
A Mechanism to Synchronize Distributed Continuous Media in Unreliable
Networks

Eduardo Lopez Dominguez, Luis A. Morales Rosales, Saul E. Pomares Hernandez

National Institute of Astrophysics, Optics and Electronics (INAOE), Luis Enrique Erro #1, 72840 Tonantzintla, Puebla, Mexico
{edominguez,lamorales,spomares}@inaoep.mx

Abstract. The synchronization of continuous media is a key issue in the development of distributed systems, such as

videoconference and virtual reality. These services must be carried out in a synchronized manner with different me-

dia types, like continuous and discrete media. Due to the unreliable and asynchronous nature of networks, some

problems can disrupt the synchronization. Such problems can include lost messages and delay jitter. In this paper,

we aim to solve the synchronization problem of real-time continuous media in unreliable networks. The detection

and recovery of lost messages is achieved by the technique of forward error detection in a distributed form, which

implies avoiding retransmission. To the best of our knowledge, our work is the first to propose a forward error recov-

ery technique for the synchronization of continuous media with causality control. The mechanism is based on our

temporal model that determines logical dependencies between intervals (continuous media) to represent the basic

temporal relations defined by Allen.

1 Introduction

The synchronization of continuous media (audio and video) is critical to guarantee the appropriate presentation in

several applications. Such applications include, for instance: videoconferences, virtual reality, collaborative work, and

parallel and distributed debugging. The problem of synchronizing continuous media relates to how one can ensure the

correct temporal appearance of the media items (audio and video) [1]. Many works try to solve this problem; nonethe-

less, they are far from resolving it. The problem of synchronization is even more complicated when one considers real

communication aspects in a distributed system, such as delayed and lost messages, which are two main problems found

in unreliable networks.

In this paper, we aim to solve the problem related to the synchronization of real-time continuous media in unreliable

networks. We refer by the term real-time to the simultaneous creation and transmission of media. This implies that

neither a pre-processing step nor a previous storage exists.

We propose a dual-task mechanism to solve the synchronization problem. In the first task, we present a temporal

synchronization model that describes how the synchronization is carried out. We work at two abstract levels. At the

higher level, the temporal duration is taken into account by representing the continuous media segments as intervals. At

the lower level, we work with intervals, considering that an interval is composed of a set of sequentially-ordered mes-

sages. We show that it suffices to ensure a partial causality between the endpoints to ensure a causal order at the inter-

val level. The second aspect of the mechanism is focused on how to deal with the delay and loss of messages by pro-

posing a fault-tolerant mechanism. Our proposal is based on the technique of forward detection and recovery of lost

messages in a distributed form. By this, we avoid the retransmission of information. To the best of our knowledge, this

work is the first to propose a forward error correction technique with causality control for the synchronization of con-

tinuous media. The forward recovery is achieved through the addition of redundancy. Two kinds of redundancy are

used: redundancy on the type of message, and redundancy on the causal control information sent [2]. The last type of

Temporal dependencies

 ARQ

Causal algorithms

Unreliable networks

 FEC

 Reliable networks

Virtual clock and client-server

redundancy is calculated based on the causal distance between events, and it is adaptable according to the conditions of

loss in the network communication channels. Our proposal is an extension of the work developed in [3]. The extension

is focused mainly on the fault tolerance mechanism.

The outline of this paper is as follows. We present in Section 2 the related works. Next, in section 3, the preliminar-

ies and some required definitions are given. Following, the proposed Temporal Synchronization Model is presented in

detail in Section 4. We introduce in Section 5 our Synchronization Mechanism. Conclusions are provided in Section 6.

2 Related Work

We classify the works that attempt to solve the synchronization problem between continuous media (streams) into

two main categories: real-time and on-demand. Our work is focused on real-time synchronization. Real-time synchro-

nization can be divided into continuous and discrete events. While continuous events concern a repetitive pattern of

related events, discrete events synchronize activities in a distributed system by answering events. Our work tries to

solve the problem of continuous synchronization, which in turn, can be divided into intra-stream and inter-stream syn-

chronization. [1],[4 -6].

Intra-stream synchronization refers to the preservation of physical temporal dependencies within a single stream. In-

ter-stream synchronization, on the other hand, is focused on the preservation of physical and logical temporal depend-

encies between streams. The objective of this paper is to solve the problem of inter-stream synchronization.

One of the main mechanisms used to satisfy physical dependencies involves the use of a multiplexer to send a single

synchronized stream [7,8]. These works generate a bottleneck and produce delays at the transmission and at the recep-

tion of streams. Another mechanism used is the normalization of the participants’ physical clocks to achieve the syn-

chronization [9,10].

On the other hand, some works use causal algorithms to achieve the synchronization between streams [2],[11-19].

We can divide these algorithms into two categories based on the type of communication channel used (See Figure 1). In

the first category, we classify the causal algorithms that assume reliable communication channels (i.e., lost message do

not exist) [11-13]. In the second category, we consider causal algorithms that work in unreliable communication chan-

nels (i.e., there are lost message during the transmission) [2],[14-19]. We have classified these last works into two cate-

gories based on the technique used to detect and recover lost messages.

Fig. 1. Classification of multimedia synchronization based on the type of

 channel and recovery technique

Works in the first category use the Automatic Repeat Request (ARQ) technique or some variant of it [14], [16-19].

They detect a lost message in some way and recover it by retransmitting it. This mechanism is not recommended in

real-time systems because it involves delays and a huge overhead. Others works, such as [15], consider the package

lifetime to determine whether it is useful or not for the application. Nevertheless, these works do not address the case of

lost messages.

 The second category uses the Forward Error Correction (FEC) technique to detect and recover lost information.

Our work is classified in this category. It is an algorithm that uses the causal relation at an interval level to achieve the

synchronization between streams. To the best of our knowledge, our work is the first to propose a forward error correc-

tion technique to synchronize continuous media with causality control. The forward recovery is achieved by introduc-

ing redundancy. For a detailed description of our mechanism, refer to Section 5.

3 Preliminaries

3.1 The System Model

Processes: The application under consideration is composed of a set of processes P ={i, j…}, organized into a

group that communicates by unreliable broadcast asynchronous message passing.

Messages:We consider a finite set of messages M, where each message m∈M is identified by a tuple m=(p,x),

where p∈P is the sender of m, denoted by Src(m), and x is the local logical clock for messages sent by p, when m is

broadcasted. The set of destinations of a message m is always P.

Events:Let m be a message. We denote by send(m) the emission event of m by Src(m), and by delivery(p,m) the de-

livery event of m to participant p∈P. The set of events associated to M is then the set E = {send(m) : m∈M} ∪ {deliv-

ery(p,m) : m ∈ M ∧ p ∈P}.

Intervals:We consider a finite set I of intervals, where each interval A∈I is a set of messages A⊆ M sent by a par-

ticipant p=Part(A), defined by the mapping Part:I→P. Formally, we have m∈A ⇒Src(m)=Part(A). Due to the sequen-

tial order of Part(A), we have for all m,m’ ∈ A , m → m’ or m’ → m. We denote by a- and a+ the unique messages of A,

such that for all m ∈ A, we have a-≠m and a+≠m ⇒ a-→m→ a+. The a- and a+ messages are the endpoints of A. We

assume in this paper that a-≠ a+.

3.2 Background and Definitions

In this section we present some definitions used in the synchronization mechanism.

3.2.1 The Happened-Before Relation on Intervals

We identify and define two possible precedence relations at an interval level. These two relations are based on the

possible happened-before relation for single events. The two relations identified for intervals are the causal relation and

the simultaneous relation. For more details of these definitions, refer to [3]. We begin by giving the definition of the

causal relation to be applied to intervals.

Definition 1. The relation “ →I ” is accomplished if the following two conditions are satisfied:

1. A →I B if a+→M’ b-

2. A →I B if ∃C | (a+ →M’ c- ∧ c+→M’ b-)

where a+ and b- are the final and initial send events (or messages) of A and B respectively, c- and c+ are the endpoints

of C, and →M’ is the partial causal order induced on M’ ⊆ M, where M’, in our case, is the subset composed by the

endpoint messages of the intervals in I.

Definition 2. Two intervals A, B are said to be simultaneous “ ||| ” if the following condition is satisfied:

A ||| B ⇒ a- || b- ∧ a+ || b+

In our work we consider Definition 2 as the complement relation to the causal relation at an interval level (Definition

1). This means that an interval can only either precede or be simultaneous to another interval at a given time.

Definition 3. Causal Broadcast Delivery for Intervals based on the endpoints

If (a+, b-) ∈ A×B, send(a+)→send(b-) ⇒ ∀p∈P, delivery(p, a+) → delivery(p, b-) then

∀p∈P ⇒ delivery (p,A) →I delivery (p,B)

3.2.2 Causal Distance

The causal distance defines the greatest number of causal messages in a linearization between a pair of messages.

The definition of causal distance was introduced in [2]. Formally, the causal distance is defined as follows:

 Definition 4. Let m and m’ be messages. The distance dist(m,m’) is defined for any pair m and m’ ∈ M such that

m→m’: dist(m,m’) is the greatest integer n such that for some sequence of messages (mi, i= 0...n) with m= m0 and

m’=mn, we have mi↓mi+1 for all i =0…n-1, where ↓ is the immediate dependency relation defined in [11].

4. Temporal Synchronization Model

In order to achieve the synchronization between continuous media in distributed systems, we propose a model to de-

termine temporal relations based only on the identification of logical precedence dependencies. The model translates a

temporal scenario to be expressed in terms of the precedence relations at an interval level (defined in the section 3.2.1);

we call this translation logical mapping. In our work, a logical mapping decomposes a temporal scenario into data seg-

ments (intervals) that are arranged according to their possible precedence dependency.

4.1 Logical Mapping

The process to create logical mappings involves taking every pair of intervals in the system that compose a temporal

scenario, and translating each pair into four data segments, which are determined according to the possible precedence

dependency of the discrete events that compose them. These data segments, according to our definition, become new

intervals.The resulting intervals are expressed only in terms of the happened-before relation and the simultaneous rela-

tion.

In order to consider the seven basic relations and their inverses and to maintain the model simplified, we first iden-

tify the X and Y intervals for each pair of intervals in the system. The X interval will be the interval with the first left

endpoint, and the Y interval will be the remaining interval. This is done in order to ensure that for every pair, x- → y- or

x- || y- at all times. Once the X and Y intervals are identified, the model segments each pair into four subintervals (A, B,

C and D) (See Table 1). When the subintervals are already identified, we proceed to construct the general causal struc-

ture S=A→IW→I B, where W determines if overlaps exist between the present pair.

Table 1. The Process of Logical Mapping1

∀(X, Y) ∈ I × I

A(X,Y) ←
 - { x ∈ X : x → y-} for x- → y- ∨

 - Ø for other cases

B(X,Y) ←

 - { x ∈ X : y+ → x} for y+ → x+ ∨

 - { y ∈ Y : x+ → y } for x+ → y+ ∨

 - Ø for other cases

C(X,Y) ← - X-(A(X,Y) U B(X,Y))

D(X,Y) ← - Y-B(X,Y)

W(X,Y) ← C ||| D

 S(X,Y) ← A →I W →I B

According to Table 2, we are now able to express every possible temporal relation based only on the interval hap-

pened-before relation and the interval simultaneous relation. We remark that this capacity is the core of our synchroni-

zation model.

Table 2. Allen’s relations and their logical mapping.

Allen’s

 Relations

Initial

 Endpoints

Interval Temporal

Relation
Logical Mapping

X before Y

Y after X
x+→ y-

 xxxxx

 yyyy
 A→I B

X meets Y

Y meet-by X
x+|| y-

 xxxx

 yyyy

X overlaps Y

 Y overlap-by X

x-→ y- →

x+,

x+→ y+

xxxxxxxx

 yyyyyyyyy

X includes Y

Y during X

x-→ y-,

y+→ x+

 yyyy

 xxxxxxxxx

A→I (C ||| D)→IB

1 We consider in our model that an interval must be empty, for this case we introduce the next properties:

- ∅→I A ∨ A →I ∅ = A
- A →I ∅ →I B = A →I B
- A ||| ∅ ∨ ∅ ||| A = A

X starts Y

Y started by X

x- || y-,

x+→ y+

xxxxx

yyyyyyyyyyy
 (C ||| D)→IB

X finishes Y

 Y finished-by X

x+ || y+,

x-→ y-

 yyyyy

xxxxxxxxx
 A→I (C ||| D)

X equals Y
x- || y-,

x+ || y+

xxxxxxxx

yyyyyyyy
 C ||| D

5 The Synchronization Mechanism

The present mechanism is based on the synchronization temporal model, presented in Section 4 (See Table 1). The

mechanism carries out the creation of logical mappings and ensures their reproduction even when messages are lost.

The correctness of the synchronization temporal model was proved in [3]. In this section, the extension is presented to

provide a fault tolerant mechanism in the presence of lost messages. Internally, the synchronization mechanism uses

two kinds of messages: causal messages and FIFO messages. The causal messages are divided into: begin, cut and end

messages. The begin and end messages are the left and right endpoints of the original intervals, and cut is a control

message used by the algorithm to inform about an interval segmentation. FIFO messages (fifo_p) are only used inside

an interval. We note that a causal message also locally satisfies the FIFO order. We provide a description of its opera-

tion below.

5.1 The Recovery Approach

The causal messages are used either to achieve the segmentation proposed in the temporal model or to synchronize

the intervals involved. The loss of causal messages disturbs the segmentation between intervals, and thus, deteriorates

the synchronization. To tolerate the loss of some begin, end or cut causal message, we introduce a certain redundancy.

In the algorithm, we have two kinds of redundancy: redundancy on the type of message and redundancy on the causal

control information. The first type of redundancy is applied to the begin message and to the cut message. In this redun-

dancy, some immediately consecutive fifo_p messages of a begin or cut message are sent as copies of the messages in

question. If a begin or cut message is lost, the first fifo_p message is taken as the lost causal message. The fifo_p mes-

sages sent as copies can contain updated causal control information. The number of consecutive FIFO messages sent as

copies of a causal message is not established by the mechanism, although a study carried out in [10] shows that the

probability that a message can be lost diminishes considerably from five or more consecutive messages lost.

The second type of redundancy, which involves the causal control information, is based on the causal distance. The

causal distance defines the greatest number of causal messages in a linearization between a pair of messages (see Defi-

nition 4). For example, for messages that have an immediate dependency, the causal distance is equal to one. For more

details, refer to [2]. By considering a larger distance (more than one), we increase the redundancy in the control infor-

mation sent in the system. The main advantage is that this increases the tolerance degree of lost message.

The detection and recovery of lost messages is as follows. When a send event occurs of a begin, end or cut causal

message, the information added to its control information corresponds to the causal message identifiers that have an

equal or smaller causal distance with the send event involved. With this redundant information, it is possible to detect

and recover the control information of the lost messages in a forward way (Figure 3). We note that the redundant con-

trol information about a causal message is added only if the causal distance established is equal or smaller to the num-

ber of times that the information about this message has circulated in the system. In this way, our mechanism can ad-

just the redundant information needed to be sent.

5.1.1 Synchronization Mechanism when a Begin Message is Lost

In order to explain how the redundancy in the type of message is used to achieve the segmentation when a begin

message is lost, we present the following faulty scenario (Fig. 2). We recall that the process of creating logical map-

pings in our work is made online by identifying the causal boundaries of the concerned segment(s) from left to right. In

this example, segment A must first be determined. To achieve this, we identify the left causal boundary a- as equal to x-

=x1, and the right causal boundary as equal to a+=xk. The right endpoint a+ is determined by the last fifo_p message

received by participant j (lines 133-136, Table 3) before the begin send event (send(y-)). Once we know the causal

boundaries of A, we can determine the set of messages that compose it (A= {x1, x1+1,…,xk}).

Fig. 2. Forward recovery at process i (A→I (C ||| D) →I B).

After interval A is identified, we proceed to recognize the causal boundaries of C and D. At this point, we can iden-

tify the left causal boundaries c-= xk+1 and d-=y1, but it is only until the send and delivery event of the right endpoint x+

that we can identify the right endpoints of C and D. In this scenario, the causal message y1 is lost during its transmission

to process i. The forward detection and recovery of y1 is through the FIFO message y2 at process i, which is an updated

copy of y1 (lines 35-50). Process i detects the loss of y1 upon the reception of y2 and takes y2 as the causal begin mes-

sage of interval Y. At this point, FIFO message y2 is considered as a causal message (lines 72-140). Now with the

send(x+= xn) we establish that c+=xn, and consequently, C={x k+1, xk+2,…,xn}. At the reception of x+ by participant j,

our algorithm sends a cut message (lines 129-131), which establishes the end of interval D (d+= ym) and the beginning

of interval B (cut= b-= ym+1). As result, we have D={ y1, y2,…, ym}). Finally, with the send event of y+ (lines 11-71), we

have b+= yp, and consequently, B={ ym+1, ym+2,.., yp}.

5.1.2 Synchronization Mechanism when an End or Cut Message is Lost

In order to explain how the redundancy based on causal distance is used to achieve the synchronization in the pres-

ence of lost end or cut messages, we present the following faulty scenario (figure 3). In this example, we consider seg-

ment A, and the left causal boundaries of C and D (c-= xk+1 and d-=y1, respectively) are identified. Only by the send and

delivery event of the right endpoint x+ , we can identify the right endpoints of C and D. With the send(x+= xn) (lines 11-

71) we establish that c+=xn, and consequently, C= {x k+1, xk+2,…,xn}. The causal message x+ is lost during its transmis-

sion to process j; therefore, we cannot identify the right endpoint of D. At the reception of x+ by participant l, our algo-

rithm sends a cut message which carries attached control information about messages x+ and y- (lines 18-21) with

causal distances dist=1 and dist=2, respectively.

 B D

 A C

 b+ = yp

 d+ = ym b- = ym+1

cutend begin

fifo_p

c+ = xn

a- = x1
a+ = xk

i =Part(X)

 x

 c- = xk+1

 d- = y1 y2
j =Part(Y)

i ≠ j

Fig. 3. Forward recovery at

process j with d=2 (A→I (C ||| D) →I B).

By using the control information attached to the cut message, process j is able to detect that message x+ has been lost

(lines 72-91). Because the lost message x+ is an endpoint, j proceeds to send a cut message which establishes the end of

interval D (d+= ym) and the beginning of interval B (cut= b-= ym+1) (lines 89-91 and 125-128). As a result, we have D={

y1, y2,…, ym}). Finally, with the send event of y+, we have b+= yp, and consequently, B={ ym+1, ym+2,…, yp}. The seg-

mentation for intervals X and Y is achieved: A →I (C ||| D) →I B.

5.2 The Algorithm

5.2.1 Data Structures

The main data structures used in the algorithm are:

VT(p) is the vector time. For each process p there is an element VT(p)[j] where j is a process identifier. The size of

VT is equal to the number of processes in the group. VT(p) contains the local view that process p has of the elements of

the system. In particular element VT(p)[j] represents the greatest element number of the identifier j and ‘seen’ in causal

order by p. It is through the VT(p) structure that we are able to guarantee the causal delivery of elements.

The structure of the control information CI(p) is a set of entries (k, t, d). Each entry in CI(p) denotes a message that

is not ensured by participant p of being delivered in a causal order. The entry (k, t, d) represents a diffusion by partici-

pant k at a logical local timeclock t = VT(p)[k], and d is the potential the causal distance.

The algorithm uses causal messages and FIFO messages which compose the intervals; a message m, in general, is

composed of an identifier (k, t, f) and an attached causal information H(m). The intervals are identified by the tuple (k,

t). For FIFO messages the structure H(m) is always H(m)=∅. Formally, a message m is a tuple m=(k,t,f,H(m)), where:

- k is the identifier of the sender k=Src(m).

- t =VT(p)[k] is the (local) clock value of p for the identifier k when a causal

 message m (begin, end, or cut) or FIFO is sent.

- H(m) is a set of tuples (k, t) that represent intervals.

The structure H(m) contains identifiers of intervals causally preceding the causal message m (begin, end, or cut),

which denotes the begin and/or end of other intervals. The information in H(m) is needed for the causal delivery of the

causal message m. The causal delivery of m ensures the causal delivery of the interval to which m belongs. The struc-

ture H(m) is built before a causal message is broadcasted, and then it is attached to the causal message.

D
 b+ =yp

 C

B

A

a+

 c+ = xn

 d+
 b- = ym+1

i =Part(X)

j =Part(Y)

l =Part(Z)

a- = x1

 d- = y1

 x

cut

i ≠ j ≠ l

5.3 Algorithm specification

Next, we present in Table 1 the algorithm to synchronize real- time continuous media. The algorithm can manipulate

N sources, and each source can send M streams.

Table 3. Synchronization mechanism tolerant faults

1. Initially

2. VT(p)[j] ←∅ ∀ j: 1…n

3. VTI(p)[j] ←∅ ∀ j: 1…n

4. VTC(p)[j] ←∅ ∀ j: 1…n

5. CI(p)←∅

6. Act=0

7. last_fifo(p)←∅

8. num_cc = num_cop

9. con=0

10. causal=0

 For each m message diffused by p with process identifier i

11. Send (Input: TP = begin | end | cut | fifo_p))

12. VT(p)[i] ←VT(p)[i] + 1

13. If (TP = fifo_p) then

14. Con = con+1

15. Endif

16. If not (TP = fifo_p and con > num_cop) Then

17. If not (TP = begin or TP = fifo_p) Then

18. For each (s,t,d) ∈ CI(p) /*Construction of the H(m) for end and cut message*/

19. (s,t,d) ← (s,t,d+1)

20. H(m) ← H(m) ∪ (s, t)

21. Endfor

22. If (TP = cut) then

23. num_cc = 0

24. Endif

25. Else

26. If not (TP = fifo_p) then /*Construction of the H(m) begin message*/

27. CI(p) ← CI(p) ∪ last_fifo(p) /*Adding fifo_p messages to CI(p)*/

28. For each (s,t,d) ∈ CI(p)

29. (s,t,d) ← (s,t,d+1)

30. H(m) ← H(m) ∪ (s, t)

31. Endfor

32. reg(p) ← last_fifo(p)

33. last_fifo(p) ← ∅

34. Else

35. cop_CI(p)←CI(p) /*construction of copies of begin message*/

36. If not (last_fifo(p) = ∅) then

37. ∀(x, l) ∈ reg(p)

38. If ∃ (s, t, d) ∈ cop_CI(p) | x = s and l = t then

39. cop_CI(p) ← cop_CI(p) / (x, l)

40. Endif

41. cop_CI(p) = cop_CI(p) ∪ last_fifo(p)

42. For each (s, t, d) ∈ cop_CI(p)

43. H(m) ← H(m) ∪ (s, t)

44. Endfor

45. Esle

46. For each (s,t,d) ∈ CI(p)

47. H(m) ← H(m) ∪ (s, t)

48. Endfor

49. Endif

50. Endif

51. Endif

52. Else /*construction of copies of cut message*/

53. If (num_cc < num_cop) then

54. For each (s,t,d) ∈ CI(p)

55. H(m) ← H(m) ∪ (s, t)

56. Endfor

57. num_cc = num_cc + 1

58. Else

59. H(m)← ∅ /* H(m) for FIFO messages */

60. Endif

61. Endif

62. If not(TP = end)Then /*Determine if process p is sending or not an interval*/

63. Act = 1

64. Else

65. Act = 0

66. Endif

67. m = (i, t = VT(p)[i], TP , H(m),data)

68. Sending(m)

69. If ∃ (k, t, d) ∈ CI(p) | d = dist_def then

70. CI(p) ← CI(p) / (k, t, d)

71. Endif

 For each message received by p with process identifier j

72. Receive(m) in p with i ≠ j and m= (i, t = VT(p)[i], TP , H(m),data)

73. If t = VT(p)[k] +1 Then /*FIFO deliver condition*/

74. If not (TP = fifo_p) Then

75. If not (t’ ≤ VT(p)[l]) ∀(l, t’)∈ H(m)) Then /* causal delivery condition*/

76. If (t’ > VT(p)[l]) ∀ (l, t’) ∈ H(m) /*Detection of lost message*/

77. VT(p)[l] = t’ /*update of vectors*/

78. Endif

79. If (TP = cut) then

80. CPC = 1

81. Endif

82. Endif

83. Endif

84. Deliver(m)

85. VT(p)[k] = VT(p)[k] +1

86. If (TP = begin) then

87. VTI(p)[k] = 1

88. Endif

89. If (TP = cut) then

90. VTC(p)[k] = 1

91. Endif

92. Else /*Detection of lost begin message */

93. If not ((TP=fifo_p and VTI(p)[k]!= 0) or (TP = fifo_p and VTC(p)[k] != 0))Then

94. If not (t’ ≤ VT(p)[l]) ∀(l, t’)∈ H(m)) Then

95. If (t’ > VT(p)[l]) ∀ (l, t’) ∈ H(m)

96. VT(p)[l] = t’

97. Endif

98. Endif

99. Causal = 1

100. If (VTI(p)[k] = 0) then

101. VTI(p)[k] = 1

102. Else

103. VTC(p)[k] = 1

104. Endif

105. Endif

106. Deliver(m)

107. VT(p)[k] = t

108. Endif

109. If not (TP = fifo_p and causal = 0) Then

110. CI(m) ← CI(m) ∪ { (k, t, d=0) }

111. ∀(l, t’) ∈ H(m) /*Updating CI(p)with a most recent message*/

112. If ∃ (s, t, d) ∈ CI(m) | l = s and t = t’ then

113. (s, t, d) ← (s, t, d+1)

114. Endif

115. If ∃ (m, t, d) ∈ last_fifo(p) | l = m and t = t’ then

116. (m, t, d) ← (m, t, d +1)

117. Endif

118. If ∃ (k, t, d) ∈ CI(p) | d = dist_def then

119. CI(p) ← CI(p) / (k, t, d)

120. Endif

121. If (TP = end) then

122. VTI(p)[k] = 0

123. VTC(p)[k] = 0

124. Endif

125. If (CPC = 1) then

126. Send (cut) /*Sending a cut message by the lost message end*/

127. CPC=0

128. Endif

129. If Act = 1 and (not(TP = cut) and not (TP=begin)) Then

130. Send(cut) /*Sending a cut message by the deliver of a end message*/

131. Endif

132. Else

133. If ∃ (x,l) ∈ last_fifo(p) | x = k then

134. last_fifo(p) ← last_fifo(p) / (x,l)

135. Endif

136. last_fifo(p) ← last_fifo(p) ∪ (k, t, d=0)

137. Endif /*Updating last_fifo(p) with a most recent message*/

138. Causal = 0

139. If ∃ (m, t, d) ∈ last_fifo(p) | d = dist_def then

140. last_fifo(p) ← last_fifo(p) / (m, t, d)

141. Endif

6 Conclusions

We have proposed a mechanism based on the technique of forward error correction to synchronize continuous media

(audio and video) in unreliable networks. The mechanism avoids the retransmission of lost information. With this, we

have introduced a feasible technique to synchronize real-time continuous media in the presence of lost messages. To the

best of our knowledge, our work is the first to propose a forward error correction technique for continuous media syn-

chronization with causality control. In future works, we will incorporate time restrictions to consider the lifetime of

messages.

References

[1] Thomas Wahl, Kurt Rothermel: Representing Time in Multimedia Systems. Proceedings of the International Conference on Mul-

timedia Computing and Systems, Boston, Massachusetts (1994), 538-543.

[2] Eduardo Lopez , Jorge Estudillo, Jean Fanchon, Saul E. Pomares: A Fault-tolerant Causal Broadcast Algorithm to be Applied to

Unreliable Networks, The 17th IASTED International Conference on Parallel and Distributed Computing and Systems, Arizona

(2005).

[3] Luis Morales, A. Algoritmo de Sincronización de flujos continuos en tiempo real. Masters Thesis in Computer Science, INAOE.

Num. XM1086. Classification: XMM-M67-2005-XM1086, Tonantzintla Puebla, México. Year (2005).

 [4] Haining Liu, Magda El Zarki: A synchronitation Control Scheme for Real- Time Streaming Multimedia Applications. Proc of

Packet Video 2003, France (2003).

[5]Agustín J. Gonzalez and Hussein Abdel-Wahab: Light-Weight Stream Synchronization Framework for Multimedia Collaborative

Applications, The Fifth IEEE Symposium on Computers and Communications (ISCC’2000), Antibes-Juan

LesPins,France(2000),398-403.

[6]Apurv Gupta: Synchronization in Multimedia Applications. Technical Report on Networking Issues, Indian Institute of Technol-

ogy Kanpur, Department of Computer Science & Engineering, (2000).

[7] Venkat Rangan, Shrihari Sampath, Sreerang Rajan.: Continuity and Synchronization in MPEG. IEEE Journal on Selected Areas in

Communications, 14(1), (1996), 52-60.

[8] Pantelis Balaouras, Ioannis Stavrakakis, Lazaros F. Merakos.: Potential and Limitations of a Teleteaching Environment based on

H.323 Audio-visual Communication Systems. Computer Networks, 34(6), (2000), 945-958.

[9] Nipun Agarwal, Sang Hyuk :A Model for Specification and Synchronization of Data for Distributed Multimedia Applications.

Multimedia Tools and Applications, 3(2), (1996),79-104.

[10] Colin Perkins: RTP Audio and Video for Internet, Addison Wesley,USA(2003),pages 412.

[11] Saul Pomares, Jean Fanchon, Khalil Drira : The Immediate Dependency Relation: An Optimal Way to Ensure Causal Group

Communication. Annual Review of Scalable Computing, Editions World Scientific, Series on Scalable Computing, vol 6, (2004), 61-

79.

[12] Takayuki Tachikawa and MakotoTakizawa: Group Communication for Real-time Continuous Media. Proceeding of Interna-

tional Symposium on Multimedia Systems, Japan (1996), 118-125.

[13] Frank. Adelstein, Mukesh. Singhal: Real-Time Causal Message Ordering in Multimedia Systems, 15th IEEE International Con-

ference on Distributed Computing Systems (ICDCS), (1995).

[14]Takayuki Tachikawa and Makoto Takizawa: ∆-Causality in Wide Area Group Communication. Proc. 1997 Int'l Conf. on Parallel

and Distributed Systems , (1997),260-267.

[15]Roberto Baldoni, Achour Mostefaoui and Michel Raynal, Causal Deliveries in Unreliable Networks With Real-Time Delivery

Constraints, Journal of Real-Time Systems,2(1),(1996), 308-321.

[16]Cezar Plesca, Romulus Grigoras,Philippe Quéinnec, A Flexible Communication Toolkit for Synchronous Groupware, Interna-

tional Conference on Sensor Networks (SENET), Montreal, Canada (2005), 6 pp.
[17] Roberto Baldoni, Roy Friedman, Robbert van: The Hierarchical Daisy Architecture for Causal Delivery, In Proceedings of the

17 th IEEE International Conference on Distributed Systems, 570-577, (1997).

[18] Akihito Nakamura and Makoto Takizawa : Causally Ordering Broadcast Protocol, In Proc. International Conference on Distrib-

uted Computing System, Australia (1994),48-55.

[19] Abdelhafid Abouaissa, Abderrahim Benslimane, M. Naimi: A group Communication Model for Distributed Real-time Causal

Delivery, Seventh International Conference on Computer Communications and Networks (ICCCN '98),(1998), pp. 918.

