissions or deliveries of messages.  
 
Messages. We consider a finite set of messages M, where each message m∈M  is identified by a tuple 
(participant, integer, channel), m=(p,x,c) where p∈P  is the sender of m, denoted by Src(m),  x is the 
value of the local clock of p when m  is sent, and c∈C is  the channel on which m is multicasted, denoted 
by Chan(m). The set of destinations Dest(m) of the message m is composed of the participants connected 
to the channel Chan(m), Dest(m)=Memb(Chan(m)). In further sections, additional fields will be 
introduced to the tuple (p,x,c), but they are not relevant in this section. 
 
Events. Let m be a message, we denote by send(m) the emission event of m by Src(m), and by 
delivery(p,m) the delivery event of m to the participant p connected to Chan(m). The set of events 
associated to M is then the set E = {send(m), m∈M} {delivery(p,m), m ∈ M , p ∈Dest(m)}. An emission 
event send(m), where m=(p,x,c), may also be denoted by send(p,m) or send(m,c) without ambiguity. The 
subset Ep⊆E of events involving p is Ep= {send(m), p=Src(m)}  {delivery(p,m), p∈Dest(m)}. 
  
Causal relation and causal order delivery. Causal order delivery is based on the causal relation 
→⊆E×E between the events E of the system.  This relation is also called the “happened before relation,” 
and was first defined by Lamport [8]. The causal relation is a strict partial order (transitive and 
antisymmetric) defined as follows:  
 
Definition 2. The causal relation “→” is the least partial order relation on E satisfying the two following 
properties: 
1) For each participant p, the restriction of → to the set of events Ep involving p is the total order in 



which they occur: in particular, we have e,e’∈ Ep ⇒ e→e’ ∨ e’→e    
2) For each message m and destination p of m, the emission of m precedes its delivery to p: 
 ∀m∈M, ∀p∈Dest(m) : send(m) → delivery(p,m)  
 
The partial order (E, →) is usually represented by a directed acyclic graph where for each participant p, 
the events of  Ep  are drawn on a vertical line.  
The complement of the causal relation is called concurrency: a pair of events e, e’ is said to be 
concurrent, denoted e||e’ , iff  ¬( e→e’ ∨ e’→e ). 
 
Causal order delivery in group communication presents two cases: the broadcast case (one channel) and 
the multi-channel case, which includes overlapping channels.  The causal delivery for the broadcast case 
is defined as follows [7]: 
 
Definition 3   Broadcast Causal Order Delivery (one channel): 
If send(m)→ send(m’), then  
∀p ∈ P : delivery(p,m) → delivery(p,m’) 
 
Causal order delivery ensures that if the diffusion of a message m causally precedes the diffusion of a 
message m’, in a channel c, then the delivery of m precedes the delivery of m’ to each participant p.   
 
The case of causal delivery in a multi-channel environment is more common in channel communication. 
Two messages sent in different channels may not have the same sets of destinations. The definition of the 
causal order delivery takes this into account. The definition is as follows: 
 
Definition 4     Multi-channel causal order delivery: 
If send(m,c)→ send(m’,c’), then  
∀p∈Memb(c) Memb(c’) :  delivery(p,m) → delivery(p,m’) 
 
Multi-channel causal order delivery guarantees that if the diffusion of a message m causally precedes the 
diffusion of a message m’, with c and c’ as the diffusion channels of messages m and m’ respectively, 
then the delivery of m causally precedes the delivery of m’ for all participants p that belong to both 
channels c and c’ [12]. 

IV. The Immediate Dependency Relation 

1. Single channel case (One group) 

The Immediate Dependency Relation (IDR) is defined on the set of sending events. It is the transitive 
reduction of the causal precedence restricted to these events: it is included in the causal precedence and 
is the smallest relation which generates it by transitive closure.  
 
Definition 5   Immediate dependency relation ↓ (IDR): 
send(m)↓send(m’)⇔[ send(m) → send(m’) ∧ ∀ m”∈ M, ¬ (send(m) → send(m”)→ send(m’))] 
 
Thus, send(m) directly precedes send(m’), iff send(m) causally precedes send(m’) and no other event 
send(m”) happens  “causally”  between send(m) and send(m’).  



 
The causal precedence on sending events induces a partial order on the corresponding messages, denoted 
by the same symbol →,  defined as follows: 

m→m’ ⇔ send(m)→send(m’).  
The IDR can thus be viewed as a relation on messages denoted by the same symbol ↓ , and we say that 
message m directly precedes message m’:   

m↓m’ ⇔ send(m)↓send(m’).  
 
This relation is important for causal delivery algorithms and protocols: the causal delivery of messages 
related by the IDR is a sufficient condition to ensure the causal delivery of all messages, as shown 
below: 
 
Theorem 1   Causal broadcast delivery using the IDR relation: 
If ∀ m, m’ ∈ M,  send(m)↓send(m’) ⇒ ∀p ∈ P: delivery(p,m) → delivery(p,m’) 
then ∀ m, m’ ∈ M, send(m) →send(m’) ⇒ ∀p ∈ P : delivery(p,m) → delivery(p,m’) 
 
The proof (see also [12]), relies on the fact that for any pair send(m) →send(m’) if  send(m)↓send(m’) 
does not hold, then we can exhibit a message m” such that send(m) → send(m”)→ send(m’). Using 
inductive reasoning and the fact that the event send(m’) may only have a finite number of “causes” or 
predecessors for the causal relation, we can find (at least) a sequence (mi=(ki, xi, ci) , i=0…h), such that 
m=m0 , m’=mh  and for all  i=0…h-1, send(mi)↓send(mi+1). For any participant p we have 
delivery(p,mi)↓delivery(p,mi+1), and by transitivity we get the required property.  
 
Clearly, the causal delivery of messages related by IDR is not only a sufficient but also a necessary 
condition for the causal delivery of all causally related messages. From an algorithmic point of view, if 
the reference of some immediate predecessor m’ of a message m is not piggy-backed with m, the causal 
delivery of m with respect to m’ may fail. Theorem 1 shows that this information is sufficient. 
 
However, in the general case where messages may be sent to different sets of destinations, the causal 
delivery of a message only with respect to its immediate predecessors is not sufficient to ensure the 
global property. This is the particular case in our framework of multiple overlapping channels, as shown 
in the example of subsection 3 below. The next section presents a relation which extends IDR, and which 
benefits of the same type of properties in this more general framework.  

2. Multi-channel case (Multi-group) 

In this section, we extend the principle of immediate dependency to the case of multi-channel diffusion.  
We call this extension the Immediate Inter-Channel Dependency Relation, and refer to it by its acronym 
IICD.  In the same way that the IDR allows us to define the minimal sufficient control information in a 
broadcast case, the IICD allows us to characterize a minimal sufficient control information to ensure the 
causal delivery of messages in a multi-channel environment.  
 
Henceforth, we will often denote send(m,c) by (m,c).  
 
Definition 6 Immediate Inter-channel Dependency Relation (IICD) ↑: 
(m,c)↑(m’,c’) ⇔ [((m,c) → (m’, c’))∧∀ m” ∈ M, ((m,c)→ (m”, c’’)→ (m’, c’) ⇒ c’’≠ c ∧ c’’≠c’)] 



 
As for IDR, this relation can be viewed as a relation on messages: if c and c’ are the channels of m and 
m’, we have m↑m’  ⇔  (m,c)↑(m’,c’).  
 
By this definition, a message m multicasted on channel c has an immediate dependency relation with a 
message m’ multicasted on c’, if m’ causally depends on m, i.e. (m, c)→ (m’, c’), and if for any 
intermediate message (m”, c’’) such that (m, c)→ (m”, c’’)→ (m’, c’), the channel c’’ differs from the 
channels c and c’.   
Note that the definition 5 of the IDR relation applies as well in the multiple channel context, viewing for 
any message m, send(m) as a shortcut for send(m,c) with c=Chan(m). As a direct consequence of the 
definitions, the IICD relation contains the IDR relation: for any messages m and m’ sent on channels c 
and c’, we have that send(m)↓send(m’) ⇒ send(m,c)↑send(m’,c’). Furthermore the two relations 
coincide if C contains a single channel : if C ={c},  then send(m)↓send(m’)⇔send(m,c)↑send(m’,c).   
 
Clearly, the causal delivery of messages related by the IICD relation is a necessary condition for the 
causal delivery of all messages. As shown in the 3-channel example of subsection 3 below, if the 
reference of some IICD predecessor m’ of a message m is not piggy-backed with m, the causal delivery 
of  m  with respect to m’ may fail.  
This information needed to ensure the causal delivery of IICD related messages is also sufficient: The 
following proposition proved in section VII establishes that if any two messages related by IICD are 
delivered in causal order, then all messages are delivered in causal order. 
 
Theorem 2 (Proof in section VII)  
If ∀ send(m,c), send(m’,c’)∈ E,  send(m,c) ↑send(m’,c’) ⇒ ∀p ∈ Memb(c)  Memb(c’): 
 delivery(p,m) → delivery(p,m’) 
then ∀send(m,c),send(m’,c’)∈E, send(m,c)→send(m’,c’) ⇒ ∀p ∈ Memb(c) Memb(c’):  
delivery(p,m) → delivery(p,m’) 
 
Our algorithm is based on the tracking of the IICD relation between messages during an execution, and 
on a delivery of messages which respects that ordering.  
 
3. Illustration of immediate inter-channel dependency 
 
In order to better illustrate Definition 6 and Theorem 2, we present the following scenario example. 
 
Scenario: The Multi-channel diagram in Figure 1 is composed of c1={ p1, p4, p5, p2}, c2={ p2, p3} and 
c3={ p1, p3} where p4, p5 are local participants to channel c1.  Consider the emission of message m4, such 
that ((m2, c1)||(m3, c1))↑(m4, c3).  According to Definition 6, the messages which have an IICD with m4 
are messages m2 and m3.  Therefore, the information that corresponds to these messages is sent as control 
information to m4. This information is not taken into account for the delivery of m4 by participant p3 
since p3 ∉ Memb(c1)  Memb(c3). 
 
Participant p3 only uses this information to update his system history file and for future diffusion of 
messages, as in the case of the diffusion of message m5. 



 
Figure. 1 Multi-channel scenario 

   
Let us now consider message m5 (Figure 1).   At the moment of diffusion of m5, we apply Definition 6 to 
each message in the causal history of p3.   We find that the messages that have an IICD with m5 are m2, 
m3 and m4 (see Figure 2). Thus, as in the previous cases, the control information timestamped to message 
m5 corresponds to the messages which have an IICD to m5. Message m5 is delivered to p2 (p2 ∈ 
Memb(c1)  Memb(c2)) only after messages m2 and m3 have been delivered.  These messages, m2 and m3, 
are delivered to p2 only after message m1 has been delivered.  This is ensured by the Immediate 
Dependency Relation (IDR). 

 
Figure. 2 IICD graph for m5 

V. The causal multi-channel algorithm 

1. Local identifiers 

In this algorithm, a participant locally manages an identifier for each channel to which it belongs. The 
distribution of the participants in the channels is transparent to the participants.  This means that a given 
participant is aware only of a list of identifiers and not of the channels´ constitution. For example, in 
Figure 3, participants p1 and p2 interact through channels c2 and c3 with participant p3.   Nevertheless, 
neither one of them knows that both are interacting with the same participant. 
 
We recall that P is the set of participant identifiers, C the set of channels, the mappings Memb :C→2P 
and Conn :P→2C  define for each channel the set of connected participants, and for each participant, the 
set of channels to which it is connected.  

(m2, c1) 

(m3, c1) 

(m4, c3) (m5, c2) 

The delivery of m5 is 
delayed. 

 p1 

p2 
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c1 

c3 
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Let I be an initial set of integers disjoint from P. The mapping id :P×C→I associates to each participant 
p and each channel c∈ Conn(p) a unique identifier id(p,c) ∈ I. For any i∈I , we denote by ch(i) the 
unique channel c such that i=id(p,c) for some p, and we have i=id(p,c) ⇒ ch(i)=c. For example, in 
Figure 3, participant p1 has two identifiers denoted by i=id(p1,c1) and i'=id(p1,c3); one for each channel to 
which it belongs, where ch(i)= c1 and ch(i')= c3, respectively. 

 
Figure. 3 Connection scheme 

2. Data structures 

Local states: The state of a participant p is defined by two data structures: VT(p) and CI(p).   
- VT(p) is the vector time. For each participant q and each channel c∈ Conn(q), there is an element 
VT(p)[j] where j=id(q,c)   The size of VT is thus equal to the sum of all channel sizes Σ c∈C |Memb(c)|.  
- CI(p) is the control information structure. It is a set of entries cik,t,c= (k,t,c,ch_dests) where  (k,t,c) is a 
message identifier (the message diffused by the participant pk  at its local clock value t,  in the channel  
c∈ Conn(pk))  and ch_dest is a set of channel identifiers explained below.  
 
The information in the vector time VT(p) contains the local view which the participant p has of the 
causal history of the system. In particular, the element VT(p)[j] represents the greatest message number 
from the identifier j and ‘seen’ by  p.  It has a total view if, at a given instant t, it contains information of 
the last known message from each participant.  It has a partial view if it contains this information only 
for a subset of the participants.  It is through the VT(p) structure that we are able to guarantee the causal 
delivery. 
 
The structure CI(p) also contains information about the causal history of p. The information in CI(p), at 
any moment, is a partial copy of VT(p), i.e. for each entry (k, t, c, ch_dests) of CI(p), we have t=VT(p)[k] 
(See Lemma 2 : (k, t, c) ∈ CI(p)⇒ x=VT(p)[k]). The set ch_dest contains the channels where the 
identifier (k,t,c) (identifier of a message in the causal history of p) may not have been already 
broadcasted: when  p multicasts a new message m in one of the channels of ch_dest, then m must carry 
the information (k, t, c) in its field H(m) to ensure its causal delivery. 
 
 
 
Messages: A message m is composed of an identifier (k,t,c) and an attached causal information H(m). 
Formally, a message m is a tuple m = (k, t, c, H(m)), where:  
- k is the identifier of the sender p=Src(m) for the channel c, i.e. k=id(p,c)  
- t =VT(p)[k] is the logical clock of p for k when m is sent 
- c is the channel in which m is broadcasted, c=Chan(m)  

p2 

p3 

 p1 

c1 

c2 

c3 



- H(m) is a set of tuples (i, t, c) representing messages    
The structure H(m) contains identifiers of messages causally preceding the message m and needed for the 
causal delivery of m. The structure H(m) is built before the message is broadcasted and attached to it.  
 
Note. The following nomenclature is used in the algorithm: i , j , k and l represent channel member 
identifiers; t, x and y are logical clocks; c and d are diffusion channels; and lastly, C  is the set of 
channels in the system. 
 

3. Algorithm specification 

I. Initially, 

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g|  
2. CI(p)← ∅ 

 
II. For each message diffused by p into channel c with i=id(p,c) 

3. VT(p)[i] = VT(p)[ i] +1 
4. H(m)← ∅ 
5. for all ci∈CI(p): ci=(k, x, d , ch_dests) 
6.     if c∈ci.ch_dests then 
7.           H(m)← H(m) {(k,x,d)}  
8.           ci.ch_dests← ci.ch_dests \ c  /* erase c from ci */ 
9.     endif 
10.     if ci.ch_dests  = ∅ then 
11.          CI(p) ← CI(p) \ ci      /* erase ci from CI(p) */ 
12.     endif 
13. endfor 
14.  t=VT(p)[ i] 
15. m=( i , t, c, content , H(m)) 
16. send(m)  into  the channel  c 
17. CI(p) ← CI(p) {(i,t,c,Conn(p) \ c)}  /* adds a new ci to CI(p) */ 
 
III.   For each m = ( i, t, c, content, H(m)) received by p with  j =id(p,c) 
18. If not t=VT(p)[i]+1 ∧   /*To verify causal delivery*/ 
19. ∀(l,x,d) ∈H(m) : d∈Conn(p) ⇒x≤VT(p)[l]  then  
20.       wait 
21. else 
22.     Delivery(content) 
23.     VT(p)[i] = VT(p)[i]+1  
24.      if (∃x:(i,x,c)∈CI(p)) then 
25.          CI(p) ← CI(p) \ {(i,x,c)}  
26.      endif  
27.     CI(p) ← CI(p)  {(i,t,c,Conn(p))}  
28.      for all (l,x,d)∈H(m)  
29.          if (d ∈ Conn(p)) then 



30.             if (∃y:(l,y,d) ∈CI(p)) then/*x ≤ y*/ 
31.                if x = y then 
32.                   UPD(cil,y,d , c ) 
33.                endif 
34.             endif   
35.         else /* d ∉ Conn(p) */ 
36.             if (∃y:(l,y,d) ∈CI(p)) then   
37.                 if x = y then 
38.                    UPD(cil,y,d , c )  
39.                 endif 
40.                 if x > y  then 
41.                    VT(p)[l] = x 
42.                    CI(p) ← CI(p) \ {(l,y,d)}  
43.                    CI(p) ← CI(p)  {(l,y,d, Conn(p))}  
44.                 endif 
45.             else /* ¬ ∃ y:(l,y,d) ∈CI(p)) */   
46.                 if (VT(p)[l] < x) then 
47.                     VT(p)[l] = x 
48.                    CI(p) ← CI(p)  {(l,x,d, Conn(p))}  
49.                 endif 
50.             endif 
51.          endif 
52.      endfor 
53. endif 
 
 
IV. Updating 
54. UPD(cik,,x,, d , c)  
55.    if (c ≠ d) then 
56.      cik,x,d .ch_dests← ci k,x,d.ch_dests\ c  
57.        if cik,x,d .ch_dests = ∅ then 
58.             CI(p) ← CI(p) \ {(k,x,d)}  
59.        endif 
60.    else /* c = d */ 
61.        CI(p) ← CI(p) \ {(k,x,d)}  
62.    endif 
 

4. Example scenario 

The multi-channel scenario presented in Figure 1 is composed of c1 = {p1, p4, p5, p2}, c2 = {p2, p3}, c3 = 
{p1, p3}. The VT positions are assigned as follows: 
 
 

Participants  (p1, c1)  (p1, c3) (p2, c1) (p2, c2) (p3, c2) (p3, c3) (p4, c1) (p5, c1)
VT Positions VT[1] VT[2] VT[3] VT[4] VT[5] VT[6] VT[7] VT[8] 



Henceforth, we use the VT positions as participant identifiers to send messages in the respective 
channels. Before sending m5, we have at p3 CI(p3)={(7,1, c1, {c2, c3}), (8,1, c1, {c2, c3}),(2,1, c3, {c2, 
c3})} VT(p3)=(0,1,0,0,0,0,1,1). At p2, we have CI(p2)={(8,1, c1, {c2, c3}) and VT(p2)=(1,0,0,0,0,0,0,1). 
 
Sending message m5 in channel c2. First, at participant p3, the VT(p3)[5] position is increased by one, 
and the H(m5) is constructed as follows (lines 5-13). We verify for each entry ci=(k,x,d,ch_dests)∈CI(p3) 
if c2 belongs to ci.ch_dests. If this is the case, we attach the entry (k,x,d) to H(m5). Each entry in H(m5) 
identifies messages IICD related to m5. At the same time that H(m5) is constructed, the CI(p3) structure is 
updated. First, channel c2 is erased from ci.ch_dests, and then, if ci.ch_dests is empty, the entire ci entry 
is erased from CI(p3). In this way, a participant never diffuses redundant information. Finally, we 
construct message m5=(5,1,c2,content,{(7,1,c1),(8,1,c1), (2,1,c3)}) and proceed to send it. 
 
Receiving message m5 at participant p2. Participant p2 verifies the condition delivery of line 18 as 
follows. First, we verify that m5 satisfies the FIFO delivery, and then we continue to verify the 
information on H(m5) = {(7,1,c1), (8,1,c1), (2,1,c3)}. In this case, the FIFO condition is satisfied 
(VT(p2)[5]+1 is equal to 1). We then take the first entry (7,1,c1)∈ H(m5) and find that it does not satisfy 
the delivery condition because VT(p2)[7] 1. This means that p2 is missing some message from p5 that 
causally precedes m5. Therefore, message m5 cannot be delivered yet; instead, it is placed on hold. 
Message m5 will only be delivered after the reception of all message(s) that causally precede it.  
 

VI. Proofs  

1. Proof of the IICD completeness property 

First, we introduce a “ causal” distance between messages which is used in the present section.  
 
Let m and m’ be messages, the distance d(m,m’) is defined for any pair m and m’ such that 
send(m)→send(m’):  d(m,m’) is the greatest integer n, such that for some sequence of messages (mi, i= 
0...n) with  m= m0 and m’=mn, we have  send(mi) →send(mi+1) for all i =0…n-1. Due to the acyclic 
nature of the causal order and a sensible “finite causes” property of a behavior, such a greatest integer 
always exists for any pair m,m’ such that send(m)→send(m’). Notice that we consider a greatest 
sequence’s length because it is useful in the proofs, while a shortest sequence length is usually 
considered to define distances in graphs.  
 
Theorem 2  
If ∀ m,m’∈ M, ∀ c,c’∈ Chan:  send(m,c) ↑send(m’,c’) ⇒ ∀p ∈ Memb(c)  Memb(c’):  
delivery(p,m) → delivery(p,m’) 
then ∀ m,m’∈ M, ∀ c,c’∈ Chan: send(m,c)→send(m’,c’) ⇒ ∀p ∈ Memb(c)  Memb(c’):  
delivery(p,m) → delivery(p,m’) 
 
Proof: Let m and m’ be such that send(m)→send(m’). We show that ∀p ∈ Dest(m)  Dest(m’) : 
delivery(p,m) → delivery(p,m’). By hypothesis, this property is satisfied if send(m) ↑ send(m’). 
Otherwise, let d(m,m’) = n,  c=Chan(m) and  c’=Chan(m’). In that case, by definition of the IICD ↑, we 
can find a message m’’=(k’’, x’’, c’’)  such that send(m) → send(m’’) → send(m’) and  such that 
Chan(m’’)=c or  Chan(m’’)=c’. If we have not send(m)↑send(m’’) and send(m’’)↑send(m’), we can 



repeatedly find new intermediate messages and constitute a sequence (mi=(ki, xi, ci) , i=0…h), such that 
m=m0 , m’=mh  and for all  i=0…h-1, send(mi)→send(mi+1). Due to the finite distance d(m,m’) = n, the 
size of such sequence is bounded by n, and thus, in a finite number of steps, we build a sequence such 
that for all  i=0…h-1, send(mi)↑send(mi+1). Furthermore, by construction we have Chan(mi)∈{c,c’}  for 
all i=0…h , and there is an integer 0≤k≤h-1 such that Chan(mi)=c  for all 0≤i≤k and Chan(mi)=c’ for all  
k<i≤h.  Let a common recipient p ∈ Dest(m) Dest(m’); this means that p ∈ Memb(c) Memb(c’), and 
thus, p receives all the messages of the sequence (mi=(ki, xi, ci) , i=0…h). Due to the hypothesis, 
send(mi)↑send(mi+1) implies  delivery(p, mi)→delivery(p, mi+1) for all  i=0…h-1, and this induces that 
delivery(p,m) → delivery(p,m’). □ 

2. Proof of correctness (1) 

In this section we show that the delivery restrictions imposed by the algorithm do not exceed the causal 
delivery constraints. No delivery order is imposed to messages which are not causally dependent on each 
other. Precisely, Theorem 3 shows that if a message piggybacks some causal information about some 
other message, then the latter belongs to the causes of the former.  
 
Theorem 3   For any two messages m=(k,x,c) and m’ then:   
(k,x,c) ∈ H(m’)  ⇒ send(m) → send(m’)  
 
Proof:  Let p= Src(m’), if (k,x,c) ∈ H(m’), due to instruction lines 5 and 7, (k,x,c) ∈ CI(p) when m’ is 
sent by participant p. There are two cases:  
A) The element (k,x,c) is added to CI(p) by instruction line 27 when  m is delivered to p. This must 
have occurred prior to the emission of m’ and thus we have delivery (m) → send(m’), and thus      
send(m) → send(m’). 
B)  The element (k,x,c) is added to CI(p) by instruction lines 43 or 48 when some message 
m1=(k1,x1,c1) ≠ m’, such that  (k,x,c) ∈ H(m1) was delivered to  p. In that case, we have        
delivery(p,m1) → send(m’).  
 
Cases A and B  show that if  (k,x,c) ∈ H(m’), then either  send(m) → send(m’) or for some m1=(k1,x1,c1) 
≠ m’ we have (k,x,c) ∈ H(m1) and  send (m1) → send(m’). If send(m) → send(m’) does not hold, then 
case B holds and we can apply the same deduction to the messages m and m1 because (k,x,c) ∈H(m1). We 
have m1 ≠ m because otherwise send(m) → send(m’). If send(m) → send(m1) does not hold, we iterate 
the step and exhibit a message m2 ≠ m  such that send(m2) → send(m1) and (k,x,c) ∈ H(m2).  At step  i-1, 
we have (k,x,c) ∈ H(mi-1), for some message mi-1 ≠ m such that send(mi-1) → send(mi-2) , and if     
send(m) → send(mi-1) does not hold, we can find a message mi ≠ m such that  send(mi) → send(mi-1)…. 
send(m1) → send(m’)  and  (k,x,c) ∈ H(mi). Because such a sequence may not be infinite, for some step i 
and message  mi  we must have send(m) → send(mi), and the property  send(m) → send(mi) → send(mi-

1)…. send(m1) → send(m’) concludes the proof. □ 
 
The following Lemma is a consequence of the previous theorem and used in the next section. 
 
To make the next proofs clearer, we give some definitions.   
 
Due to the total order of the actions of a single participant p, its behaviors can be modeled by alternated 



sequences of states and events s0, e1, s1, e2, s2 ,.. ,en, sn , where the states si are values of VT(p) and CI(p), 
and where each event ei is an action send(p,m) or delivery(p,m) for some message m, and represents the 
associated sequence of instructions. The causal past of an event e∈E, denoted ↓e, is the set of the events 
which precede e for the relation →, i.e. ↓e={e’∈E, e’→e}. The immediate cause of a state s of  a 
participant p, denoted ◦s, is the unique last event which occurred on p before reaching the state s, for 
instance ei=◦si  in the sequence s0, e1, s1, e2, s2 ,.. ,en, sn . The causal past of a state s, denoted ↓s is the set 
of events composed of its immediate cause ◦s and the causal past of ◦s, formally ↓s ={◦s }  ↓(◦s ). 
 
 
Lemma 1   If a state s of a participant p satisfies VT(p)[l] = x ≠ 0,  then the event send(m) where 
m=(l,x,c) with c = ch(l),  is in the past ↓s of s.  
Proof: There are two cases, depending on whether p is connected to c or not.  
1. p∈ Memb(c). In that case, VT(p)[l] may be modified and set to x only on the delivery to p of the 
message m=(l,x,c) received from l on the channel c (instruction line 23). The event delivery(p,m) then 
belongs to ↓s as well as the corresponding emission event send(m).  
2. p ∉ Memb(c). In that case, VT(p)[l] may be modified and set to x only on the reception by p of a 
message m’ such that (l,x,c) ∈ H(m’)  (lines 41 and 47). The delivery event delivery(p,m’)  then belongs 
to ↓s and also the corresponding emission event send(m’). Using Theorem 3, we can conclude that 
send(m) → send(m’), and  that send(m) is also a cause of s (send(m) belongs to ↓s). □ 
 

3. Proof of correctness (2) 

The second proof of correctness shows that whenever two messages m and m’ are such that 
send(m)→send(m’), we have delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m)  
Dest(m’).  Due to Theorem 2, it is sufficient to prove this property for messages m and m’  in immediate 
inter-channel dependency, and indeed Theorem 4 shows that if send(m)↑send(m’), we have 
delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m)  Dest(m’).    
 
The following four Lemmas are used in the proof of Theorem 4. Lemma 2 ensures that for each entry 
(l,x,c) in CI(p)  we have x = VT(p)[l]. 
 
Lemma 2 (l,x,c) ∈ CI(p) ⇒ x = VT(p)[l]  
 
Proof:   There are two cases: 
1) c ∈ Conn(p): the element (l,x,c) is added to CI(p) either at line 17 on sending the message (l,x,c),  and 
instruction line 3 ensures that x = VT(p)[l], or on delivery of the message (l,x,c)  at line 27, and when this 
instruction is executed, test line 18 and line 23 ensure that x = VT(p)[l].  
2) c ∉ Conn(p): the element (l,x,c) is  added to CI(p) due to  line 43 (resp. at line 48), and the instruction 
previously executed at line 41, (resp. at line 47) is precisely the instantiation  VT(p)[l] = x. □ 
The following Lemma shows that the values of the array VT(p) are modified accordingly with the values 
of H(m) by the algorithm when a message m is delivered. 
 
Lemma 3 After the delivery of a message m to the participant p, for each entry (l,x,c)∈H(m)  we have 
VT(p)[l]≥x.   
 



Proof: There are two cases: 
1) c ∈ Conn(p): The condition for the delivery of m at line 19 is precisely VT(p)[l] ≥ x.  
2) c ∉ Conn(p): The code beginning at line 35 is executed. If condition line 36 is true, either (l,y,c) ∈ 
CI(p) for some y ≥ x , in which case, due to Lemma 2, we have VT(p)[l]=y ≥ x, or the instruction line 41 
is executed yielding VT(p)[l] = x. Otherwise, condition line 36 is false, execution starts at line 45 and the 
lines 46 and 47 ensure that VT(p)[l] ≥ x.  □ 
 
Lemma 4 If at state s of a participant p we have VT(p)[l] = x ≠ 0 with c=ch(l),  then for any c’ ∈ 
Conn(p) one of the two following cases holds:  
1) There exists an entry (l,x,c) ∈ CI(p)  such that c’ ∈ (l,x,c).ch_dest. 
2) There exists a message m’  with c’=Chan(m’) and an event e=send(p,m’,c’) or  e=delivery(p,m’,c’) in 
the past of s, such that (l,x,c) ∈ H(m’). 
 
Proof: There are two cases: 
1) c ∈ Conn(p): the  value of VT(p)[l] is set to x by instruction line 23 and the entry (l,x,c) is added to 
CI(p) with (l,x,c).ch_dest=Conn(p) at line 27. The channel c’ ∈ Conn(p) is suppressed from 
(l,x,c).cd_dest only in two cases:  
- when a message m’ with (l,x,c) ∈ H(m’)  is emitted by p to the channel c’ (line 8); in that case, send(p, 
m’, c’) is in the past of s,  
- or when a message m’ with (l,x,c) ∈ H(m’)  is delivered to p through the channel c’ (UPD line 32); and 
in that case, delivery(p,m’,c’)  belongs to ↓s. 
2) c ∉ Conn(p): the  value of VT(p)[l] is set to x by line 41 (or line 47); and in that case, the entry (l,x,c) 
is added to CI(p) with (l,x,c).ch._dest=Conn(p) by line 43 (resp. line 48). The channel c’ ∈ Conn(p) is 
suppressed from (l,x,c).cd_dest only in two cases :  
- either when a message m’ with (l,x,c) ∈ H(m’)  is emitted by p to the channel c’ (line 8); in that case, 
send(p, m’, c’) is in the past of s,  
- or when a message m’ with (l,x,c) ∈ H(m’)  is delivered to p through the channel c’ (UPD line 38); and 
in that case, delivery(p,m’,c’)  belongs to ↓s. □  
The following lemma is a direct consequence of the previous one and of Theorem 3.  
 
Lemma 5 If a participant p such that VT(p)[l] = x ≠ 0 where c = ch(l), executes the action send(m’,c’), 
then one of the two following cases holds:  
1) (l,x,c) ∈ H(m’)  or 
2) There is a message m” broadcasted to the same channel c’= Chan(m’) = Chan(m’’) such that (l,x,c) ∈ 
H(m”) and send(m”,c’)→ send(m’,c’). Furthermore, the message m=(l,x,c) is such that  send(m,c) → 
send(m”,c’) → send(m’,c’). 
 
Proof: If (l,x,c) ∉ H(m’) when send(m’,c’) occurs, then due to lines 6 and 7,  no entry (l,x,c) ∈ CI(p) 
exists such that c’ ∈ (l,x,c).ch_dest. Then, by the previous Lemma 4 and Theorem 3, we have    
send(m,c) → send(m’,c’). □ 
 
Theorem 4 ∀ m,m’ ∈ M, send(m) ↑ send(m’) ⇒ ∀p ∈ Dest(m)  Dest(m’) :  
                  delivery(p,m) → delivery(p,m’). 
 
Proof: We prove by induction on the distance d(m,m’) between m and m’. Recall that  d(m,m’) is defined 



for any pair of messages m and m’ such that send(m)→send(m’), and is the greatest integer n such that 
for some sequence of messages (mi, i= 0...n) with  m= m0 and m’=mn, we have  send(mi)→send(mi+1) for 
all i =0…n-1.  
 
If d(m,m’)=1, then by definition send(p,m)↓send(p’,m’) (note that this is the IDR). We have to check that 
(l,x,c) ∈ H(m’)  The proof depends on whether both messages are sent by the same sender or not and 
relies on Lemma 5: 

a) If p=p’, and m=(l,x,c), then VT(p)[l] = x with l=id(p,c) after  send(m,c) (line 14).  
b) If p≠p’, due to the definition of → we must have have delivery(p’,m)→send(p’,m’).  Let 

m=(l,x,c), we have VT(p)[l] = x with l=id(p’,c) after  delivery(p’,m) (lines  18 and 23).  
By Lemma 5 we must have (l, x, c) ∈ H(m’) (case 1 of lemma 5) because  case 2 contradicts the 
hypothesis send(p,m)↓send(p’,m’). This implies that for any  q ∈ Dest(m)  Dest(m’), the delivery of 
m to q must occur before the delivery of m’, and we have delivery(q,m) → delivery(q,m’). 

 
Induction step n. We suppose the property true for any messages m and m’ such that d(m,m’) < n, and 
show that it holds if d(m,m’) = n. Let m and m’ be such that send(m)↑send(m’) and d(m,m’) = n. Because 
send(m)→send(m’) there is (at least) a message sequence (mi=(ki, xi, ci) , i=0…h), such that m=m0, 
m’=mh  and for all  i=0…h-1, send(mi)↓send(mi+1).  
 
By definition of d(m,m’) we have h ≤ d(m,m’). Furthermore, due to the hypothesis send(m)↑send(m’), we 
also have c0≠ci≠ch  for all  i=1…h-1. 
 
For all i=0…h, we denote by pi the participant such that ki = id (pi ,ci ) and by si the state of pi  at which 
the event send(pi, mi) occurs. We show that for all i=0…h, the state si satisfies the property VT(pi)[k0]  ≥ 
x0. The proof is by induction on the index i.   
 
At state s0 , when send(k0, x0, c0) occurs, due to instruction line 4 we must have VT(p0)[k0]  = x0.  
Suppose that VT(pi)[k0]  ≥ x0  at state si,  we show that VT(pi+1)[k0]  ≥ x0  at state si+1.  If VT(pi)[k0] = y ≥ 
x0  when mi on ci occurs, by Lemma 5 only two cases may take place: 
- (k0, y, c0) ∈ H(mi). In that case, due to Lemma 3, we have VT(pi+1)[k0]  = y ≥ x0 after delivery(pi+1,mi), 
and this remains true at state si+1.  when the broadcast of  mi+1 to ci+1 occurs. 
- There is a message m= (k, x, ci) multicasted on ci, such that (k0, y, c0) ∈ H(m) and send(k0, y, c0) 
→send(m) → send(mi). Due to x0 ≤ y, we have send(k0, x0, c0) → send(m), and because ci≠c0 , we have 
m≠m0. The distance d(m,mi) is strictly lower than d(m0,mi), thus strictly lower than n=d(m0,mh). We can 
apply to m and mi the induction hypothesis and conclude that delivery(pi+1,m) → delivery(pi+1,mi). Due to 
the fact that  (k0, y, c0) ∈ H(m) with y≥x0 ,  we have VT(pi+1)[k0] = y ≥ x0  after delivery(pi+1,m) and thus 
also after delivery(pi+1,mi), in particular at state  si+1  when the multicast of  mi+1 to ci+1 occurs.  
 
Using the induction hypothesis, we have shown that for any messages m=(k,x,c) and m’=(k’,x’,c’), such 
that send(m)↑send(m’) and d(m,m’) = n, we have VT(p’)[k]≥ x  when send(p’,m’) occurs. Let y = 
VT(p’)[k] ≥ x, we can conclude that (l,y,c) ∈ H(m’): otherwise, due to Lemma 5, there would be a 
message m’’ broadcasted to the channel c’=Chan(m’)=Chan(m’’) such that send(m,c)→ send(m’’,c’)→ 
send(m’,c’), and this contradicts the hypothesis send(m)↑send(m’). For any participant q ∈ Dest(m)  
Dest(m’), the property (l,y,c) ∈ H(m’) ensures that the delivery of m to q precedes the delivery of m’, and 
we have delivery(q,m) → delivery(q,m’).  □ 



 
The correctness of the algorithm results from Theorems 3 and 4. 
 
Corollary:  
For any messages m and m’ :  
If send(m)→ send(m’), then ∀p∈Dest(c) Dest(c’) :  delivery(p,m) → delivery(p,m’) 
 

VII. The CMCA vs other algorithms 

Table 1. Comparison of causally ordered multi-group algorithms 
 

Causal Multi-group 
Algorithms Configuration Organization Diffusion Overhead Principle 

CMCA (our algorithm) Dynamic Symmetric Asynchronous (worst case) 
Σ|g| : g∈G 

Immediate Inter-Channel 
Dependency Relation 

CBCAST (Isis) Dynamic Symmetric Asynchronous (worst case) 
Σ|g| : g∈G Time clock compression 

Daisy Architecture Dynamic Asymmetric Asynchronous 
(worst case) 
(l⋅(|S|+1))⋅ 
(|HS|+1) 

Logical group structure /     
Rediffusion servers 

Two-layered group Dynamic Asymmetric Asynchronous (worst case) 
(li+k)li+k2 

Logical group structure / 
Rediffusion servers 

Causal Separators Static Asymmetric Asynchronous (worst case) 
Σ|L| : L ∈ S

Network topology / 
Rediffusion servers 

Low cost approach Dynamic Asymmetric Synchronous  (always) 
|G| 

Synchronous execution      
by phases 

 
 
In this section we compare the characteristics of our CMCA algorithm with other main existing multi-
group algorithms that consider overlapping groups (Table 1).  The CMCA algorithm presents a 
symmetric organization, meaning that, among other things, our algorithm considers all participants to be 
equal, which permits them to interact without the need of a mediator. The CMCA algorithm allows an 
asynchronous diffusion of messages, providing participants the freedom to interact at the moment they 
desire. Finally, it is compatible with a dynamic configuration since the group structure relies on a logical 
structure which can change with time. In order to support a dynamic configuration, our CMCA algorithm 
needs to add an underlying membership algorithm, such as [9]. 
 
As one can observe in Table 1, the only other algorithm which shares the same characteristics as our 
CMCA algorithm is the Isis CBCAST algorithm.  The remaining ones have sacrificed some of these 
properties in order to reduce the amount of control information needed to be sent.  
 
Let us first consider the Daisy Architecture algorithm [2].  The authors have sacrificed a symmetric 
organization by structuring participants into sub-groups and by using re-diffusion servers (one per 
subgroup), thus impeding a direct interaction among participants.  One more recent work that follows the 
same philosophy as the previous one, and therefore presents the same disadvantages is the work by 
Taguchi et al. [20]. The main difference between them is that Taguchi treats differently the 
communication at a local level (intra-group) and at a server level. Next, let’s take the algorithm called 
Causal Separators [19].  In this work, the causal zones S establish the groups of participants. The causal 
zones are established in an off-line mode according to the physical network topology. The main 



disadvantage of this work is that the configuration must be previously carried before launching the 
protocol, and it is not able to support a reconfiguration at runtime without stopping the system. 
 
At last, we present the causal “Low cost approach” algorithm [11].  To our knowledge, this algorithm 
does use a minimal amount of control information; however, its disadvantage is that it works by 
synchronous phase execution, where every participant can send only one message per phase, and thus, 
considerably limits the interaction among participants and introduces several delays in the 
communication. 
 
 

          
 
 
 

 
Figure. 4 Overhead sent in the worst case varying the number of concurrent messages   

 
Now, let us discuss the amount of control information needed to be sent by each algorithm during the 
diffusion of messages in order to ensure a causal delivery.  As previously noted, the “Low cost approach” 
algorithm is the algorithm which sends the least amount of control information. This algorithm 
timestamps only into each message a vector of size |G|, where |G| is the number of groups in the system.  
As far as the Causal Separators algorithm is concerned, it timestamps per message in a causal zone a 
vector of size |L|, which is the number of participants in such causal zone.  Since the message in question 
can cross through one or more causal zones in order to reach its destination, the final amount in the worst 
case of causal information becomes Σ|L|, L ∈ S, which is the sum of the different causal zones in the 
system.  The case of the Daisy Architecture algorithm is similar to the previous one mentioned. The 
Daisy Architecture logically structures the sub-groups into channels of a size l. The maximum causal 
information sent for a hierarchy of level two is (l⋅(|S|+1))⋅(|HS|+1), where |S| is the number of servers 
(one per sub-group) and |HS| is the number of hyper-servers (one per Daisy Architecture). Next, the two-
layered algorithm proposed by Taguchi is a variant of the previous one. The overhead that it sends is 
(li+k)li for local emissions and (li+k)li + k2 for global messages (inter-group communication), where k is 
the number of subgroups in the system and li is the number of participant in a sub-group i. 
 
Finally, the overhead generated for the CBCAST algorithm is in the worst case Σ|g| : g∈G, which is the 
sum of the participants of each channel of the system. This appears to be the same overhead generated by 
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our CMCA algorithm, but as we will briefly present, the overhead is determined by the probability that 
different conditions will arise. In the CBCAST algorithm, the overhead attached per message for a 
participant is mainly determined by the positions that have been changed in its local VT (vector time) 
between local send events [5][6]. This means that the smaller the number of send events by a participant 
is, the greater the amount of causal overhead that can be sent per message.  
 
In the CMCA algorithm, the amount of overhead timestamped per message relies only on the IICD 
related messages at a given message emission. To achieve this, all participants collaborate, updating the 
view of IICD related messages at each local delivery or send event. Each local delivery or send event has 
the property of eliminating old immediate dependencies and establish new ones. This property is 
important since a participant can remain as listener without sending messages, and its local causal 
history (potential overhead) will remain updated reflecting only IICD related messages (CI(p) structure). 
To better illustrate this behavior, we present the following analysis. Consider a multi-group environment 
where all participants belong to all channels. If only a send event exists at a time (serial case), the 
overhead for the worst case for a listener in our CMCA algorithm is only |G|, while in the CBCAST the 
worst case is N⋅|G|. If we now consider that at most two send events exist at a time in the system (i.e. at 
most two concurrent send events), the worst case for a listener in the CMCA is equal to 2⋅|G|; for three 
send events at most, the overhead can be 3⋅|G| and so on, until one arrives at N⋅|G| (one send event per 
participant). We note that the CMCA algorithm dynamically adapts the worst case according to the 
number of concurrent send events that can exist in the system. However, for the CBCAST algorithm, the 
worst case remains N⋅|G| for all these cases (see Fig. 4).  
 
Finally, we note that all the algorithms presented assume as hypothesis a reliable communication and a 
finite transmission delay. Nevertheless, there are presently some works that propose some mechanisms in 
order to eliminate such hypothesis in broadcast environments. For details, see [4] and [10].     

VIII. Conclusions 

We have introduced in this paper an immediate inter-channel dependency relation, which is an extension 
to the Immediate Dependency Relation. We have shown that the IICD characterizes the necessary 
information to ensure the causal delivery of messages in overlapping multi-channel environments. We 
have presented an efficient causal multi-channel algorithm, based on the IICD relation and benefiting of 
its “minimality” property, which is characterized by an asynchronous execution and a symmetric 
organization, allowing a free and direct interaction among the participants. We compare our CMCA 
algorithm with the CBCAST of Isis which is the only one (as far as we know) that shares the same 
properties. We show that our algorithm sends less causal overhead timestamped per message than the 
CBCAST.  
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