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Abstract. The synchronization of continuous media is a key issue in the development of distributed systems, such as 

videoconference and virtual reality. These services must be carried out in a synchronized manner with different me-

dia types, like continuous and discrete media. Due to the unreliable and asynchronous nature of networks, some 

problems can disrupt the synchronization.  Such problems can include lost messages and delay jitter. In this paper, 

we aim to solve the synchronization problem of real-time continuous media in unreliable networks. The detection 

and recovery of lost messages is achieved by the technique of forward error detection in a distributed form, which 

implies avoiding retransmission. To the best of our knowledge, our work is the first to propose a forward error recov-

ery technique for the synchronization of continuous media with causality control. The mechanism is based on our 

temporal model that determines logical dependencies between intervals (continuous media) to represent the basic 

temporal relations defined by Allen.    

1   Introduction 

The synchronization of continuous media (audio and video) is critical to guarantee the appropriate presentation in 

several applications. Such applications include, for instance: videoconferences, virtual reality, collaborative work, and 

parallel and distributed debugging. The problem of synchronizing continuous media relates to how one can ensure the 

correct temporal appearance of the media items (audio and video) [1]. Many works try to solve this problem; nonethe-

less, they are far from resolving it. The problem of synchronization is even more complicated when one considers real 

communication aspects in a distributed system, such as delayed and lost messages, which are two main problems found 

in unreliable networks.  

In this paper, we aim to solve the problem related to the synchronization of real-time continuous media in unreliable 

networks. We refer by the term real-time to the simultaneous creation and transmission of media.  This implies that 

neither a pre-processing step nor a previous storage exists.  

We propose a dual-task mechanism to solve the synchronization problem.  In the first task, we present a temporal 

synchronization model that describes how the synchronization is carried out.  We work at two abstract levels. At the 

higher level, the temporal duration is taken into account by representing the continuous media segments as intervals. At 

the lower level, we work with intervals, considering that an interval is composed of a set of sequentially-ordered mes-

sages. We show that it suffices to ensure a partial causality between the endpoints to ensure a causal order at the inter-

val level. The second aspect of the mechanism is focused on how to deal with the delay and loss of messages by pro-

posing a fault-tolerant mechanism. Our proposal is based on the technique of forward detection and recovery of lost 

messages in a distributed form. By this, we avoid the retransmission of information. To the best of our knowledge, this 

work is the first to propose a forward error correction technique with causality control for the synchronization of con-

tinuous media. The forward recovery is achieved through the addition of redundancy. Two kinds of redundancy are 

used: redundancy on the type of message, and redundancy on the causal control information sent [2]. The last type of 
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redundancy is calculated based on the causal distance between events, and it is adaptable according to the conditions of 

loss in the network communication channels. Our proposal is an extension of the work developed in [3]. The extension 

is focused mainly on the fault tolerance mechanism.  

The outline of this paper is as follows. We present in Section 2 the related works. Next, in section 3, the preliminar-

ies and some required definitions are given. Following, the proposed Temporal Synchronization Model is presented in 

detail in Section 4. We introduce in Section 5 our Synchronization Mechanism. Conclusions are provided in Section 6.   

2  Related Work 

We classify the works that attempt to solve the synchronization problem between continuous media (streams) into 

two main categories: real-time and on-demand. Our work is focused on real-time synchronization. Real-time synchro-

nization can be divided into continuous and discrete events. While continuous events concern a repetitive pattern of 

related events, discrete events synchronize activities in a distributed system by answering events. Our work tries to 

solve the problem of continuous synchronization, which in turn, can be divided into intra-stream and inter-stream syn-

chronization. [1],[4 -6].  

Intra-stream synchronization refers to the preservation of physical temporal dependencies within a single stream. In-

ter-stream synchronization, on the other hand, is focused on the preservation of physical and logical temporal depend-

encies between streams. The objective of this paper is to solve the problem of inter-stream synchronization. 

One of the main mechanisms used to satisfy physical dependencies involves the use of a multiplexer to send a single 

synchronized stream [7,8]. These works generate a bottleneck and produce delays at the transmission and at the recep-

tion of streams. Another mechanism used is the normalization of the participants’ physical clocks to achieve the syn-

chronization [9,10].  

On the other hand, some works use causal algorithms to achieve the synchronization between streams [2],[11-19]. 

We can divide these algorithms into two categories based on the type of communication channel used (See Figure 1). In 

the first category, we classify the causal algorithms that assume reliable communication channels (i.e., lost message do 

not exist) [11-13]. In the second category, we consider causal algorithms that work in unreliable communication chan-

nels (i.e., there are lost message during the transmission) [2],[14-19]. We have classified these last works into two cate-

gories based on the technique used to detect and recover lost messages. 

 

 

 

 

 

 

 

 

 

 



Fig. 1. Classification of multimedia synchronization based on the type of 

 channel and recovery technique 

Works in the first category use the Automatic Repeat Request (ARQ) technique or some variant of it [14], [16-19]. 

They detect a lost message in some way and recover it by retransmitting it. This mechanism is not recommended in 

real-time systems because it involves delays and a huge overhead. Others works, such as [15], consider the package 

lifetime to determine whether it is useful or not for the application. Nevertheless, these works do not address the case of 

lost messages. 

 The second category uses the Forward Error Correction (FEC) technique to detect and recover lost information. 

Our work is classified in this category.  It is an algorithm that uses the causal relation at an interval level to achieve the 

synchronization between streams. To the best of our knowledge, our work is the first to propose a forward error correc-

tion technique to synchronize continuous media with causality control. The forward recovery is achieved by introduc-

ing redundancy. For a detailed description of our mechanism, refer to Section 5.  

3 Preliminaries 

3.1 The System Model 

Processes: The application under consideration is composed of a set of processes  P ={i, j…}, organized into a 

group that communicates by unreliable broadcast asynchronous message passing.  

Messages:We consider a finite set of messages M, where each message m∈M  is identified by a tuple m=(p,x), 

where p∈P  is the sender of m, denoted by Src(m),  and x is the local logical clock for messages sent by  p, when m is 

broadcasted. The set of destinations of a message m is always P.  

Events:Let m be a message. We denote by send(m) the emission event of m by Src(m), and by delivery(p,m) the de-

livery event of m to participant p∈P. The set of events associated to M is then the set E = {send(m) : m∈M} ∪ {deliv-

ery(p,m) : m ∈ M ∧ p ∈P}.  

Intervals:We consider a finite set I of  intervals, where each interval A∈I is a set of messages A⊆ M sent by a par-

ticipant p=Part(A), defined by the mapping Part:I→P.  Formally, we have m∈A ⇒Src(m)=Part(A). Due to the sequen-

tial order of Part(A), we have for all m,m’ ∈ A , m → m’ or m’ → m. We denote by a- and a+ the unique messages of A, 

such that for all m ∈ A, we have a-≠m and a+≠m  ⇒ a-→m→ a+. The a- and a+ messages are the endpoints of A. We 

assume in this paper that a-≠ a+. 

3.2 Background and Definitions 

In this section we present some definitions used in the synchronization mechanism.  

3.2.1  The Happened-Before Relation on Intervals 

We identify and define two possible precedence relations at an interval level. These two relations are based on the 

possible happened-before relation for single events. The two relations identified for intervals are the causal relation and 



the simultaneous relation. For more details of these definitions, refer to [3]. We begin by giving the definition of the 

causal relation to be applied to intervals.  

Definition 1. The relation “ →I ” is accomplished if the following two conditions are satisfied: 

1. A →I B if  a+→M’ b- 

2. A →I B if ∃C | (a+ →M’ c- ∧  c+→M’ b-) 

where a+ and b- are the final and initial send events (or messages) of A and B respectively, c- and c+ are the endpoints 

of C, and →M’ is the partial causal order induced on M’ ⊆ M, where M’, in our case, is the subset composed by the 

endpoint messages of the intervals in I. 

Definition 2. Two intervals A, B are said to be simultaneous “ ||| ” if the following condition is satisfied:    

A ||| B ⇒  a- ||  b- ∧ a+ ||  b+  

In our work we consider Definition 2 as the complement relation to the causal relation at an interval level (Definition 

1). This means that an interval can only either precede or be simultaneous to another interval at a given time. 

Definition 3. Causal Broadcast Delivery for Intervals based on the endpoints 

If (a+, b-) ∈ A×B, send(a+)→send(b-) ⇒ ∀p∈P, delivery(p, a+) → delivery(p, b-) then 

∀p∈P ⇒ delivery (p,A) →I delivery (p,B) 

3.2.2 Causal Distance  

The causal distance defines the greatest number of causal messages in a linearization between a pair of messages. 

The definition of causal distance was introduced in [2]. Formally, the causal distance is defined as follows: 

  Definition 4. Let m and m’ be messages. The distance dist(m,m’) is defined for any pair m and m’ ∈ M such that 

m→m’:  dist(m,m’) is the greatest integer n such that for some sequence of messages (mi, i= 0...n) with  m= m0 and 

m’=mn, we have  mi↓mi+1 for all i =0…n-1, where ↓ is the immediate dependency relation defined in [11]. 

4. Temporal Synchronization Model  

In order to achieve the synchronization between continuous media in distributed systems, we propose a model to de-

termine temporal relations based only on the identification of logical precedence dependencies. The model translates a 

temporal scenario to be expressed in terms of the precedence relations at an interval level (defined in the section 3.2.1); 

we call this translation logical mapping. In our work, a logical mapping decomposes a temporal scenario into data seg-

ments (intervals) that are arranged according to their possible precedence dependency.       

4.1 Logical Mapping  

The process to create logical mappings involves taking every pair of intervals in the system that compose a temporal 

scenario, and translating each pair into four data segments, which are determined according to the possible precedence 

dependency of the discrete events that compose them. These data segments, according to our definition, become new 



intervals.The resulting intervals are expressed only in terms of the happened-before relation and the simultaneous rela-

tion. 

In order to consider the seven basic relations and their inverses and to maintain the model simplified, we first iden-

tify the X and Y intervals for each pair of intervals in the system. The X interval will be the interval with the first left 

endpoint, and the Y interval will be the remaining interval. This is done in order to ensure that for every pair, x- →  y- or 

x- || y- at all times. Once the X and Y intervals are identified, the model segments each pair into four subintervals (A, B, 

C and D) (See Table 1). When the subintervals are already identified, we proceed to construct the general causal struc-

ture S=A→IW→I B, where W determines if overlaps exist between the present pair. 

Table 1. The Process of Logical Mapping1 

 

∀(X, Y) ∈ I × I   

A(X,Y) ← 
 - { x ∈ X : x → y-}            for   x- → y-   ∨ 

 - Ø                                    for  other cases  

B(X,Y) ← 

 - { x ∈ X : y+ → x}           for   y+ → x+   ∨ 

 - { y ∈ Y : x+ → y }          for   x+ → y+   ∨ 

 - Ø                                    for  other cases  

C(X,Y) ← - X-(A(X,Y) U  B(X,Y))      

D(X,Y) ← - Y-B(X,Y)                           

W(X,Y) ← C ||| D 

    S(X,Y) ← A →I W →I B 

According to Table 2, we are now able to express every possible temporal relation based only on the interval hap-

pened-before relation and the interval simultaneous relation. We remark that this capacity is the core of our synchroni-

zation model. 

Table 2. Allen’s relations and their logical mapping. 

Allen’s 

 Relations 

Initial      

   Endpoints 

Interval Temporal 

Relation 
Logical Mapping 

X before Y  

Y after X  
x+→ y- 

     xxxxx 

               yyyy 
     A→I B 

X meets Y  

Y meet-by X  
x+|| y- 

       xxxx  

  yyyy 

X overlaps Y  

  Y overlap-by X  

x-→ y- → 

x+, 

x+→ y+ 

xxxxxxxx 

         yyyyyyyyy 

X includes Y 

Y during X 

x-→ y-, 

y+→ x+ 

           yyyy 

       xxxxxxxxx 

A→I (C ||| D)→IB 

                                                           
1 We consider in our model that an interval must be empty, for this case we introduce the next properties:  

- ∅→I A ∨ A →I ∅ = A   
- A →I ∅ →I B = A →I B 
- A ||| ∅ ∨ ∅ ||| A = A 



X starts Y  

Y started by X  

x- || y-, 

x+→ y+ 

xxxxx 

yyyyyyyyyyy 
     (C ||| D)→IB 

X finishes Y  

  Y finished-by X  

x+  || y+, 

x-→ y- 

         yyyyy 

xxxxxxxxx 
     A→I (C ||| D) 

X equals Y 
x- || y-, 

x+ || y+ 

xxxxxxxx 

yyyyyyyy 
     C ||| D 

5 The Synchronization Mechanism  

The present mechanism is based on the synchronization temporal model, presented in Section 4 (See Table 1). The 

mechanism carries out the creation of logical mappings and ensures their reproduction even when messages are lost. 

The correctness of the synchronization temporal model was proved in [3]. In this section, the extension is presented to 

provide a fault tolerant mechanism in the presence of lost messages. Internally, the synchronization mechanism uses 

two kinds of messages: causal messages and FIFO messages. The causal messages are divided into: begin, cut and end 

messages. The begin and end messages are the left and right endpoints of the original intervals, and cut is a control 

message used by the algorithm to inform about an interval segmentation. FIFO messages (fifo_p) are only used inside 

an interval. We note that a causal message also locally satisfies the FIFO order. We provide a description of its opera-

tion below. 

5.1 The Recovery Approach  

The causal messages are used either to achieve the segmentation proposed in the temporal model or to synchronize 

the intervals involved. The loss of causal messages disturbs the segmentation between intervals, and thus, deteriorates 

the synchronization. To tolerate the loss of some begin, end or cut causal message, we introduce a certain redundancy. 

In the algorithm, we have two kinds of redundancy: redundancy on the type of message and redundancy on the causal 

control information. The first type of redundancy is applied to the begin message and to the cut message. In this redun-

dancy, some immediately consecutive fifo_p messages of a begin or cut message are sent as copies of the messages in 

question. If a begin or cut message is lost, the first fifo_p message is taken as the lost causal message. The fifo_p mes-

sages sent as copies can contain updated causal control information. The number of consecutive FIFO messages sent as 

copies of a causal message is not established by the mechanism, although a study carried out in [10] shows that the 

probability that a message can be lost diminishes considerably from five or more consecutive messages lost.  

The second type of redundancy, which involves the causal control information, is based on the causal distance. The 

causal distance defines the greatest number of causal messages in a linearization between a pair of messages (see Defi-

nition 4).  For example, for messages that have an immediate dependency, the causal distance is equal to one.  For more 

details, refer to [2]. By considering a larger distance (more than one), we increase the redundancy in the control infor-

mation sent in the system. The main advantage is that this increases the tolerance degree of lost message. 

The detection and recovery of lost messages is as follows. When a send event occurs of a begin, end or cut causal 

message, the information added to its control information corresponds to the causal message identifiers that have an 

equal or smaller causal distance with the send event involved. With this redundant information, it is possible to detect 

and recover the control information of the lost messages in a forward way (Figure 3). We note that the redundant con-



trol information about a causal message is added only if the causal distance established is equal or smaller to the num-

ber of times that the information about this message has circulated in the system.  In this way, our mechanism can ad-

just the redundant information needed to be sent. 

5.1.1 Synchronization Mechanism when a Begin Message is Lost 

In order to explain how the redundancy in the type of message is used to achieve the segmentation when a begin 

message is lost, we present the following faulty scenario (Fig. 2). We recall that the process of creating logical map-

pings in our work is made online by identifying the causal boundaries of the concerned segment(s) from left to right. In 

this example, segment A must first be determined. To achieve this, we identify the left causal boundary a- as equal to x-

=x1, and the right causal boundary as equal to a+=xk. The right endpoint a+ is determined by the last fifo_p message 

received by participant j (lines 133-136, Table 3) before the begin send event (send(y-)). Once we know the causal 

boundaries of A, we can determine the set of messages that compose it (A= {x1, x1+1,…,xk}). 

 
Fig. 2. Forward recovery  at process i (A→I (C ||| D) →I B). 

After interval A is identified, we proceed to recognize the causal boundaries of C and D. At this point, we can iden-

tify the left causal boundaries c-= xk+1 and d-=y1, but it is only until the send and delivery event of the right endpoint x+ 

that we can identify the right endpoints of C and D. In this scenario, the causal message y1 is lost during its transmission 

to process i. The forward detection and recovery of y1 is through the FIFO message y2 at process i, which is an updated 

copy of y1 (lines 35-50). Process i detects the loss of y1 upon the reception of y2 and takes y2  as the causal begin mes-

sage of interval Y. At this point, FIFO message y2 is considered as a causal message (lines 72-140). Now with the 

send(x+= xn) we establish that c+=xn, and consequently,      C={x k+1, xk+2,…,xn}. At the reception of x+ by participant j, 

our algorithm sends a cut message (lines 129-131), which establishes the end of interval D (d+= ym) and the beginning 

of interval B (cut= b-= ym+1). As result, we have D={ y1, y2,…, ym}). Finally, with the send event of y+ (lines 11-71), we 

have b+= yp, and consequently, B={ ym+1, ym+2,.., yp}.    

5.1.2 Synchronization Mechanism when an End or Cut Message is Lost  

In order to explain how the redundancy based on causal distance is used to achieve the synchronization in the pres-

ence of lost end or cut messages, we present the following faulty scenario (figure 3). In this example, we consider seg-

ment A, and the left causal boundaries of C and D (c-= xk+1 and d-=y1, respectively) are identified. Only by the send and 

delivery event of the right endpoint x+ , we can identify the right endpoints of C and D. With the send(x+= xn) (lines 11-

71) we establish that c+=xn, and consequently, C= {x k+1, xk+2,…,xn}. The causal message x+ is lost during its transmis-

sion to process j; therefore, we cannot identify the right endpoint of D. At the reception of x+ by participant l, our algo-

rithm sends a cut message which carries attached control information about messages  x+ and y- (lines 18-21) with 

causal distances dist=1 and dist=2, respectively. 

   B D 

   A    C 

   b+ = yp 

   d+ = ym     b- = ym+1

cutend begin 

fifo_p 

c+ = xn 

a- = x1 
a+ = xk 

i =Part(X) 

   x 

     c- = xk+1 

  d- = y1        y2  
j =Part(Y) 

i ≠ j 



Fig. 3. Forward recovery at 

process j with d=2 (A→I (C ||| D) →I B). 

By using the control information attached to the cut message, process j is able to detect that message x+ has been lost 

(lines 72-91). Because the lost message x+ is an endpoint, j proceeds to send a cut message which establishes the end of 

interval D (d+= ym) and the beginning of interval B (cut= b-= ym+1) (lines 89-91 and 125-128). As a result, we have D={ 

y1, y2,…, ym}). Finally, with the send event of y+, we have b+= yp, and consequently, B={ ym+1, ym+2,…, yp}. The seg-

mentation for intervals X and Y is achieved: A →I  ( C ||| D ) →I B.   

5.2 The Algorithm 

5.2.1 Data Structures 

 

The main data structures used in the algorithm are:   

VT(p) is the vector time. For each process p there is an element VT(p)[j] where j is a process identifier. The size of 

VT is equal to the number of processes in the group. VT(p) contains the local view that process p has of the elements of 

the system. In particular element VT(p)[j] represents the greatest element number of the identifier j and ‘seen’ in causal 

order by p. It is through the VT(p) structure that we are able to guarantee the causal delivery of elements. 

The structure of the control information CI(p) is a set of entries (k, t, d). Each entry in CI(p) denotes a message that 

is not ensured by participant p of being delivered in a causal order. The entry (k, t, d) represents a diffusion by partici-

pant k at a logical local timeclock  t = VT(p)[k], and d is the potential the causal distance. 

The algorithm uses causal messages and FIFO messages which compose the intervals; a message m, in general, is 

composed of an identifier (k, t, f) and an attached causal information H(m). The intervals are identified by the tuple (k, 

t). For FIFO messages the structure H(m) is always H(m)=∅. Formally, a message m is a tuple m=(k,t,f,H(m)), where: 

- k is the identifier of the sender k=Src(m). 

- t =VT(p)[k] is the (local) clock value of p for the identifier k when a causal      

       message m (begin, end, or cut) or FIFO  is sent.  

- H(m) is a set of tuples (k, t) that represent intervals. 

The structure H(m) contains identifiers of intervals causally preceding the causal message m (begin, end, or cut), 

which denotes the begin and/or end of other intervals. The information in H(m) is needed for the causal delivery of the 

causal message m. The causal delivery of m ensures the causal delivery of the interval to which m belongs. The struc-

ture H(m) is built before a causal message is broadcasted, and then it is attached to the causal message. 

D 
  b+ =yp 

    C 

B 

A 

a+  

 c+ = xn 

    d+    
 b- = ym+1 

i =Part(X) 
 

 
j =Part(Y) 

 
 

l =Part(Z) 

a- = x1 

  d- = y1 

  x 

cut 

i ≠ j ≠ l  



5.3 Algorithm specification 

Next, we present in Table 1 the algorithm to synchronize real- time continuous media. The algorithm can manipulate 

N sources, and each source can send M streams. 

Table 3. Synchronization mechanism tolerant faults 

1. Initially 

2. VT(p)[j] ←∅  ∀ j: 1…n 

3. VTI(p)[j] ←∅  ∀ j: 1…n 

4. VTC(p)[j] ←∅  ∀ j: 1…n 

5. CI(p)←∅ 

6. Act=0 

7. last_fifo(p)←∅ 

8. num_cc = num_cop 

9. con=0 

10. causal=0 

 For each m message diffused by p with process identifier i 

11.  Send ( Input: TP = begin | end  | cut  |  fifo_p ) ) 

12.  VT(p)[i] ←VT(p)[i] + 1 

13. If  ( TP = fifo_p) then 

14.  Con = con+1 

15. Endif 

16. If  not ( TP = fifo_p and con > num_cop ) Then   

17.     If  not (  TP = begin or  TP = fifo_p  ) Then   

18.           For each (s,t,d) ∈ CI(p) /*Construction of the H(m) for end and cut message*/ 

19.                 (s,t,d) ← (s,t,d+1)   

20.              H(m)  ← H(m)  ∪ (s, t )     

21.       Endfor  

22.       If ( TP = cut ) then   

23.            num_cc = 0 

24.       Endif  

25.    Else     

26.      If  not ( TP = fifo_p ) then    /*Construction of the H(m) begin message*/  

27.              CI(p) ← CI(p)   ∪ last_fifo(p)  /*Adding fifo_p messages to CI(p)*/ 

28.              For each (s,t,d) ∈ CI(p) 

29.                   (s,t,d) ← (s,t,d+1) 

30.                   H(m)  ← H(m)  ∪ (s, t ) 

31.              Endfor  

32.              reg(p) ← last_fifo(p)  

33.              last_fifo(p) ← ∅ 

34.           Else  

35.              cop_CI(p)←CI(p)    /*construction of copies of begin message*/ 

36.              If  not (last_fifo(p) = ∅ ) then   

37.                  ∀(x, l) ∈ reg(p)    

38.                        If ∃ (s, t, d ) ∈ cop_CI(p) | x = s and l = t  then   

39.                                  cop_CI(p) ← cop_CI(p)  /  (x, l) 

40.                        Endif   

41.                   cop_CI(p) = cop_CI(p)  ∪ last_fifo(p)   

42.                   For each ( s, t, d ) ∈ cop_CI(p) 



43.                        H(m)  ← H(m)  ∪ (s, t )  

44.                   Endfor  

45.                 Esle   

46.                    For each (s,t,d) ∈ CI(p) 

47.                             H(m)  ← H(m)  ∪ (s, t ) 

48.                       Endfor  

49.               Endif  

50.         Endif  

51.   Endif  

52.   Else                             /*construction of copies of cut message*/ 

53.  If ( num_cc  < num_cop )  then   

54.        For each (s,t,d) ∈ CI(p)     

55.            H(m)  ← H(m)  ∪ (s, t )     

56.        Endfor     

57.        num_cc = num_cc + 1  

58.     Else 

59.        H(m)← ∅        /* H(m) for FIFO  messages */  

60.  Endif    

61. Endif 

62. If  not( TP = end )Then     /*Determine if process p is sending or not an interval*/ 

63. Act = 1 

64. Else 

65. Act = 0 

66. Endif 

67. m = (i, t = VT(p)[i], TP , H(m),data) 

68. Sending(m) 

69. If  ∃ ( k, t, d) ∈ CI(p) | d = dist_def  then  

70. CI(p) ← CI(p)  /  ( k, t, d)  

71. Endif  

 For each message received by p with process identifier j 

72. Receive(m) in p with i ≠ j  and  m= (i, t = VT(p)[i], TP , H(m),data) 

73. If  t =  VT(p)[k] +1 Then      /*FIFO deliver condition*/ 

74. If  not ( TP =  fifo_p )    Then                     

75.     If not ( t’ ≤ VT(p)[l]) ∀(l, t’ )∈ H(m)   )  Then    /* causal delivery condition*/ 

76.          If (t’   > VT(p)[l]) ∀ ( l, t’ ) ∈ H(m)  /*Detection of lost message*/  

77.                 VT(p)[l] = t’      /*update of vectors*/ 

78.          Endif   

79.          If  ( TP = cut ) then  

80.                 CPC = 1 

81.           Endif  

82.     Endif 

83.  Endif 

84.  Deliver(m) 

85.  VT(p)[k] = VT(p)[k] +1  

86.  If ( TP = begin ) then  

87.      VTI(p)[k] =  1  

88.  Endif  

89.  If ( TP = cut ) then 

90.        VTC(p)[k] =  1 

91.  Endif   



92.  Else                        /*Detection of lost begin message */ 

93.    If  not ( ( TP=fifo_p and VTI(p)[k]!= 0) or (TP = fifo_p and VTC(p)[k] != 0 ) )Then                     

94.     If not (t’ ≤ VT(p)[l]) ∀(l, t’)∈ H(m)   )  Then 

95.          If (t’   > VT(p)[l]) ∀ (l, t’) ∈ H(m)  

96.                VT(p)[l] = t’ 

97.          Endif   

98.     Endif          

99.     Causal = 1 

100.     If  (VTI(p)[k] = 0 ) then 

101.           VTI(p)[k] = 1  

102.     Else 

103.          VTC(p)[k] = 1  

104.     Endif  

105.    Endif  

106.    Deliver(m) 

107.    VT(p)[k] = t  

108. Endif  

109.  If  not ( TP =  fifo_p and causal = 0 )    Then   

110.  CI(m) ← CI(m) ∪ { (k, t, d=0) } 

111.  ∀(l, t’ ) ∈ H(m)                   /*Updating CI(p)with a most recent message*/                                                     

112.        If ∃ (s, t, d ) ∈ CI(m) | l = s and t = t’  then 

113.            (s, t, d ) ← (s, t, d+1) 

114.        Endif  

115.        If ∃ (m, t, d ) ∈ last_fifo(p) | l = m and t = t’  then 

116.             (m, t, d ) ← (m, t, d +1) 

117.        Endif  

118.        If  ∃ (k, t, d) ∈ CI(p) | d = dist_def  then 

119.              CI(p) ← CI(p)  /  ( k, t, d ) 

120.        Endif  

121.   If  ( TP = end ) then   

122.      VTI(p)[k] = 0 

123.      VTC(p)[k] = 0  

124.   Endif  

125.   If ( CPC = 1) then  

126.       Send ( cut )            /*Sending a cut message by the lost message end*/ 

127.      CPC=0 

128.   Endif  

129.   If  Act = 1 and  (not( TP = cut) and  not ( TP=begin)) Then   

130.          Send( cut )    /*Sending a cut message by the deliver of a end message*/ 

131.   Endif 

132.    Else  

133.   If  ∃  (x,l) ∈ last_fifo(p) | x = k then 

134.             last_fifo(p) ←  last_fifo(p) / (x,l) 

135.   Endif 

136.   last_fifo(p) ← last_fifo(p) ∪ (k, t, d=0 ) 

137. Endif                     /*Updating last_fifo(p) with a most recent message*/  

138. Causal = 0 

139. If ∃ (m, t, d ) ∈ last_fifo(p)  | d = dist_def  then  

140. last_fifo(p) ←  last_fifo(p) / (m, t, d ) 

141. Endif  



6 Conclusions  

We have proposed a mechanism based on the technique of forward error correction to synchronize continuous media 

(audio and video) in unreliable networks. The mechanism avoids the retransmission of lost information. With this, we 

have introduced a feasible technique to synchronize real-time continuous media in the presence of lost messages. To the 

best of our knowledge, our work is the first to propose a forward error correction technique for continuous media syn-

chronization with causality control. In future works, we will incorporate time restrictions to consider the lifetime of 

messages.  
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