
"Detecting Immediate Dependencies among Events in Overlapping Multicast Channels"

 International Journal of Parallel, Emergent and Distributed Systems
 Vol. X, No. X, Month 200X, 000–000

 International Journal of Parallel, Emergent and Distributed Systems

ARTICLE TYPE [Research-article]

Article Title [An Efficient Causal Ordering Algorithm for Multicast Communication Channels]

Saul Eduardo Pomares Hernandeza , Luis Alberto Morales Rosalesa and Jean Fanchonb

a Computer Science Department, National Institute of Astrophysics, Optics and Electronics,
Puebla, Mexico; {spomares, lamorales}@inaoep.mx
b Université de Toulouse, LAAS-CNRS,
 Toulouse, France; fanchon@laas.fr

Abstract

In this paper we present an efficient causal algorithm that can be used in multicast communication
environments, in particular the overlapping multi-channel case, where a participant can belong and
communicate through more than one multicast channel. The causal algorithm is built on the paradigm of
group communication. The groups are established according to the participant channel subscription. In order
to reduce the amount of control information, we propose an extension of the Immediate Dependency Relation
(IDR), which was introduced by Peterson in the context of one group. This IDR extension allows us to define
necessary and sufficient control information to ensure causal delivery in a multi-group environment. We show
that through the use of the IDR extension, we reduce the amount of control information sent per message
without imposing restrictions in interaction or execution (e.g. network topology, re-diffusion servers,
executions models, etc). These characteristics allow our algorithm to be suitable for use in large distributed
decentralized systems. We show the efficiency of our causal algorithm in terms of the overhead timestamped
per message.

Keywords: Immediate dependency relation; causal ordering; group communication; distributed systems.

I. Introduction

In Multi-party Communication Systems, causal ordering algorithms are an essential tool to exchange
information. The use of causal ordering provides built-in message synchronization and reduces the non-
determinism in a distributed computation. Causal ordering provides an equivalent of the FIFO property at a
global multiparty communication level; it guarantees that actions, like requests or questions, are received
before their corresponding reactions, results or responses. The concept of causal ordering is of considerable
interest to the design of distributed systems, and can be found in applications of several domains, such as
distributed cooperative engineering [18], teleconferencing [15], multimedia systems [3], mobile computing
[16], resource allocating algorithms [21] and security domains [17].

We address in this paper the causal ordering of messages over multicast communication channels based on the
paradigm of group communication. We consider that the participants are structured in groups according to the
multicast channel subscription. In our work we consider that a multicast channel defines a group
communication and that a participant can belong to and communicate through more than one channel
(overlapping channels, also indistinctly refered as overlapping groups in this paper). The multicast channels
considered in this paper are characterized by a reliable and asynchronous communication.

Among the various existing causal algorithms that support multi-group environments, we can distinguish two
types: symmetric and asymmetric ones. While in symmetric algorithms all participants share the same role in
the system and interact freely without timing or centralized constraints, asymmetric algorithms either
introduce restrictions in either the mode of interaction or execution.

The present paper proposes a symmetric Causal Multi-Channel Algorithm (CMCA). The main objective of
our algorithm is to reduce the amount of control information (CI) per message. The amount of information
necessary to guarantee causal communication in overlapping groups is θ(G⋅N) in the worst case [5], where G
is the number of groups and N refers to the number of participants in the system. For large values of N and G,

the bound of θ(G⋅N) is prohibitively high. An original aspect of our work is the definition and the use of an
extension of the Immediate Dependency Relation (IDR) [12] [13] to the multi-channel context. We call this
extension the Immediate Inter-Channel Dependency (IICD). The IICD allows us, in a symmetric organization,
to identify a sufficient control information to ensure the causal delivery of messages in a multi-channel
scenario. Our CMCA algorithm can be viewed as an extension to the broadcast (one channel) causal algorithm
presented in [13].

The paper proceeds as follows: first, in Section II we overview the related work. In Section III we give the
basic definitions. Next in Section IV, we introduce the immediate dependency and our proposed extension to
the multigroup case. In Section V, the proposed Causal Multi-channel Algorithm is shown in detail. Section VI
is dedicated to the proofs, which include the proof of the IICD “completeness” property and the proof of
correctness of the CMCA algorithm. In Section VII we present a comparison of our algorithm versus other
important multi-group communication works. Finally, in Section VIII some conclusions are presented.

II. Related work

As mentioned above, we have surveyed works which aim to reduce the control information needed to ensure
causal order delivery in symmetric algorithms. The symmetric algorithms consider that all participants share
the same role and the same degree of responsibility in the system; furthermore, they interact freely without
timing or centralized constraints. The symmetric category is concerned with identifying the necessary
conditions to ensure a causal delivery of messages, and/or with arranging optimal coding to represent and
transmit this information. The asymmetric category is composed of algorithms that assume a certain network
topology [19], a particular group structure [2], and/or execution models [11]. The following related works
involve only the symmetric category, which is the category with which we are concerned.

One of the first algorithms is the work done by Peterson [12]. Peterson introduced the context graph, which
was designed to represent the causality between messages in a conversation algorithm in a broadcast
environment (one group). This graph is directed and acyclic; its vertices correspond to the total set of
messages, and the arcs represent the causal relationship between these messages. The reduced graph as
presented in [12] shows that if the causal ordering of messages is ensured between every pair of immediate
causal predecessor and successor messages, then the causal ordering among all messages will be
automatically ensured due to the transitivity of the preceding relation.

The work of Prakash and Raynal [14] extends the immediate dependency property to support multi-party
environments (no pre-defined groups exist). Prakash’s work does not use nor maintain context graphs to
ensure causal ordering. To ensure causal ordering, a message m needs to carry information concerning only
those messages m’ which its delivery is directly dependent upon. This approach is oriented to resolve
problems in mobile agent applications; it considers multi-party and broadcast communication (one group), but
not the multi-group communication case. The overhead for the causal multi-party algorithm is θ(N2), where N
is the number of participants in the system.

Another example of an algorithm is the CBCAST proposed by Birman [5][6], which is based on vector time
clocks. To our knowledge, this algorithm is the only symmetric work that supports overlapping groups. The
author, in his algorithm, mainly proposes to compress the vector time of a process by attaching only the local
vector positions on each message:

1. that have changed since the last local message sent, and
2. that are not known to be stable (messages known to be received).

Due to its importance, we present a comparison of our work with this one in Section VIII.

Finally, the work proposed by Maddi and Dahamni [1] uses the immediate dependency property and the
second constraint of the previous one. It sends less overhead than Prakash and Raynal [14] in the order of
(N2-N-2)/2; nevertheless, it uses a point-to-point communication scheme for multi-party environments.
Consequently, the algorithm first needs to construct a different causal history for every destination before
sending a message, and second, it needs to send n-copies of such message, one for each destination.

III. Preliminaries

Participants and Channels. The application under consideration is composed of a set of participants P
that are structured into groups according to the multicast channel organization. We consider that a
multicast channel defines a group communication; for this reason, in this paper we refer to them
indistinctly. The participants communicate through multicast channels that are characterised by a reliable
and asynchronous communication. We denote by C the set of channels, the mapping Memb: C→2P
defines for each channel the group of connected participants, and the mapping Conn:P→2C defines for
each participant the set of channels to which it is connected. Each participant maintains an integer local
clock which is incremented each time it performs an action (send or receive).

A (finite) behavior of such a system is defined by a set of events executed by the participants, partially
ordered by a “causal” relation defined below. These events may be emissions or deliveries of messages.

Messages. We consider a finite set of messages M, where each message m∈M is identified by a tuple
(participant, integer, channel), m=(p,x,c) where p∈P is the sender of m, denoted by Src(m), x is the
value of the local clock of p when m is sent, and c∈C is the channel on which m is multicasted, denoted
by Chan(m). The set of destinations Dest(m) of the message m is composed of the participants connected
to the channel Chan(m), Dest(m)=Memb(Chan(m)). In further sections, additional fields will be
introduced to the tuple (p,x,c), but they are not relevant in this section.

Events. Let m be a message, we denote by send(m) the emission event of m by Src(m), and by
delivery(p,m) the delivery event of m to the participant p connected to Chan(m). The set of events
associated to M is then the set E = {send(m), m∈M} {delivery(p,m), m ∈ M , p ∈Dest(m)}. An emission
event send(m), where m=(p,x,c), may also be denoted by send(p,m) or send(m,c) without ambiguity. The
subset Ep⊆E of events involving p is Ep= {send(m), p=Src(m)} {delivery(p,m), p∈Dest(m)}.

Causal relation and causal order delivery. Causal order delivery is based on the causal relation
→⊆E×E between the events E of the system. This relation is also called the “happened before relation,”
and was first defined by Lamport [8]. The causal relation is a strict partial order (transitive and
antisymmetric) defined as follows:

Definition 2. The causal relation “→” is the least partial order relation on E satisfying the two following
properties:
1) For each participant p, the restriction of → to the set of events Ep involving p is the total order in

which they occur: in particular, we have e,e’∈ Ep ⇒ e→e’ ∨ e’→e
2) For each message m and destination p of m, the emission of m precedes its delivery to p:
 ∀m∈M, ∀p∈Dest(m) : send(m) → delivery(p,m)

The partial order (E, →) is usually represented by a directed acyclic graph where for each participant p,
the events of Ep are drawn on a vertical line.
The complement of the causal relation is called concurrency: a pair of events e, e’ is said to be
concurrent, denoted e||e’ , iff ¬(e→e’ ∨ e’→e).

Causal order delivery in group communication presents two cases: the broadcast case (one channel) and
the multi-channel case, which includes overlapping channels. The causal delivery for the broadcast case
is defined as follows [7]:

Definition 3 Broadcast Causal Order Delivery (one channel):
If send(m)→ send(m’), then
∀p ∈ P : delivery(p,m) → delivery(p,m’)

Causal order delivery ensures that if the diffusion of a message m causally precedes the diffusion of a
message m’, in a channel c, then the delivery of m precedes the delivery of m’ to each participant p.

The case of causal delivery in a multi-channel environment is more common in channel communication.
Two messages sent in different channels may not have the same sets of destinations. The definition of the
causal order delivery takes this into account. The definition is as follows:

Definition 4 Multi-channel causal order delivery:
If send(m,c)→ send(m’,c’), then
∀p∈Memb(c) Memb(c’) : delivery(p,m) → delivery(p,m’)

Multi-channel causal order delivery guarantees that if the diffusion of a message m causally precedes the
diffusion of a message m’, with c and c’ as the diffusion channels of messages m and m’ respectively,
then the delivery of m causally precedes the delivery of m’ for all participants p that belong to both
channels c and c’ [12].

IV. The Immediate Dependency Relation

1. Single channel case (One group)

The Immediate Dependency Relation (IDR) is defined on the set of sending events. It is the transitive
reduction of the causal precedence restricted to these events: it is included in the causal precedence and
is the smallest relation which generates it by transitive closure.

Definition 5 Immediate dependency relation ↓ (IDR):
send(m)↓send(m’)⇔[send(m) → send(m’) ∧ ∀ m”∈ M, ¬ (send(m) → send(m”)→ send(m’))]

Thus, send(m) directly precedes send(m’), iff send(m) causally precedes send(m’) and no other event
send(m”) happens “causally” between send(m) and send(m’).

The causal precedence on sending events induces a partial order on the corresponding messages, denoted
by the same symbol →, defined as follows:

m→m’ ⇔ send(m)→send(m’).
The IDR can thus be viewed as a relation on messages denoted by the same symbol ↓ , and we say that
message m directly precedes message m’:

m↓m’ ⇔ send(m)↓send(m’).

This relation is important for causal delivery algorithms and protocols: the causal delivery of messages
related by the IDR is a sufficient condition to ensure the causal delivery of all messages, as shown
below:

Theorem 1 Causal broadcast delivery using the IDR relation:
If ∀ m, m’ ∈ M, send(m)↓send(m’) ⇒ ∀p ∈ P: delivery(p,m) → delivery(p,m’)
then ∀ m, m’ ∈ M, send(m) →send(m’) ⇒ ∀p ∈ P : delivery(p,m) → delivery(p,m’)

The proof (see also [12]), relies on the fact that for any pair send(m) →send(m’) if send(m)↓send(m’)
does not hold, then we can exhibit a message m” such that send(m) → send(m”)→ send(m’). Using
inductive reasoning and the fact that the event send(m’) may only have a finite number of “causes” or
predecessors for the causal relation, we can find (at least) a sequence (mi=(ki, xi, ci) , i=0…h), such that
m=m0 , m’=mh and for all i=0…h-1, send(mi)↓send(mi+1). For any participant p we have
delivery(p,mi)↓delivery(p,mi+1), and by transitivity we get the required property.

Clearly, the causal delivery of messages related by IDR is not only a sufficient but also a necessary
condition for the causal delivery of all causally related messages. From an algorithmic point of view, if
the reference of some immediate predecessor m’ of a message m is not piggy-backed with m, the causal
delivery of m with respect to m’ may fail. Theorem 1 shows that this information is sufficient.

However, in the general case where messages may be sent to different sets of destinations, the causal
delivery of a message only with respect to its immediate predecessors is not sufficient to ensure the
global property. This is the particular case in our framework of multiple overlapping channels, as shown
in the example of subsection 3 below. The next section presents a relation which extends IDR, and which
benefits of the same type of properties in this more general framework.

2. Multi-channel case (Multi-group)

In this section, we extend the principle of immediate dependency to the case of multi-channel diffusion.
We call this extension the Immediate Inter-Channel Dependency Relation, and refer to it by its acronym
IICD. In the same way that the IDR allows us to define the minimal sufficient control information in a
broadcast case, the IICD allows us to characterize a minimal sufficient control information to ensure the
causal delivery of messages in a multi-channel environment.

Henceforth, we will often denote send(m,c) by (m,c).

Definition 6 Immediate Inter-channel Dependency Relation (IICD) ↑:
(m,c)↑(m’,c’) ⇔ [((m,c) → (m’, c’))∧∀ m” ∈ M, ((m,c)→ (m”, c’’)→ (m’, c’) ⇒ c’’≠ c ∧ c’’≠c’)]

As for IDR, this relation can be viewed as a relation on messages: if c and c’ are the channels of m and
m’, we have m↑m’ ⇔ (m,c)↑(m’,c’).

By this definition, a message m multicasted on channel c has an immediate dependency relation with a
message m’ multicasted on c’, if m’ causally depends on m, i.e. (m, c)→ (m’, c’), and if for any
intermediate message (m”, c’’) such that (m, c)→ (m”, c’’)→ (m’, c’), the channel c’’ differs from the
channels c and c’.
Note that the definition 5 of the IDR relation applies as well in the multiple channel context, viewing for
any message m, send(m) as a shortcut for send(m,c) with c=Chan(m). As a direct consequence of the
definitions, the IICD relation contains the IDR relation: for any messages m and m’ sent on channels c
and c’, we have that send(m)↓send(m’) ⇒ send(m,c)↑send(m’,c’). Furthermore the two relations
coincide if C contains a single channel : if C ={c}, then send(m)↓send(m’)⇔send(m,c)↑send(m’,c).

Clearly, the causal delivery of messages related by the IICD relation is a necessary condition for the
causal delivery of all messages. As shown in the 3-channel example of subsection 3 below, if the
reference of some IICD predecessor m’ of a message m is not piggy-backed with m, the causal delivery
of m with respect to m’ may fail.
This information needed to ensure the causal delivery of IICD related messages is also sufficient: The
following proposition proved in section VII establishes that if any two messages related by IICD are
delivered in causal order, then all messages are delivered in causal order.

Theorem 2 (Proof in section VII)
If ∀ send(m,c), send(m’,c’)∈ E, send(m,c) ↑send(m’,c’) ⇒ ∀p ∈ Memb(c) Memb(c’):
 delivery(p,m) → delivery(p,m’)
then ∀send(m,c),send(m’,c’)∈E, send(m,c)→send(m’,c’) ⇒ ∀p ∈ Memb(c) Memb(c’):
delivery(p,m) → delivery(p,m’)

Our algorithm is based on the tracking of the IICD relation between messages during an execution, and
on a delivery of messages which respects that ordering.

3. Illustration of immediate inter-channel dependency

In order to better illustrate Definition 6 and Theorem 2, we present the following scenario example.

Scenario: The Multi-channel diagram in Figure 1 is composed of c1={ p1, p4, p5, p2}, c2={ p2, p3} and
c3={ p1, p3} where p4, p5 are local participants to channel c1. Consider the emission of message m4, such
that ((m2, c1)||(m3, c1))↑(m4, c3). According to Definition 6, the messages which have an IICD with m4
are messages m2 and m3. Therefore, the information that corresponds to these messages is sent as control
information to m4. This information is not taken into account for the delivery of m4 by participant p3
since p3 ∉ Memb(c1) Memb(c3).

Participant p3 only uses this information to update his system history file and for future diffusion of
messages, as in the case of the diffusion of message m5.

Figure. 1 Multi-channel scenario

Let us now consider message m5 (Figure 1). At the moment of diffusion of m5, we apply Definition 6 to
each message in the causal history of p3. We find that the messages that have an IICD with m5 are m2,
m3 and m4 (see Figure 2). Thus, as in the previous cases, the control information timestamped to message
m5 corresponds to the messages which have an IICD to m5. Message m5 is delivered to p2 (p2 ∈
Memb(c1) Memb(c2)) only after messages m2 and m3 have been delivered. These messages, m2 and m3,
are delivered to p2 only after message m1 has been delivered. This is ensured by the Immediate
Dependency Relation (IDR).

Figure. 2 IICD graph for m5

V. The causal multi-channel algorithm

1. Local identifiers

In this algorithm, a participant locally manages an identifier for each channel to which it belongs. The
distribution of the participants in the channels is transparent to the participants. This means that a given
participant is aware only of a list of identifiers and not of the channels´ constitution. For example, in
Figure 3, participants p1 and p2 interact through channels c2 and c3 with participant p3. Nevertheless,
neither one of them knows that both are interacting with the same participant.

We recall that P is the set of participant identifiers, C the set of channels, the mappings Memb :C→2P
and Conn :P→2C define for each channel the set of connected participants, and for each participant, the
set of channels to which it is connected.

(m2, c1)

(m3, c1)

(m4, c3) (m5, c2)

The delivery of m5 is
delayed.

 p1

p2

p3

c1

c3
c2

t

m5

m4

m2 m3

m1

p4
p5

Let I be an initial set of integers disjoint from P. The mapping id :P×C→I associates to each participant
p and each channel c∈ Conn(p) a unique identifier id(p,c) ∈ I. For any i∈I , we denote by ch(i) the
unique channel c such that i=id(p,c) for some p, and we have i=id(p,c) ⇒ ch(i)=c. For example, in
Figure 3, participant p1 has two identifiers denoted by i=id(p1,c1) and i'=id(p1,c3); one for each channel to
which it belongs, where ch(i)= c1 and ch(i')= c3, respectively.

Figure. 3 Connection scheme

2. Data structures

Local states: The state of a participant p is defined by two data structures: VT(p) and CI(p).
- VT(p) is the vector time. For each participant q and each channel c∈ Conn(q), there is an element
VT(p)[j] where j=id(q,c) The size of VT is thus equal to the sum of all channel sizes Σ c∈C |Memb(c)|.
- CI(p) is the control information structure. It is a set of entries cik,t,c= (k,t,c,ch_dests) where (k,t,c) is a
message identifier (the message diffused by the participant pk at its local clock value t, in the channel
c∈ Conn(pk)) and ch_dest is a set of channel identifiers explained below.

The information in the vector time VT(p) contains the local view which the participant p has of the
causal history of the system. In particular, the element VT(p)[j] represents the greatest message number
from the identifier j and ‘seen’ by p. It has a total view if, at a given instant t, it contains information of
the last known message from each participant. It has a partial view if it contains this information only
for a subset of the participants. It is through the VT(p) structure that we are able to guarantee the causal
delivery.

The structure CI(p) also contains information about the causal history of p. The information in CI(p), at
any moment, is a partial copy of VT(p), i.e. for each entry (k, t, c, ch_dests) of CI(p), we have t=VT(p)[k]
(See Lemma 2 : (k, t, c) ∈ CI(p)⇒ x=VT(p)[k]). The set ch_dest contains the channels where the
identifier (k,t,c) (identifier of a message in the causal history of p) may not have been already
broadcasted: when p multicasts a new message m in one of the channels of ch_dest, then m must carry
the information (k, t, c) in its field H(m) to ensure its causal delivery.

Messages: A message m is composed of an identifier (k,t,c) and an attached causal information H(m).
Formally, a message m is a tuple m = (k, t, c, H(m)), where:
- k is the identifier of the sender p=Src(m) for the channel c, i.e. k=id(p,c)
- t =VT(p)[k] is the logical clock of p for k when m is sent
- c is the channel in which m is broadcasted, c=Chan(m)

p2

p3

 p1

c1

c2

c3

- H(m) is a set of tuples (i, t, c) representing messages
The structure H(m) contains identifiers of messages causally preceding the message m and needed for the
causal delivery of m. The structure H(m) is built before the message is broadcasted and attached to it.

Note. The following nomenclature is used in the algorithm: i , j , k and l represent channel member
identifiers; t, x and y are logical clocks; c and d are diffusion channels; and lastly, C is the set of
channels in the system.

3. Algorithm specification

I. Initially,

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g|
2. CI(p)← ∅

II. For each message diffused by p into channel c with i=id(p,c)

3. VT(p)[i] = VT(p)[i] +1
4. H(m)← ∅
5. for all ci∈CI(p): ci=(k, x, d , ch_dests)
6. if c∈ci.ch_dests then
7. H(m)← H(m) {(k,x,d)}
8. ci.ch_dests← ci.ch_dests \ c /* erase c from ci */
9. endif
10. if ci.ch_dests = ∅ then
11. CI(p) ← CI(p) \ ci /* erase ci from CI(p) */
12. endif
13. endfor
14. t=VT(p)[i]
15. m=(i , t, c, content , H(m))
16. send(m) into the channel c
17. CI(p) ← CI(p) {(i,t,c,Conn(p) \ c)} /* adds a new ci to CI(p) */

III. For each m = (i, t, c, content, H(m)) received by p with j =id(p,c)
18. If not t=VT(p)[i]+1 ∧ /*To verify causal delivery*/
19. ∀(l,x,d) ∈H(m) : d∈Conn(p) ⇒x≤VT(p)[l] then
20. wait
21. else
22. Delivery(content)
23. VT(p)[i] = VT(p)[i]+1
24. if (∃x:(i,x,c)∈CI(p)) then
25. CI(p) ← CI(p) \ {(i,x,c)}
26. endif
27. CI(p) ← CI(p) {(i,t,c,Conn(p))}
28. for all (l,x,d)∈H(m)
29. if (d ∈ Conn(p)) then

30. if (∃y:(l,y,d) ∈CI(p)) then/*x ≤ y*/
31. if x = y then
32. UPD(cil,y,d , c)
33. endif
34. endif
35. else /* d ∉ Conn(p) */
36. if (∃y:(l,y,d) ∈CI(p)) then
37. if x = y then
38. UPD(cil,y,d , c)
39. endif
40. if x > y then
41. VT(p)[l] = x
42. CI(p) ← CI(p) \ {(l,y,d)}
43. CI(p) ← CI(p) {(l,y,d, Conn(p))}
44. endif
45. else /* ¬ ∃ y:(l,y,d) ∈CI(p)) */
46. if (VT(p)[l] < x) then
47. VT(p)[l] = x
48. CI(p) ← CI(p) {(l,x,d, Conn(p))}
49. endif
50. endif
51. endif
52. endfor
53. endif

IV. Updating
54. UPD(cik,,x,, d , c)
55. if (c ≠ d) then
56. cik,x,d .ch_dests← ci k,x,d.ch_dests\ c
57. if cik,x,d .ch_dests = ∅ then
58. CI(p) ← CI(p) \ {(k,x,d)}
59. endif
60. else /* c = d */
61. CI(p) ← CI(p) \ {(k,x,d)}
62. endif

4. Example scenario

The multi-channel scenario presented in Figure 1 is composed of c1 = {p1, p4, p5, p2}, c2 = {p2, p3}, c3 =
{p1, p3}. The VT positions are assigned as follows:

Participants (p1, c1) (p1, c3) (p2, c1) (p2, c2) (p3, c2) (p3, c3) (p4, c1) (p5, c1)
VT Positions VT[1] VT[2] VT[3] VT[4] VT[5] VT[6] VT[7] VT[8]

Henceforth, we use the VT positions as participant identifiers to send messages in the respective
channels. Before sending m5, we have at p3 CI(p3)={(7,1, c1, {c2, c3}), (8,1, c1, {c2, c3}),(2,1, c3, {c2,
c3})} VT(p3)=(0,1,0,0,0,0,1,1). At p2, we have CI(p2)={(8,1, c1, {c2, c3}) and VT(p2)=(1,0,0,0,0,0,0,1).

Sending message m5 in channel c2. First, at participant p3, the VT(p3)[5] position is increased by one,
and the H(m5) is constructed as follows (lines 5-13). We verify for each entry ci=(k,x,d,ch_dests)∈CI(p3)
if c2 belongs to ci.ch_dests. If this is the case, we attach the entry (k,x,d) to H(m5). Each entry in H(m5)
identifies messages IICD related to m5. At the same time that H(m5) is constructed, the CI(p3) structure is
updated. First, channel c2 is erased from ci.ch_dests, and then, if ci.ch_dests is empty, the entire ci entry
is erased from CI(p3). In this way, a participant never diffuses redundant information. Finally, we
construct message m5=(5,1,c2,content,{(7,1,c1),(8,1,c1), (2,1,c3)}) and proceed to send it.

Receiving message m5 at participant p2. Participant p2 verifies the condition delivery of line 18 as
follows. First, we verify that m5 satisfies the FIFO delivery, and then we continue to verify the
information on H(m5) = {(7,1,c1), (8,1,c1), (2,1,c3)}. In this case, the FIFO condition is satisfied
(VT(p2)[5]+1 is equal to 1). We then take the first entry (7,1,c1)∈ H(m5) and find that it does not satisfy
the delivery condition because VT(p2)[7] 1. This means that p2 is missing some message from p5 that
causally precedes m5. Therefore, message m5 cannot be delivered yet; instead, it is placed on hold.
Message m5 will only be delivered after the reception of all message(s) that causally precede it.

VI. Proofs

1. Proof of the IICD completeness property

First, we introduce a “ causal” distance between messages which is used in the present section.

Let m and m’ be messages, the distance d(m,m’) is defined for any pair m and m’ such that
send(m)→send(m’): d(m,m’) is the greatest integer n, such that for some sequence of messages (mi, i=
0...n) with m= m0 and m’=mn, we have send(mi) →send(mi+1) for all i =0…n-1. Due to the acyclic
nature of the causal order and a sensible “finite causes” property of a behavior, such a greatest integer
always exists for any pair m,m’ such that send(m)→send(m’). Notice that we consider a greatest
sequence’s length because it is useful in the proofs, while a shortest sequence length is usually
considered to define distances in graphs.

Theorem 2
If ∀ m,m’∈ M, ∀ c,c’∈ Chan: send(m,c) ↑send(m’,c’) ⇒ ∀p ∈ Memb(c) Memb(c’):
delivery(p,m) → delivery(p,m’)
then ∀ m,m’∈ M, ∀ c,c’∈ Chan: send(m,c)→send(m’,c’) ⇒ ∀p ∈ Memb(c) Memb(c’):
delivery(p,m) → delivery(p,m’)

Proof: Let m and m’ be such that send(m)→send(m’). We show that ∀p ∈ Dest(m) Dest(m’) :
delivery(p,m) → delivery(p,m’). By hypothesis, this property is satisfied if send(m) ↑ send(m’).
Otherwise, let d(m,m’) = n, c=Chan(m) and c’=Chan(m’). In that case, by definition of the IICD ↑, we
can find a message m’’=(k’’, x’’, c’’) such that send(m) → send(m’’) → send(m’) and such that
Chan(m’’)=c or Chan(m’’)=c’. If we have not send(m)↑send(m’’) and send(m’’)↑send(m’), we can

repeatedly find new intermediate messages and constitute a sequence (mi=(ki, xi, ci) , i=0…h), such that
m=m0 , m’=mh and for all i=0…h-1, send(mi)→send(mi+1). Due to the finite distance d(m,m’) = n, the
size of such sequence is bounded by n, and thus, in a finite number of steps, we build a sequence such
that for all i=0…h-1, send(mi)↑send(mi+1). Furthermore, by construction we have Chan(mi)∈{c,c’} for
all i=0…h , and there is an integer 0≤k≤h-1 such that Chan(mi)=c for all 0≤i≤k and Chan(mi)=c’ for all
k<i≤h. Let a common recipient p ∈ Dest(m) Dest(m’); this means that p ∈ Memb(c) Memb(c’), and
thus, p receives all the messages of the sequence (mi=(ki, xi, ci) , i=0…h). Due to the hypothesis,
send(mi)↑send(mi+1) implies delivery(p, mi)→delivery(p, mi+1) for all i=0…h-1, and this induces that
delivery(p,m) → delivery(p,m’). □

2. Proof of correctness (1)

In this section we show that the delivery restrictions imposed by the algorithm do not exceed the causal
delivery constraints. No delivery order is imposed to messages which are not causally dependent on each
other. Precisely, Theorem 3 shows that if a message piggybacks some causal information about some
other message, then the latter belongs to the causes of the former.

Theorem 3 For any two messages m=(k,x,c) and m’ then:
(k,x,c) ∈ H(m’) ⇒ send(m) → send(m’)

Proof: Let p= Src(m’), if (k,x,c) ∈ H(m’), due to instruction lines 5 and 7, (k,x,c) ∈ CI(p) when m’ is
sent by participant p. There are two cases:
A) The element (k,x,c) is added to CI(p) by instruction line 27 when m is delivered to p. This must
have occurred prior to the emission of m’ and thus we have delivery (m) → send(m’), and thus
send(m) → send(m’).
B) The element (k,x,c) is added to CI(p) by instruction lines 43 or 48 when some message
m1=(k1,x1,c1) ≠ m’, such that (k,x,c) ∈ H(m1) was delivered to p. In that case, we have
delivery(p,m1) → send(m’).

Cases A and B show that if (k,x,c) ∈ H(m’), then either send(m) → send(m’) or for some m1=(k1,x1,c1)
≠ m’ we have (k,x,c) ∈ H(m1) and send (m1) → send(m’). If send(m) → send(m’) does not hold, then
case B holds and we can apply the same deduction to the messages m and m1 because (k,x,c) ∈H(m1). We
have m1 ≠ m because otherwise send(m) → send(m’). If send(m) → send(m1) does not hold, we iterate
the step and exhibit a message m2 ≠ m such that send(m2) → send(m1) and (k,x,c) ∈ H(m2). At step i-1,
we have (k,x,c) ∈ H(mi-1), for some message mi-1 ≠ m such that send(mi-1) → send(mi-2) , and if
send(m) → send(mi-1) does not hold, we can find a message mi ≠ m such that send(mi) → send(mi-1)….
send(m1) → send(m’) and (k,x,c) ∈ H(mi). Because such a sequence may not be infinite, for some step i
and message mi we must have send(m) → send(mi), and the property send(m) → send(mi) → send(mi-

1)…. send(m1) → send(m’) concludes the proof. □

The following Lemma is a consequence of the previous theorem and used in the next section.

To make the next proofs clearer, we give some definitions.

Due to the total order of the actions of a single participant p, its behaviors can be modeled by alternated

sequences of states and events s0, e1, s1, e2, s2 ,.. ,en, sn , where the states si are values of VT(p) and CI(p),
and where each event ei is an action send(p,m) or delivery(p,m) for some message m, and represents the
associated sequence of instructions. The causal past of an event e∈E, denoted ↓e, is the set of the events
which precede e for the relation →, i.e. ↓e={e’∈E, e’→e}. The immediate cause of a state s of a
participant p, denoted ◦s, is the unique last event which occurred on p before reaching the state s, for
instance ei=◦si in the sequence s0, e1, s1, e2, s2 ,.. ,en, sn . The causal past of a state s, denoted ↓s is the set
of events composed of its immediate cause ◦s and the causal past of ◦s, formally ↓s ={◦s } ↓(◦s).

Lemma 1 If a state s of a participant p satisfies VT(p)[l] = x ≠ 0, then the event send(m) where
m=(l,x,c) with c = ch(l), is in the past ↓s of s.
Proof: There are two cases, depending on whether p is connected to c or not.
1. p∈ Memb(c). In that case, VT(p)[l] may be modified and set to x only on the delivery to p of the
message m=(l,x,c) received from l on the channel c (instruction line 23). The event delivery(p,m) then
belongs to ↓s as well as the corresponding emission event send(m).
2. p ∉ Memb(c). In that case, VT(p)[l] may be modified and set to x only on the reception by p of a
message m’ such that (l,x,c) ∈ H(m’) (lines 41 and 47). The delivery event delivery(p,m’) then belongs
to ↓s and also the corresponding emission event send(m’). Using Theorem 3, we can conclude that
send(m) → send(m’), and that send(m) is also a cause of s (send(m) belongs to ↓s). □

3. Proof of correctness (2)

The second proof of correctness shows that whenever two messages m and m’ are such that
send(m)→send(m’), we have delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m)
Dest(m’). Due to Theorem 2, it is sufficient to prove this property for messages m and m’ in immediate
inter-channel dependency, and indeed Theorem 4 shows that if send(m)↑send(m’), we have
delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m) Dest(m’).

The following four Lemmas are used in the proof of Theorem 4. Lemma 2 ensures that for each entry
(l,x,c) in CI(p) we have x = VT(p)[l].

Lemma 2 (l,x,c) ∈ CI(p) ⇒ x = VT(p)[l]

Proof: There are two cases:
1) c ∈ Conn(p): the element (l,x,c) is added to CI(p) either at line 17 on sending the message (l,x,c), and
instruction line 3 ensures that x = VT(p)[l], or on delivery of the message (l,x,c) at line 27, and when this
instruction is executed, test line 18 and line 23 ensure that x = VT(p)[l].
2) c ∉ Conn(p): the element (l,x,c) is added to CI(p) due to line 43 (resp. at line 48), and the instruction
previously executed at line 41, (resp. at line 47) is precisely the instantiation VT(p)[l] = x. □
The following Lemma shows that the values of the array VT(p) are modified accordingly with the values
of H(m) by the algorithm when a message m is delivered.

Lemma 3 After the delivery of a message m to the participant p, for each entry (l,x,c)∈H(m) we have
VT(p)[l]≥x.

Proof: There are two cases:
1) c ∈ Conn(p): The condition for the delivery of m at line 19 is precisely VT(p)[l] ≥ x.
2) c ∉ Conn(p): The code beginning at line 35 is executed. If condition line 36 is true, either (l,y,c) ∈
CI(p) for some y ≥ x , in which case, due to Lemma 2, we have VT(p)[l]=y ≥ x, or the instruction line 41
is executed yielding VT(p)[l] = x. Otherwise, condition line 36 is false, execution starts at line 45 and the
lines 46 and 47 ensure that VT(p)[l] ≥ x. □

Lemma 4 If at state s of a participant p we have VT(p)[l] = x ≠ 0 with c=ch(l), then for any c’ ∈
Conn(p) one of the two following cases holds:
1) There exists an entry (l,x,c) ∈ CI(p) such that c’ ∈ (l,x,c).ch_dest.
2) There exists a message m’ with c’=Chan(m’) and an event e=send(p,m’,c’) or e=delivery(p,m’,c’) in
the past of s, such that (l,x,c) ∈ H(m’).

Proof: There are two cases:
1) c ∈ Conn(p): the value of VT(p)[l] is set to x by instruction line 23 and the entry (l,x,c) is added to
CI(p) with (l,x,c).ch_dest=Conn(p) at line 27. The channel c’ ∈ Conn(p) is suppressed from
(l,x,c).cd_dest only in two cases:
- when a message m’ with (l,x,c) ∈ H(m’) is emitted by p to the channel c’ (line 8); in that case, send(p,
m’, c’) is in the past of s,
- or when a message m’ with (l,x,c) ∈ H(m’) is delivered to p through the channel c’ (UPD line 32); and
in that case, delivery(p,m’,c’) belongs to ↓s.
2) c ∉ Conn(p): the value of VT(p)[l] is set to x by line 41 (or line 47); and in that case, the entry (l,x,c)
is added to CI(p) with (l,x,c).ch._dest=Conn(p) by line 43 (resp. line 48). The channel c’ ∈ Conn(p) is
suppressed from (l,x,c).cd_dest only in two cases :
- either when a message m’ with (l,x,c) ∈ H(m’) is emitted by p to the channel c’ (line 8); in that case,
send(p, m’, c’) is in the past of s,
- or when a message m’ with (l,x,c) ∈ H(m’) is delivered to p through the channel c’ (UPD line 38); and
in that case, delivery(p,m’,c’) belongs to ↓s. □
The following lemma is a direct consequence of the previous one and of Theorem 3.

Lemma 5 If a participant p such that VT(p)[l] = x ≠ 0 where c = ch(l), executes the action send(m’,c’),
then one of the two following cases holds:
1) (l,x,c) ∈ H(m’) or
2) There is a message m” broadcasted to the same channel c’= Chan(m’) = Chan(m’’) such that (l,x,c) ∈
H(m”) and send(m”,c’)→ send(m’,c’). Furthermore, the message m=(l,x,c) is such that send(m,c) →
send(m”,c’) → send(m’,c’).

Proof: If (l,x,c) ∉ H(m’) when send(m’,c’) occurs, then due to lines 6 and 7, no entry (l,x,c) ∈ CI(p)
exists such that c’ ∈ (l,x,c).ch_dest. Then, by the previous Lemma 4 and Theorem 3, we have
send(m,c) → send(m’,c’). □

Theorem 4 ∀ m,m’ ∈ M, send(m) ↑ send(m’) ⇒ ∀p ∈ Dest(m) Dest(m’) :
 delivery(p,m) → delivery(p,m’).

Proof: We prove by induction on the distance d(m,m’) between m and m’. Recall that d(m,m’) is defined

for any pair of messages m and m’ such that send(m)→send(m’), and is the greatest integer n such that
for some sequence of messages (mi, i= 0...n) with m= m0 and m’=mn, we have send(mi)→send(mi+1) for
all i =0…n-1.

If d(m,m’)=1, then by definition send(p,m)↓send(p’,m’) (note that this is the IDR). We have to check that
(l,x,c) ∈ H(m’) The proof depends on whether both messages are sent by the same sender or not and
relies on Lemma 5:

a) If p=p’, and m=(l,x,c), then VT(p)[l] = x with l=id(p,c) after send(m,c) (line 14).
b) If p≠p’, due to the definition of → we must have have delivery(p’,m)→send(p’,m’). Let

m=(l,x,c), we have VT(p)[l] = x with l=id(p’,c) after delivery(p’,m) (lines 18 and 23).
By Lemma 5 we must have (l, x, c) ∈ H(m’) (case 1 of lemma 5) because case 2 contradicts the
hypothesis send(p,m)↓send(p’,m’). This implies that for any q ∈ Dest(m) Dest(m’), the delivery of
m to q must occur before the delivery of m’, and we have delivery(q,m) → delivery(q,m’).

Induction step n. We suppose the property true for any messages m and m’ such that d(m,m’) < n, and
show that it holds if d(m,m’) = n. Let m and m’ be such that send(m)↑send(m’) and d(m,m’) = n. Because
send(m)→send(m’) there is (at least) a message sequence (mi=(ki, xi, ci) , i=0…h), such that m=m0,
m’=mh and for all i=0…h-1, send(mi)↓send(mi+1).

By definition of d(m,m’) we have h ≤ d(m,m’). Furthermore, due to the hypothesis send(m)↑send(m’), we
also have c0≠ci≠ch for all i=1…h-1.

For all i=0…h, we denote by pi the participant such that ki = id (pi ,ci) and by si the state of pi at which
the event send(pi, mi) occurs. We show that for all i=0…h, the state si satisfies the property VT(pi)[k0] ≥
x0. The proof is by induction on the index i.

At state s0 , when send(k0, x0, c0) occurs, due to instruction line 4 we must have VT(p0)[k0] = x0.
Suppose that VT(pi)[k0] ≥ x0 at state si, we show that VT(pi+1)[k0] ≥ x0 at state si+1. If VT(pi)[k0] = y ≥
x0 when mi on ci occurs, by Lemma 5 only two cases may take place:
- (k0, y, c0) ∈ H(mi). In that case, due to Lemma 3, we have VT(pi+1)[k0] = y ≥ x0 after delivery(pi+1,mi),
and this remains true at state si+1. when the broadcast of mi+1 to ci+1 occurs.
- There is a message m= (k, x, ci) multicasted on ci, such that (k0, y, c0) ∈ H(m) and send(k0, y, c0)
→send(m) → send(mi). Due to x0 ≤ y, we have send(k0, x0, c0) → send(m), and because ci≠c0 , we have
m≠m0. The distance d(m,mi) is strictly lower than d(m0,mi), thus strictly lower than n=d(m0,mh). We can
apply to m and mi the induction hypothesis and conclude that delivery(pi+1,m) → delivery(pi+1,mi). Due to
the fact that (k0, y, c0) ∈ H(m) with y≥x0 , we have VT(pi+1)[k0] = y ≥ x0 after delivery(pi+1,m) and thus
also after delivery(pi+1,mi), in particular at state si+1 when the multicast of mi+1 to ci+1 occurs.

Using the induction hypothesis, we have shown that for any messages m=(k,x,c) and m’=(k’,x’,c’), such
that send(m)↑send(m’) and d(m,m’) = n, we have VT(p’)[k]≥ x when send(p’,m’) occurs. Let y =
VT(p’)[k] ≥ x, we can conclude that (l,y,c) ∈ H(m’): otherwise, due to Lemma 5, there would be a
message m’’ broadcasted to the channel c’=Chan(m’)=Chan(m’’) such that send(m,c)→ send(m’’,c’)→
send(m’,c’), and this contradicts the hypothesis send(m)↑send(m’). For any participant q ∈ Dest(m)
Dest(m’), the property (l,y,c) ∈ H(m’) ensures that the delivery of m to q precedes the delivery of m’, and
we have delivery(q,m) → delivery(q,m’). □

The correctness of the algorithm results from Theorems 3 and 4.

Corollary:
For any messages m and m’ :
If send(m)→ send(m’), then ∀p∈Dest(c) Dest(c’) : delivery(p,m) → delivery(p,m’)

VII. The CMCA vs other algorithms

Table 1. Comparison of causally ordered multi-group algorithms

Causal Multi-group
Algorithms Configuration Organization Diffusion Overhead Principle

CMCA (our algorithm) Dynamic Symmetric Asynchronous (worst case)
Σ|g| : g∈G

Immediate Inter-Channel
Dependency Relation

CBCAST (Isis) Dynamic Symmetric Asynchronous (worst case)
Σ|g| : g∈G Time clock compression

Daisy Architecture Dynamic Asymmetric Asynchronous
(worst case)
(l⋅(|S|+1))⋅
(|HS|+1)

Logical group structure /
Rediffusion servers

Two-layered group Dynamic Asymmetric Asynchronous (worst case)
(li+k)li+k2

Logical group structure /
Rediffusion servers

Causal Separators Static Asymmetric Asynchronous (worst case)
Σ|L| : L ∈ S

Network topology /
Rediffusion servers

Low cost approach Dynamic Asymmetric Synchronous (always)
|G|

Synchronous execution
by phases

In this section we compare the characteristics of our CMCA algorithm with other main existing multi-
group algorithms that consider overlapping groups (Table 1). The CMCA algorithm presents a
symmetric organization, meaning that, among other things, our algorithm considers all participants to be
equal, which permits them to interact without the need of a mediator. The CMCA algorithm allows an
asynchronous diffusion of messages, providing participants the freedom to interact at the moment they
desire. Finally, it is compatible with a dynamic configuration since the group structure relies on a logical
structure which can change with time. In order to support a dynamic configuration, our CMCA algorithm
needs to add an underlying membership algorithm, such as [9].

As one can observe in Table 1, the only other algorithm which shares the same characteristics as our
CMCA algorithm is the Isis CBCAST algorithm. The remaining ones have sacrificed some of these
properties in order to reduce the amount of control information needed to be sent.

Let us first consider the Daisy Architecture algorithm [2]. The authors have sacrificed a symmetric
organization by structuring participants into sub-groups and by using re-diffusion servers (one per
subgroup), thus impeding a direct interaction among participants. One more recent work that follows the
same philosophy as the previous one, and therefore presents the same disadvantages is the work by
Taguchi et al. [20]. The main difference between them is that Taguchi treats differently the
communication at a local level (intra-group) and at a server level. Next, let’s take the algorithm called
Causal Separators [19]. In this work, the causal zones S establish the groups of participants. The causal
zones are established in an off-line mode according to the physical network topology. The main

disadvantage of this work is that the configuration must be previously carried before launching the
protocol, and it is not able to support a reconfiguration at runtime without stopping the system.

At last, we present the causal “Low cost approach” algorithm [11]. To our knowledge, this algorithm
does use a minimal amount of control information; however, its disadvantage is that it works by
synchronous phase execution, where every participant can send only one message per phase, and thus,
considerably limits the interaction among participants and introduces several delays in the
communication.

Figure. 4 Overhead sent in the worst case varying the number of concurrent messages

Now, let us discuss the amount of control information needed to be sent by each algorithm during the
diffusion of messages in order to ensure a causal delivery. As previously noted, the “Low cost approach”
algorithm is the algorithm which sends the least amount of control information. This algorithm
timestamps only into each message a vector of size |G|, where |G| is the number of groups in the system.
As far as the Causal Separators algorithm is concerned, it timestamps per message in a causal zone a
vector of size |L|, which is the number of participants in such causal zone. Since the message in question
can cross through one or more causal zones in order to reach its destination, the final amount in the worst
case of causal information becomes Σ|L|, L ∈ S, which is the sum of the different causal zones in the
system. The case of the Daisy Architecture algorithm is similar to the previous one mentioned. The
Daisy Architecture logically structures the sub-groups into channels of a size l. The maximum causal
information sent for a hierarchy of level two is (l⋅(|S|+1))⋅(|HS|+1), where |S| is the number of servers
(one per sub-group) and |HS| is the number of hyper-servers (one per Daisy Architecture). Next, the two-
layered algorithm proposed by Taguchi is a variant of the previous one. The overhead that it sends is
(li+k)li for local emissions and (li+k)li + k2 for global messages (inter-group communication), where k is
the number of subgroups in the system and li is the number of participant in a sub-group i.

Finally, the overhead generated for the CBCAST algorithm is in the worst case Σ|g| : g∈G, which is the
sum of the participants of each channel of the system. This appears to be the same overhead generated by

N %

100

80

60

40

20

10 20 30 40 50 60 70 80 90 100

CMCA

CBCAST

N⋅|G| %

Overhead

Concurrent Messages

our CMCA algorithm, but as we will briefly present, the overhead is determined by the probability that
different conditions will arise. In the CBCAST algorithm, the overhead attached per message for a
participant is mainly determined by the positions that have been changed in its local VT (vector time)
between local send events [5][6]. This means that the smaller the number of send events by a participant
is, the greater the amount of causal overhead that can be sent per message.

In the CMCA algorithm, the amount of overhead timestamped per message relies only on the IICD
related messages at a given message emission. To achieve this, all participants collaborate, updating the
view of IICD related messages at each local delivery or send event. Each local delivery or send event has
the property of eliminating old immediate dependencies and establish new ones. This property is
important since a participant can remain as listener without sending messages, and its local causal
history (potential overhead) will remain updated reflecting only IICD related messages (CI(p) structure).
To better illustrate this behavior, we present the following analysis. Consider a multi-group environment
where all participants belong to all channels. If only a send event exists at a time (serial case), the
overhead for the worst case for a listener in our CMCA algorithm is only |G|, while in the CBCAST the
worst case is N⋅|G|. If we now consider that at most two send events exist at a time in the system (i.e. at
most two concurrent send events), the worst case for a listener in the CMCA is equal to 2⋅|G|; for three
send events at most, the overhead can be 3⋅|G| and so on, until one arrives at N⋅|G| (one send event per
participant). We note that the CMCA algorithm dynamically adapts the worst case according to the
number of concurrent send events that can exist in the system. However, for the CBCAST algorithm, the
worst case remains N⋅|G| for all these cases (see Fig. 4).

Finally, we note that all the algorithms presented assume as hypothesis a reliable communication and a
finite transmission delay. Nevertheless, there are presently some works that propose some mechanisms in
order to eliminate such hypothesis in broadcast environments. For details, see [4] and [10].

VIII. Conclusions

We have introduced in this paper an immediate inter-channel dependency relation, which is an extension
to the Immediate Dependency Relation. We have shown that the IICD characterizes the necessary
information to ensure the causal delivery of messages in overlapping multi-channel environments. We
have presented an efficient causal multi-channel algorithm, based on the IICD relation and benefiting of
its “minimality” property, which is characterized by an asynchronous execution and a symmetric
organization, allowing a free and direct interaction among the participants. We compare our CMCA
algorithm with the CBCAST of Isis which is the only one (as far as we know) that shares the same
properties. We show that our algorithm sends less causal overhead timestamped per message than the
CBCAST.

IX. References

[1] A. Maddi, and F. Dahamni, An efficient algorithm for causal messages ordering, Proceedings of
the 2001 ACM symposium on Applied computing, (2001) ISBN:1-58113-287-5, pp. 499 – 503.
[2] R. Baldoni, R. Friedman, and R. Van Renesse, The hierarchical daisy architecture for causal
delivery, Distributed. System Engineering 6, 1999, pp. 71–81.
[3] Baldoni R, Prakash R, Raynal M, Singhal M: Efficient causally ordered communications for
multimedia real-time applications. In Proc of the 4th International Symposium on High Performance

Distributed computing, Whasington, D.C., Aug. 1995, pp 140-147.
[4] Baldoni R., Prakash R., Raynal M., and Singhal M., 1998, Efficient Δ-causal Broadcasting,
International Journal of Computer Systems Science and Engineering (IJCSSE), Volume 13, Number 5,
pp. 263-269, 1998.
[5] K. Birman, A. Schiper, and P. Stephenson, Lightweight Causal and Atomic Group Multicast,
ACM Trans. Compt. Syst. Vol. 9, Number 3, Aug. 1991, pp. 272-314.
[6] Birman, Kenneth, Reliable Distributed Systems Technologies, Web Services, and Applications,
Editorial Sringer, 2005.
[7] C. A. Fidge, Timestamps in message-passing systems that preserve partial ordering, Australian
Computer Science Communications, Vol. 10, Number 1, 1988, pp. 56-66.
[8] L. Lamport, Time, clocks and the ordering of messages in distributed systems, Communications
ACM Vol. 21, Issue 7, 1978, pp. 558-565.
[9] Kal Lin and Vassos Hadzilacos, Asynchronous group membership with oracles, Proceedings of
the 13th International Symposium on Distributed Computing (DISC), ISBN:3-540-66531-5, 1999,
pp.79-83.
[10] Lopez, E., J. Estudillo, J. Fanchon, S. Pomares, A Fault-tolerant Causal Broadcast Algorithm to
be Applied to Unreliable Networks, Proc. 17th International Conference on Parallel and Distributed
Computing and Systems, 2005, pp. 465-470.
[11] Mostefaoui, and M. Raynal, Causal multicast in overlapping groups: towards a low cost
approach, IEEE Workshop on Future Trends of Distributed Computer Systems, Sept.1993, pp 136-142.
[12] L. Peterson, N. Buchholz, and R. Schlichting, Preserving and using context information in
interprocess Communication, ACM Transaction on Computer Systems, Vol. 7, 1989, pp. 217-246.
[13] S. Pomares Hernandez, J. Fanchon, and K. Drira, The immediate dependency relation: an optimal
way to ensure causal group communication, Annual Review of Scalable Computing, Series on Scalable
Computing, Vol. 6, 2004, pp 61-79.
[14] R. Prakash, M. Raynal, and M. Singhal, An adaptive causal ordering algorithm suited to mobile
computing environments, Journal of Parallel and Distributed Computing, 1997, pp. 190-204.
[15] Ravindran K, Prasad B: Communication Structures and paradigms for distributed conferencing
applications. 12th IEEE Int. Conf. On Distributed Computing Systems, May 1992
[16] Prakash R, Raynal M, Singhal M: An effient causal ordering algorithm for mobile computing
environments. Technical report, Parallel Architectures Dept., Inst. Nat. de Rech. En Inf. et en Aut.,
France, 1995.
[17] Schneider F: Implementing fault-tolerant services unsing the state machine spproach: A tutorial,
ACM Compt. Surveys, vol 22, No. 4, Dec. 1990, pp 299-319
[18] Chengzheng Sun , Xiaohua Jia , Yanchun Zhang , Yun Yang , David Chen, Achieving
convergence, causality preservation, and intention preservation in real-time cooperative editing systems,
ACM Transactions on Computer-Human Interaction (TOCHI), v.5 n.1, March 1998, pp.63-108,.
[19] L. Rodrigues, P. Verissimo, Causal separators and topological timestamping: an approach to
support causal multicast in large-scale systems, Proc. 15th Int. Conference on Distributed Computing
Systems, Vancouver, British Columbia, Canada, May 1995.
[20] K. Taguchi, M. Takizawa, Two-layered protocol for a large-scale group of processes, Proceedings
of Ninth International Conference on Parallel and Distributed Systems, 17-20 Dec. 2002, pp. 171- 176.
[21] Torres-Rojas F J, Ahamad M: Plausible Clocks: Constant Size Logical Clocks for Distributed
Systems. Distributed Computing, 12:179-196 (1999).

