
1

An Efficient Causal Multi-group Algorithm
Based on Immediate Dependency Constraints

SAUL E. POMARES HERNANDEZ ()

LUIS MORALES ROSALES

National Institute of Astrophysics, Optics and Electronics (INAOE), Luis Enrique
Erro #1, 72840 Tonantzintla, Puebla, Mexico.

spomares@inaoep.mx
Phone: + (52) 222 2-66-31-00 ext 8227
Fax: + (52) 222 2-66-31-52

JEAN FANCHON()

Laboratory for Analysis and Architecture of Systems of CNRS, 7 Av. Colonel
Roche, 31077 Toulouse Cedex, France.

fanchon@laas.fr
Phone : + (33) 5 61 33 64 75
Fax : + (33) 05 61 33 69 36

Abstract

In this paper we present an efficient causal multi-channel algorithm that can be used in a multi-

group communication environment, including in the overlapping group case. The algorithm is

developed upon an extension we propose to the Immediate Dependency Relation (IDR), which

was introduced by Peterson. This IDR extension can be used in multi-group environments in order

to identify causal dependencies between messages. In the same way that the IDR characterizes the

sufficient control information to ensure causal delivery in a broadcast case, we show that our IDR

extension allows us to define the sufficient control information to ensure the causal delivery in a

multi-group environment. We show that through the use of the IDR extension we can minimize the

amount of control information sent per message without imposing restrictions in interaction or

execution (e.g. network topology, rediffusion servers, executions models, etc). These

characteristics allow our algorithm to be suitable for use in large distributed decentralized systems.

We show the efficiency of our causal algorithm in terms of the overhead timestamped per

message.

Key words: Immediate Dependency Relation, Causality, Group

Communication, Distributed Computing.

2

IDR, Immediate Dependency Relation;

FIFO, First In First Out;

CMCA, Causal Multi-Channel Algorithm;

IICD, Immediate Inter-Channel Dependency;

PC, Propagation Constraint;

CI, Causal Information.

1 Introduction

In Group Communication Systems, causal ordering algorithms are an essential

tool to exchange information. The use of causal ordering provides built-in

message synchronization and reduces the non-determinism in a distributed

computation. Causal ordering provides an equivalent of the FIFO property at a

global group communication level; it guarantees that actions like requests or

questions are received before their corresponding reactions, results or responses.

The concept of causal ordering is of considerable interest to the design of

distributed systems, and can be found in applications of several domains, such as

distributed cooperative engineering [20], teleconferencing [25], multimedia

systems [2], mobile computing [23], resource allocating algorithms [29] and

security domains [27].

Among the various existing causal algorithms, we can distinguish causal

broadcasts, where each message is sent to all participants; causal multicasts,

where a message is sent to any subset of participants; and multi-groups causal

algorithms (which we call indifferently multi-channels algorithms), where

participants are organized in overlapping groups. In this last case, a message is

broadcasted to all members of a particular group. With regard to algorithms which

support multi-group environments, we can distinguish symmetric from

asymmetric ones. While in symmetric algorithms all participants share the same

role in the system and interact freely without timing or centralized constraints,

asymmetric algorithms either present restrictions in the mode of interaction or

introduce a large amount of control information.

The present paper proposes a symmetric Causal Multi-Channel Algorithm

(CMCA). The main objective of our algorithm is to minimize the amount of

3

control information (CI) per message. The amount of information necessary to

guarantee causal broadcast in a group g with n members is θ(n) in the worst case

[5]. In overlapping groups, this amount is θ(g n) in the worst case [5], where g is

the number of groups in the system. For large values of n and g, the bounds of

θ(n) and θ(g n) are prohibitively high. An original aspect of our work is the

definition and the use of an extension of the Immediate Dependency Relation

(IDR) [18] [22] to the multi-group context. We call this extension the Immediate

Inter-Channel Dependency (IICD). The IICD relation reduces the amount of CI

attached to the messages without imposing restrictions in interaction or execution

(e.g. network topology, rediffusion servers, executions models, etc). In the same

way that the IDR characterizes the sufficient control information in a broadcast

case [22], the IICD allows us to define the sufficient control information to ensure

the causal delivery of messages in a multi-channel situation: if any two messages

related by IICD are delivered in causal order, then all the messages are delivered

in causal order (IICD property). Due to IICD property, our CMCA algorithm can

be viewed as a natural extension to the multi-channel case of the minimal causal

broadcast algorithm proposed in [21] and [22] for the single-channel case.

The paper proceeds as follows: first, in Section 2 we overview the works

which tend to minimize control information in symmetric algorithms. In Section 3

we give the basic definitions, in particular the definition of causal dependency.

Next in Section 4, we present the immediate dependency and our proposed

extension to the multigroup case. In Section 5, the proposed Causal Multi-channel

Algorithm is presented in detail. Section 6 is dedicated to the proofs, which

include the proof the IICD property, and the proof of correctness of the CMCA

algorithm. Finally, in Section 7 we present a comparison of our algorithm versus

other important multi-group communication works.

2 Related Work

As mentioned above, we have surveyed works which aim to reduce the control

information needed to ensure causal order delivery in symmetric algorithms. The

symmetric algorithms consider that all participants share the same role and the

same degree of responsibility in the system; furthermore, they interact freely

without timing or centralized constraints. The symmetric category is concerned

with identifying the necessary conditions to ensure a causal delivery of messages,

4

and/or with arranging optimal coding to represent and transmit this information.

The asymmetric category is composed of algorithms that assume a certain

network topology, a particular channel structure [3], and/or execution models

[26]. The following related work involves only the symmetric category, which is

the category we are concerned with.

One of the first algorithms is the work done by Peterson [18]. Peterson

introduced the context graph, which was designed to represent the causality

between messages in a conversation algorithm in a broadcast environment. This

graph is directed and acyclic; its vertices correspond to the total set of messages,

and the arcs represent the causal relationship between these messages. The

reduced graph as presented in [18] shows that if the causal ordering of messages is

ensured between every pair of immediate causal predecessor and successor

messages, then the causal ordering among all messages will be automatically

ensured due to the transitivity of the preceding relation (see Section 4).

The work of Prakash and Raynal [24] extends the immediate dependency

property to support multicast environments. Prakash’s work does not use nor

maintain context graphs to ensure causal ordering. To ensure causal ordering, a

message m needs to carry information concerning only those messages m’ on

which its delivery is directly dependent upon. This approach is oriented to resolve

problems in mobile agent applications; it considers the multicast and broadcast

case, but not the case of overlapping channels.

An interesting work is the algorithm proposed by Kshemkalyani and

Singhal [13]. Their causal algorithm codes information onto each message

regarding all previous causal messages that are not yet guaranteed to be delivered

in a causal manner by the algorithm, or that are not known to have already been

delivered. They refer to these conditions as propagation constraints (Definition

1). The propagation constraints (PC) specify the conditions on the information

propagation to enforce causal ordering [13].

Definition 1 The information d ∈ mi,a.Dests concerning a message mi,a sent to d

must propagate along all causal paths, starting at message (i, a) up to, and only up

to, the earliest messages (j, b) on any such path, such that either:

PC 1. deliveryd(mi,a) (j, b), i.e. it is known that mi,a has been delivered or = →

5

PC 2. ∃ (k, c) | (i, a) → (k, c) → (j, b) ∧ d ∈ mk,c.Dests i.e. it is guaranteed that it

will be delivered in causal order.

The first PC means that the message mi,a is known to have been delivered

in causal order at message (j, b) to destination d = j . Therefore, in any future

multicast message to destination d, the message does not need to carry

information concerning d ∈ mi,a.Dests. The second PC means that there exists a

message (k, c) that would ensure the causal delivery of the present message (j, b)

with respect to (i, a). If (k, c) is causally delivered with respect to (i, a), the

information about d ∈ mi,a.Dests does not need to be sent.

Another example of an algorithm that falls into the symmetric category is

the algorithm proposed by Birman [5], which is based on vector time clocks. The

author, in his algorithm, proposes to compress the vector time by sending only the

vector positions that have changed between the diffusion of the message in

question and the diffusion of the prior local message.

3 Preliminaries

Participants and channels:

The application under consideration is composed of a set of participants P

organized into possibly overlapping groups which communicate by asynchronous

message passing. Groups correspond to logical broadcast communication

channels; the members of a group are connected to the corresponding channel and

communicate by sending and receiving messages through it. We denote by C the

set of channels, the mapping Memb : C→2P defines for each channel the set of

connected participants, and the mapping Conn : P→2C defines for each

participant the set of channels to which it is connected.

Messages:

We consider a finite set of messages M, where each message m∈M is identified

by a tuple (participant, integer, channel), m=(p,x,c) where p∈P is the sender of m,

denoted by Src(m), x is the value of the local clock of p when m is broadcasted,

and c∈C is the channel on which m is broadcasted, denoted by Chan(m). The set

of destinations Dest(m) of the message m is composed of the participants

6

connected to the channel Chan(m), Dest(m)=Memb(Chan(m)). In further sections,

additional fields will be introduced to the tuple (p,x,c) but they are not relevant in

this section.

Events:

Let m be a message, we denote by send(m) the emission event of m by Src(m), and

by delivery(p,m) the delivery event of m to the participant p connected to

Chan(m). The set of events associated to M is then the set E = {send(m), m∈M} ∪

{delivery(p,m), m ∈ M , p ∈Dest(m)}. An emission event send(m) where

m=(p,x,c) may also be denoted by send(p,m) or send(m,c) without ambiguity. The

subset Ep⊆E of events involving p is Ep= {send(m), p=Src(m)}∪ {delivery(p,m),

p∈Dest(m)}.

Causal relation and causal order delivery:

Causal order delivery is based on the causal relation →⊆E×E between the events

E of the system. This relation is also called the “happened before relation,” and

was first defined by Lamport [15]. The causal relation is a strict partial order

(transitive and antisymmetric) denoted by e→ e’, i.e. e causally precedes e’,

defined as follows:

Definition 2 The causal relation → is the least partial order relation on E

satisfying the two following properties:

1) For each participant p, the set of events Ep involving p is totally ordered:

e,e’∈ Ep ⇒ e→e’ ∨ e’→e

2) For each message m and destination p of m, the emission of m precedes its

delivery to p: p∈Dest(m)⇒ send(m) → delivery(p,m)

Causal order delivery in channel communication presents two cases: the broadcast

case (one channel) and the multi-channel case, which includes overlapping

channels. The causal delivery for the broadcast case is defined as follows [6]:

Definition 3 Causal Order Delivery (one channel):

If send(m)→ send(m’), then ∀p ∈ Memb(c) :

delivery (p,m) → delivery (p,m’)

7

Causal order delivery ensures that if the diffusion of a message m causally

precedes the diffusion of a message m’, in a channel c, then the delivery of m

precedes the delivery of m’ to each participant p that belongs to c.

The precedence relation on messages denoted by m→m’ is induced by the

precedence relation on events, and defined by:

m→m’ ⇔ send(m)→ send(m’)

The case of causal delivery in a multi-channel environment is more common in

channel communication. Two messages sent in different channels may not have

the same sets of destinations. The definition of the causal order delivery takes this

into account. Let us note that if c=Chan(m) and c’=Chan(m’), we have

Memb(c)IMemb(c’) = Dest(m)IDest(m’). The definition is as follows:

Definition 4 Multi-channel causal order delivery:

If send(m,c)→ send(m’,c’), then ∀p ∈ Memb(c)IMemb(c’) :

delivery(p,m) → delivery(p,m’)

Multi-channel causal order delivery guarantees that if the diffusion of a message

(m, c) causally precedes the diffusion of a message (m’, c’), where c and c’ are the

diffusion channels of messages m and m’ respectively, then the delivery of m

causally precedes the delivery of m’ for all participants p that may receive both

messages, i.e. that belong to both channels c and c’ [17].

4 The Immediate Dependency Relations

4.1 Single channel case

The Immediate Dependency Relation (IDR) is the transitive reduction of the

causal precedence. The IDR is included in the causal precedence and is the

smallest relation which generates it by transitive closure. This relation is

important for causal delivery algorithms and protocols since it is necessary, but

also sufficient, that the delivery of messages related by IDR respects the order of

8

their emissions to ensure the causal delivery of all messages. We present below

the definition of the IDR relation and its theorem regarding causal delivery.

Definition 5 Immediate dependency relation ↓ (IDR):

m↓m’⇔[(m → m’) ∧ ∀ m”∈ M, ¬ (m → m”→ m’)]

Thus, a message m directly precedes a message m’, iff no other message m’’

belongs both to the causal future of m, and to the causal past of m’.

Theorem 1 Causal broadcast delivery using IDR relation:

If ∀ m,m’ ∈ M, m ↓ m’ ⇒ ∀p ∈ Memb(c): delivery(p,m) → delivery(p,m’)

then ∀ m,m’ ∈ M, m → m’ ⇒ ∀p ∈ Memb(c) : delivery(p,m) → delivery(p,m’)

This property has been shown in [18] (for a formal proof see [21] and [22]).

4.2 Multi-channel case

In this section, we extend the principle of immediate dependency to the case of

multi-channel diffusion. We call this extension the “Immediate Inter-Channel

Dependency Relation” and we refer to it by its acronym IICD. In the same way

that the IDR allows us to define the sufficient control information in a broadcast

case, the IICD allows us to characterize the sufficient control information to

ensure the causal delivery of messages in a multi-channel situation.

For convenience, henceforth, we will denote send(m,c) by (m,c).

Definition 6 Immediate Inter-channel Dependency Relation (IICD) ↑:

(m,c)↑(m’,c’) ⇔ [((m,c) → (m’, c’))∧∀(m”, c’’)∈ M, ((m,c)→ (m”, c’’)→ (m’, c’)

⇒ c’’≠ c ∧ c’’≠c’)]

By this definition, a message m broadcasted on channel c has an immediate

dependency relation with a message m’ broadcasted on c’, if m’ causally depends

on m, i.e. (m, c)→ (m’, c’), and if for any intermediate message (m”, c’’) such that

(m, c)→ (m”, c’’)→ (m’, c’), the channel c’’ differs from the channels c and c’.

9

We note that in the case of a single channel, the relation ‘↑’ coincides with the

IDR relation denoted by ‘↓’, which has been previously defined.

The following proposition establishes that if any two messages related by IICD

are delivered in causal order, then all the messages are delivered in causal order.

Theorem 2 (Proof in Section 6)

If ∀ m,m’ ∈ M, (m,c) ↑ (m’,c’) ⇒ ∀p ∈ Memb(c)I Memb(c’) :

delivery(p,m) → delivery(p,m’)

then ∀ m,m’ ∈ M, (m,c) → (m’,c’) ⇒ ∀p ∈ Memb(c)I Memb(c’):

delivery(p,m) → delivery(p,m’)

As we show in Section 6, the information concerning the IICD relation between

messages is therefore sufficient to ensure their causal delivery.

4.3 Illustration of Immediate Inter-channel Dependency

In order to better illustrate Definition 6 and Theorem 2, we present in an informal

way the following scenario example.

Scenario: The Multi-channel space diagram in Fig. 1 is composed of c1={ p1, pa,

pb, p2}, c2={ p2, p3} and c3={ p1, p3} where pa, pb are local processes to channel c1.

Consider the emission of message m4, such that ((m2, c1)||(m3, c1))↑(m4, c3).

According to Definition 6, the messages which have an IICD with m4 are

messages m2 and m3. Therefore, the information that corresponds to these

messages is sent as control information to m4. This information is not taken into

account for the delivery of m4 by participant p3 since p3 ∉ Memb(c1)I Memb(c3).

Participant p3 only uses this information to update his system history file and for

future diffusion of messages, as in the case of the diffusion of message m5.

Let’s now consider message m5 (Figure 1). At the moment of diffusion of

m5, we apply Definition 6 to each message in the causal history of p3. We find

that the messages that have an IICD with m5 are m2, m3 and m4. Thus, as in the

10

previous cases, the control information timestamped to message m5 corresponds to

the messages which have an IICD to m5. Message m5 is delivered to p2 (p2 ∈

Memb(c1)I Memb(c2)) only after messages m2 and m3 have been delivered.

These messages, m2 and m3, are delivered to p2 only after message m1 has been

delivered. This is ensured by the immediate dependency relation (IDR).

Figure 1

5 The Causal Multi-Channel Algorithm (CMCA)

An informal description of the algorithm and data structures is the following: our

algorithm uses the IICD relation presented in Definition 6 and Mattern’s vector

clocks. The information of a process related to a past message is a list of channels,

through which the causal information representing this message is not known by

the process to have been transmitted. The CMCA algorithm minimizes the

overhead by avoiding the transmission of redundant information. In the next

sections we present in detail the proposed algorithm. We first present a

description of the local identifiers used, then the data structures, followed by the

algorithm specification; lastly, a precise roadmap of the code is presented.

5.1 Local identifiers

In this algorithm, a participant locally manages an identifier for each channel to

which it belongs. The distribution of the participants in the channels is transparent

to the participants. This means that a given participant is aware only of a list of

identifiers and not of the channels´ constitution. For example, in Fig. 2,

participants p1 and p2 interact through channels c2 and c3 with participant p3.

Nevertheless, neither one of them knows that both are interacting with the same

participant.

We recall that P is the set of participant identifiers, C the set of channels,

the mappings Memb :C→2P and Conn :P→2C define for each channel the set of

connected participants, and for each participant the set of channels to which it is

connected.

11

Let I be an initial interval of integers disjoint from P, the mapping id :P×C→ I

associates to each participant p and each channel c∈ Conn(p) a unique identifier

id(p,c) ∈ I. The mapping id is one to one, i.e. for any pairs (p,c), (p’,c’) ∈ P×C,

we have id(p,c)=id(p’,c’) ⇒ (p,c)=(p’,c’). We often denote by pi the unique

participant p, such that i=id(p,c) for some channel c, and we have i=id(p,c)

⇒p=pi. For any i∈ I , we denote by ch(i) an unique channel c such that i=id(p,c)

for some p, and we have i=id(p,c) ⇒ ch(i)=c.

For example, in Fig. 2, participant p1 has two identifiers, one for each channel it

belongs to (c1 and c3).

Figure 2

5.2 Data structures

Local states

The state of a participant p is defined by two data structures: VT(p) and CI(p).

- VT(p) is the vector time. For each participant q and each channel c∈ Conn(q),

there is an element VT(p)[j] where j=id(q,c) The size of VT is thus equal to the

sum of all channel sizes Σ c∈C |Memb(c)|.

- CI(p) is the control information structure. It is a set of entries ctkci ,, =

(k,t,c,ch_dests) where (k,t, c) is a message identifier (the message diffused by the

participant pk at its local clock value t, in the channel c∈ Conn(pk) and ch_dest

is a set of channel identifiers explained below.

The information in the vector time VT(p) contains the local view which the

participant p has of the causal history of the system. In particular the element

VT(p)[j] represents the greatest message number from the identifier j and ‘seen’

by p. It has a total view if, at a given instant t, it contains information of the last

known message from each participant. It has a partial view if it contains this

information only for a subset of the participants. It is through the VT(p) structure

that we are able to guarantee the causal delivery.

12

The structure CI(p) also contains information about the causal history of p. The

information in CI(p), at any moment, is a partial copy of VT(p), i.e. for each entry

(k, t, c, ch_dests) of CI(p), we have t=VT(p)[k] (See Lemma 6.2 :)(),,(pCIcxk ∈

])[(kpVTx =⇒). The set ch_dest contains the channels where the identifier (k,t,c)

(identifier of a message in the causal history of p) may not have been already

broadcasted: when p broadcasts a new message m in one of the channels of

ch_dest, then m must carry the information (k, t, c) in its field H(m) to ensure its

causal delivery.

Messages

A message m is composed of an identifier (k,t,c) and an attached causal

information H(m). Formally, a message m is a tuple m = (k, t, c, H(m)), where:

- k is the identifier of the sender p=Src(m) for the channel c, i.e. k=id(p,c)

- t =VT(p)[k] is the (local) clock value of p for k when m is sent

- c is the channel in which m is broadcasted, c=Chan(m)

- H(m) is a set of tuples (i, t, c) representing messages

The structure H(m) contains identifiers of messages causally preceding the

message m and needed for the causal delivery of m. The structure H(m) is built

before the message is broadcasted and attached to it.

Note. The following nomenclature is used in the algorithm: i , j , k and l represent

channel member identifiers; t, x and y are logical clocks; c and d are diffusion

channels; and lastly, C is the set of channels in the system.

5.3 Algorithm specification

I. Initially,

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g|
2. CI(p)← ∅

II. For each message diffused by p into channel c with i=id(p,c)

3. VT(p)[i] = VT(p)[i] +1
4. H(m)← ∅
5. for all)(pCIci∈ : ci=(k, x, d , ch_dests)
6. if destschcic _.∈ then
7.)},,{()()(dxkmHmH U←

13

8. cdestschcidestschci _._. ←
9. endif
10. if =destsci. ∅ then
11. cipCIpCI \)()(←
12. endif
13. endfor
14. t=VT(p)[i]
15. m=(i , t, c, content , H(m))
16. send(m) into the channel c
17.)}\)(,,,{()()(cpConnctipCIpCI U←

III. For each m = (i, t, c, content, H(m)) received by p with j = id(p, c)

To impose a causal delivery

18. If not ∧+= 1])[((ipVTt
19.)])[()(:)(),,(lpVTxpConndmHdxl ≤⇒∈∈∀ then
20. wait
21. else
22. Delivery(content)
23. 1])[(])[(+= ipVTipVT
24. if ()pCIcxix (),,(: ∈∃ then
25.)()(pCIpCI ← \ (){ }cxi ,,
26. endif
27.)}(,,,{()()(pConnctipCIpCI U←
28. for all)(),,(mHdxl ∈
29. if (d ∈ Conn(p)) then
30. if ())(),,(pCIdyly ∈∃ then/*x ≤ y*/
31. if x < y then /* skip */
32. endif
33. if x = y then
34. UPD(dylci ,, , c)
35. endif
36. endif
37. else /* d ∉ Conn(p) */
38. if ())(),,(pCIdyly ∈∃ then
39. if x < y then /*skip */
40. endif
41. if x = y then
42. UPD(dylci ,, , c)
43. endif
44. if x > y then
45. VT(p)[l] = x
46.)()(pCIpCI ← \ (){ }dyl ,,
47. (){ })(,,,)()(pConndxlpCIpCI U←
48. endif
49. else /*)(),,(: pCIdyly ∈¬∃ */
50. if (VT(p)[l] < x) then
51. VT(p)[l] = x
52. (){ })(,,,)()(pConndxlpCIpCI U←
53. endif
54. endif
55. endif
56. endfor
57. endif

14

IV. Updating
58. UPD(cik,x,d , c)
59. if (c ≠ d) then
60. destschci dxk _.,, ← destschci dxk _.,, \ c
61. if ()∅=destschci dxk _.,, then
62. (){ }dxkpCIpCI ,,\)()(←
63. endif
64. else /* c = d */
65. (){ }dxkpCIpCI ,,\)()(←
66. endif

5.4 Algorithm Description

We provide in this section a description of the CMCA algorithm presented in

Section 5.3. We do the presentation in a sequential order with respect to the

numeration of the lines. Our explanation is focused on the description of the

updating process of structures Hm and CI.

Table 1

6 Proofs

We first show in Section 6.1 that the causal delivery of messages in immediate

inter-channel dependency is sufficient to ensure the causal delivery of all

messages. Next, we present the proof of correctness of the CMCA algorithm. This

proof has two aspects: we first show in Section 6.2 that no delivery order is

imposed to messages which are not causally dependent on each other. Secondly,

we demonstrate in Section 6.3 that the algorithm indeed delivers in proper order

any pair of messages causally dependent on each other.

6.1 Proof of the IICD property

Let m and m’ be messages, the distance d(m,m’) is defined for any pair m and m’

such that send(m)→send(m’): d(m,m’) is the greatest integer n such that for some

15

sequence of messages (mi, i= 0...n) with m= m0 and m’=mn, we have

send(mi)↓send(mi+1) for all i =0…n-1.

Theorem 2

If ∀ m,m’ ∈ M, (m,c) ↑ (m’,c’) ⇒ ∀p ∈ Dest(m)IDest(m’): delivery(p,m) →

delivery(p,m’)

then ∀ m,m’ ∈ M, (m,c) → (m’,c’) ⇒ ∀p ∈ Dest(m)IDest(m’): delivery(p,m)

→ delivery(p,m’)

Proof:

Let m and m’ be such that send(m)→send(m’) we show that ∀p ∈

Dest(m)IDest(m’) : delivery(p,m) → delivery(p,m’). We know this property is

satisfied if send(m) ↑ send(m’). Otherwise, let d(m,m’) = n, c=Chan(m) and

c’=Chan(m’). By definition of the IICD ↑, we can find a message m’’=(k’’, x’’,

c’’) such that send(m) → send(m’’) → send(m’) and such that Chan(m’’)=c or

Chan(m’’)=c’. If we have not send(m)↑send(m’’) and/or send(m’’)↑send(m’), we

can repeatedly find new intermediate messages and constitute a sequence (mi=(ki,

xi, ci) , i=0…h), such that m=m0 , m’=mh and for all i=0…h-1,

send(mi)→send(mi+1). Due to the finite distance d(m,m’) = n, the size of such

sequence is bounded by n, and thus, in a finite number of steps, we build a

sequence such that for all i=0…h-1, send(mi)↑send(mi+1) . Furthermore, by

construction there is an integer 0≤k≤n-1 such that Chan(mi)=c for all i≤k and

Chan(mi)=c’ for all i>k. Let a common recipient p ∈ Dest(m)IDest(m’), this

means that p ∈ Memb(c)IMemb(c’), and thus, that p receives all the messages of

the sequence (mi=(ki, xi, ci) , i=0…h). Due to hypothesis, send(mi)↑send(mi+1)

implies delivery(p, mi)→delivery(p, mi+1) for all i=0…h-1, and this induces that

delivery(p,m) → delivery(p,m’). □

6.2 Proof of correctness (1)

In this section we show that the delivery restrictions imposed by the algorithm do

not exceed the causal delivery constraints. No delivery order is imposed to

messages which are not causally dependent on each other. This is shown in

Theorem 3: if a message m appears in the structure H(m’) of a message m’, then m

16

causally precedes m’. This means that the constraints applied to the delivery of a

message only depend on its causal past.

Theorem 3 For any two messages m=(k,x,c) and m’ then:

(k,x,c) ∈ H(m’) ⇒ send(m) → send(m’)

Proof: Let p= Src(m’), if (k,x,c) ∈ H(m’), due to instruction lines 5 and 7, (k,x,c)

∈ CI(p) when m’ is sent by process p. There are two cases:

A) The element (k,x,c) is added to CI(p) by instruction line 27 when m is

delivered to p. This must have occurred prior to the emission of m’ and thus we

have delivery (m) → send(m’), and thus send(m) → send(m’).

B) The element (k,x,c) is added to CI(p) by instruction lines 47 or 52 when

some message m1=(k1,x1,c1) ≠ m’, such that (k,x,c) ∈ H(m1) was delivered to p.

In that case, we have delivery(p,m1) → send(m’).

Cases A and B show that if (k,x,c) ∈ H(m’) then either send(m) →

send(m’) or for some m1=(k1,x1,c1) ≠ m’ we have (k,x,c) ∈ H(m1) and send (m1) →

send(m’). If send(m) → send(m’) does not hold, then case B holds and we can

apply the same deduction to the messages m and m1 because (k,x,c) ∈)(1mH . We

have m1 ≠ m because otherwise send(m) → send(m’). If send(m) → send(m1) does

not hold, we iterate the step and exhibit a message m2 ≠ m such that send(m2) →

send(m1) and (k,x,c) ∈ H(m2). At step i-1, we have (k,x,c) ∈ H(mi-1), for some

message mi-1 ≠ m such that send(mi-1) → send(mi-2) , and if send(m) → send(mi-1)

does not hold, we can find a message mi ≠ m such that send(mi) → send(mi-1)….

send(m1) → send(m’) and (k,x,c) ∈ H(mi). Because such a sequence may not be

infinite, for some step i and message mi we must have send(m) → send(mi), and

the property send(m) → send(mi) → send(mi-1)…. send(m1) → send(m’)

concludes the proof. □

The following Lemma is a consequence of the previous theorem and used in the

next section.

Lemma 1 If a state s of a process p satisfies VT(p)[l] = x ≠ 0, then the event

send(m) where m=(l,x,c) with c = ch(l), is in the past ↓s of s.

Proof: There are two cases, depending on whether p is connected to c or not.

17

1. p∈ Memb(c). In that case, VT(p)[l] may be modified and set to x only on

the delivery to p of the message m=(l,x,c) received from l on the channel c

(instruction line 23). The event delivery(p,m) then belongs to ↓s as well as the

corresponding emission event send(m).

2. p ∉ Memb(c). In that case, VT(p)[l] may be modified and set to x only on

the reception by p of a message m’ such that (l,x,c) ∈ H(m’) (instruction lines 45

and 51). The delivery event delivery(p,m’) then belongs to ↓s and also the

corresponding emission event send(m’). Using Theorem 3, we can conclude that

send(m) → send(m’), and that send(m) is also a cause of s (send(m) belongs to

↓s). □

6.3 Proof of correctness (2)

The second proof of correctness shows that whenever two messages m and m’ are

causally dependent, i.e. send(m)→send(m’), we have

delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m)IDest(m’).

Due to Theorem 2, it is sufficient to prove this property for messages m and m’ in

immediate inter-channel dependency, and indeed Theorem 4 shows that if

send(m)↑send(m’), we have delivery(p,m)→delivery(p,m’) for any common

destination p∈Dest(m)IDest(m’). We show that if send(m,c)↑send(m’,c’), when

the reception of m’ by some destination p∈Dest(m)IDest(m’) occurs, either the

message m has already been delivered to p, or H(m’) contains the entry (l,x,c)

corresponding to m or an entry (l,y,c) with x < y (for a message emitted after m

by the same source on the same channel). This ensures that m has to be delivered

to p before m’.

To make the proofs clearer, we give some definitions:

Due to the total order of the actions of a single participant p, its behaviors can be

modeled by alternated sequences of states and events s0, e1, s1, e2, s2 ,.. ,en, sn ,

where the states si are values of VT(p) and CI(p), and where each event ei is an

action send(p,m) or delivery(p,m) for some message m, and represents the

associated sequence of instructions. The causal past of an event e∈E, denoted ↓e,

is the set of the events which precede e for the relation →, i.e. ↓e={e’∈E, e’→e}.

The immediate cause of a state s of a participant p, denoted ◦s, is the unique last

18

event which occurred on p before reaching the state s, for instance ei=◦si in the

sequence s0, e1, s1, e2, s2 ,.. ,en, sn . The causal past of a state s, denoted ↓s is the

set of events composed of its immediate cause ◦s and the causal past of ◦s,

formally ↓s ={◦s }U↓(◦s).

The following four Lemmas are used in the proof of Theorem 4. Lemma 2 ensures

that the structure CI(p) is a ‘partial copy’ of VT(p), i.e. for each entry (l,x,c) in

CI(p) we have x = VT(p)[l].

Lemma 2 (l,x,c) ∈ CI(p) ⇒ x = VT(p)[l]

Proof: There are two cases:

1) c ∈ Conn(p): the element (l,x,c) is added to CI(p) either at instruction line 17

on sending the message (l,x,c), and instruction line 3 ensures that x = VT(p)[l],

either on delivery of the message (l,x,c) at line 27, and when this instruction is

executed, test line 18 and instruction line 23 ensure that x = VT(p)[l].

2) c ∉ Conn(p): the element (l,x,c) is added to CI(p) due to instruction line 47

(resp. at line 52), and the instruction previously executed at line 45, (resp. at line

51) is precisely the instantiation VT(p)[l] = x. □

The following Lemma shows that the values of the array VT(p) are modified

accordingly with the values of H(m) by the algorithm when a message m is

delivered .

Lemma 3 After the delivery of a message m to the participant p, for each entry

(l,x,c) in H(m) we have VT(p)[l] ≥ x.

Proof: There are two cases:

1) c ∈ Conn(p): The condition for the delivery of m at line 19 is precisely VT(p)[l]

≥ x.

2) c ∉ Conn(p): The code beginning line 37 is executed. If condition line 38 is

true, either (l,y,c) ∈ CI(p) for some y ≥ x , in which case, due to Lemma 2, we

have VT(p)[l]=y ≥ x, or the instruction line 45 is executed yielding VT(p)[l] = x.

Otherwise, condition line 38 is false, execution starts line 49 and the instruction

lines 50 and 51 ensure that VT(p)[l] ≥ x. □

19

Lemma 4 If at state s of a process p we have VT(p)[l] = x ≠ 0 with c=ch(l) then

for any c’ ∈ Conn(p) one of the two following cases holds:

1) There exists an entry (l,x,c) ∈ CI(p) such that c’ ∈ (l,x,c).Dest.

2) There exists a message m’ with c’=Chan(m’) and an event e=send(p, m’,c’) or

e=delivery(p,m’,c’) in the past of s, such that (l,x,c) ∈ H(m’).

Proof: There are two cases:

1) c ∈ Conn(p): the value of VT(p)[l] is set to x by instruction line 23 and the

entry (l,x,c) is added to CI(p) with (l,x,c).Dest=Conn(p) at instruction line 27. The

channel c’ ∈ Conn(p) is suppressed from (l,x,c).Dest only in two cases:

- when a message m’ with (l,x,c) ∈ H(m’) is emitted by p to the channel c’

(instruction line 8); in that case, send(p, m’, c’) is in the past of s,

- or when a message m’ with (l,x,c) ∈ H(m’) is delivered to p through the

channel c’ (UPD line 34); and in that case, delivery(p, m’,c’) belongs to ↓s.

2) c ∉ Conn(p): the value of VT(p)[l] is set to x by instruction line 45 (resp. line

51); and in that case, the entry (l,x,c) is added to CI(p) with (l,x,c).Dest=Conn(p)

by instruction line 47 (resp. line 52). The channel c’ ∈ Conn(p) is suppressed

from (l,x,c).Dest only in two cases :

- either when a message m’ with (l,x,c) ∈ H(m’) is emitted by p to the channel

c’ (instruction line 8); in that case, send(p, m’, c’) is in the past of s,

- or when a message m’ with (l,x,c) ∈ H(m’) is delivered to p through the

channel c’ (UPD line 42); and in that case, delivery(p, m’,c’) belongs to ↓s. □

The following lemma is a direct consequence of the previous one and of Theorem

3. It shows that when a process p such that VT(p)[l] = x ≠ 0 with c = ch(l),

broadcasts a message m to a channel c’ without the information (l,x,c), it implies

that this information (the tuple (l,x,c)) had been previously broadcasted to the

same channel c’.

Lemma 5 If a process p such that VT(p)[l] = x ≠ 0 where c = ch(l), executes the

action send(m’’,c’), then one of the two following cases holds:

1) (l,x,c) ∈ H(m’’)

20

2) There is a message m’ broadcasted to the same channel c’ = Chan(m’) =

Chan(m’’) such that (l,x,c) ∈ H(m’) and send(m’,c’)→ send(m’’,c’). Furthermore,

the message m=(l,x,c) is such that send(m,c) → send(m’,c’) → send(m’’,c’).

Proof:

If (l,x,c) ∉ H(m’’) when send(m’’,c’) occurs, then due to instruction lines 6 and 7,

no entry (l,x,c) ∈ CI(p) exists such that c’ ∈ (l,x,c).Dest. Then, by the previous

Lemma 4, a message m’ exists such that (l,x,c) ∈ H(m’) and send(m’,c’)→

send(m’’,c’). Due to Theorem 3, we have send(m,c) → send(m’,c’). □

Theorem 4

∀ m,m’ ∈ M, send(m) ↑ send(m’) ⇒ ∀p ∈ Dest(m)IDest(m’) : delivery(p,m) →

delivery(p,m’).

Proof:

We prove by induction on the distance d(m,m’) between m and m’. The distance

d(m,m’) is defined for any pair of messages m and m’ such that

send(m)→send(m’), and is the greatest integer n such that for some sequence of

messages (mi, i= 0...n) with m= m0 and m’=mn, we have send(mi)↓send(mi+1) for

all i =0…n-1.

If d(m,m’)=1, then send(p,m)↓send(p’,m’). If p≠p’, we have

delivery(p’,m)→send(p’,m’). Let m=(k,x,c), we have (k, x, c) ∈ CI(p’) after

delivery(p’,m) (instruction line 27), and thus (k, x, c) ∈ H(m’) (instruction line

7). For any q ∈ Dest(m)IDest(m’) the delivery of m to q precedes the delivery of

m’, and we have delivery(q,m) → delivery(q,m’).

Induction step n. We suppose the property true for any messages m and m’ such

that d(m,m’) < n, and show that it holds if d(m,m’) = n. Let m and m’ be such that

send(m)↑send(m’) and d(m,m’) = n, there is a message sequence (mi=(ki, xi, ci) ,

i=0…h), such that m=m0 , m’=mh and for all i=0…h-1, send(mi)↓send(mi+1). By

definition of d(m,m’) we have h ≤ d(m,m’). Furthermore, due to hypothesis

send(m)↑send(m’), we also have c0≠ci≠cn for all i=1…h-1.

21

For all i=0…h, we denote by pi the participant such that ki = id (pi ,ci) and by si

the state of pi at which the event send(pi, mi) occurs. We show that for all i=0…h,

the state si satisfies the property VT(pi)[k0] ≥ x0. The proof is by induction on the

index i:

At state s0 , when send(k0, x0, c0) occurs, due to instruction line 4 we must have

VT(p0)[k0] = x0.

Suppose that VT(pi)[k0] ≥ x0 at state si, we show that VT(pi+1)[k0] ≥ x0 at state

si+1. If VT(pi)[k0] = y ≥ x0 when the broadcast of mi to ci occurs, by Lemma 5

only two cases may occur:

- (k0, y, c0) ∈ H(mi). In that case, due to Lemma 3, we have VT(pi+1)[k0] = y ≥

x0 after delivery(pi+1,mi), and this remains true at state si+1. when the

broadcast of mi+1 to ci+1 occurs.

- There is a message m= (k, x, ci) broadcasted on ci, such that (k0, y, c0) ∈

H(m) and send(k0, y, c0) → send(m) → send(mi). Due to x0 ≤ y, we have

send(k0, x0, c0) → send(m), and because ci≠c0 , we have m≠m0. The distance

d(m,mi) is strictly lower than d(m0,mi), thus strictly lower than n=d(m0,mh).

We can apply to m and mi the induction hypothesis and conclude that

delivery(pi+1,m) → delivery(pi+1,mi). Due to the fact that (k0, y, c0) ∈ H(m)

with y≥x0 , we have VT(pi+1)[k0] = y ≥ x0 after delivery(pi+1,m) and thus also

after delivery(pi+1,mi), in particular at state si+1 when the broadcast of mi+1 to

ci+1 occurs.

Using the induction hypothesis, we have shown that for any messages m=(k,x,c)

and m’=(k’,x’,c’), such that send(m)↑send(m’) and d(m,m’) = n, we have

VT(p’)[k]≥ x when send(p’,m’) occurs. Let y = VT(p’)[k] ≥ x, we can conclude that

(l,y,c) ∈ H(m’): otherwise, due to Lemma 5, there would be a message m’’

broadcasted to the channel c’=Chan(m’)=Chan(m’’) such that send(m,c)→

send(m’’,c’)→ send(m’,c’), and this contradicts the hypothesis send(m)↑send(m’).

For any participant q ∈ Dest(m)IDest(m’), the property (l,y,c) ∈ H(m’) ensures

that the delivery of m to q precedes the delivery of m’, and we have delivery(q,m)

→ delivery(q,m’). □

The correction of the algorithm results from Theorems 3 and 4:

22

Corollary 1

For any messages m and m’, we have

send(m) → send(m’) ⇒ ∀p ∈ Dest(m)IDest(m’) : delivery(p,m) →

delivery(p,m’)

7 The Causal Multi-Channel Algorithm vs other
algorithms

In this section we compare the characteristics of our CMCA algorithm with other

main existing algorithms (Table 3). The CMCA algorithm presents a symmetric

organization, meaning that, among other things, our algorithm considers all

participants to be equal, which permits them to interact without the need of a

mediator. The CMCA algorithm allows an asynchronous diffusion of messages,

providing participants the freedom to interact at the moment they desire. Finally,

it’s compatible with a dynamic configuration. Because of its dynamic

configuration, one does not need to know in advance the exact composition of the

channel participants. Furthermore, the dynamic configuration permits the channel

composition to change during the execution time.

As one can observe in Table 3, the only other algorithm which shares the

same characteristics as our CMCA algorithm is the Isis CBCAST algorithm. The

remaining ones have sacrificed some of these properties in order to reduce the

amount of control information needed to be sent. Let us first consider the Daisy

Architecture algorithm [3]. The authors have sacrificed a symmetric organization

by structuring participants into sub-channels and by using re-diffusion servers,

thus impeding a direct interaction among participants. Next, let’s take the

example of the algorithm presented by the work of Causal Separators [26]. The

main disadvantage of this algorithm is its static configuration, meaning that it

must be carried out off-line. Finally, let’s consider the causal “Low cost

approach” algorithm [17]. To our knowledge, this algorithm does use a minimal

amount of control information; however, its disadvantage is that it works by

synchronous phase execution, and thus, considerably limits the interaction among

participants and introduces delays in the transmission.

23

Table 2

Now, let us discuss the amount of control information needed to be sent by each

algorithm during the diffusion of messages in order to ensure a causal delivery.

As previously noted, the “Low cost approach” algorithm is the algorithm which

sends the least amount of control information. This algorithm only timestamps

onto each message a vector of size |G|, where |G| is the number of channels in the

system. As far as the Causal Separators algorithm is concerned, it timestamps a

vector of size |Ls| per message, where |Ls| represents the number of participants in

a causal zone. Since the message in question must cross through one or more

causal zones in order to reach its destination, the final amount of causal

information becomes Σ|Ls|, which is the sum of the different causal zones crossed.

The case of the Daisy Architecture algorithm is similar to the previous one

mentioned, in the sense that the sub-channels are of a fixed size denoted by l, and

therefore, the amount of control information sent is l⋅(s), where s refers to the

number of sub-channels that the message in question must cross in order to reach

its final destination.

With respect to the overhead generated by the CBCAST of Isis algorithm, we find

that in the worst case Σ|g| : g∈G, which is the sum of the elements of each group

of the system. This appears to be the same overhead generated by our CMCA

algorithm, but by reconsidering the study completed in [22], we briefly mention

that the overhead is determined by the probability that different conditions will

arise. In the CBCAST algorithm, the overhead is determined by the number of

messages received either in parallel or in sequential order between local

emissions. In our algorithm, the amount of overhead is only determined by the

number of parallel messages received. As presented in [22], if the behavior is a

serial reception, the amount of overhead generated in the single-channel case is

equal to |CI|=1, while in the multigroup case it is equal to |CI|=|G|.

24

8 Conclusions

In this article we mentioned briefly that an optimal size of control information

(overhead) and a symmetric organization are some of the characteristics of causal

algorithms suitable to support large decentralized distributed systems. We have

shown in this paper that our IDR extension for the multi-channel case minimizes

the overhead timestamped per message without introducing restrictions in

interaction or execution. Finally, we have presented an efficient causal algorithm

for the generic multi-channel case, including the overlapping case, which is based

on our IDR extension. We showed the efficiency of our causal algorithm in terms

of the overhead timestamped per message.

References

1. Awerbuch B: Complexity of Network Synchronization. Journal of the ACM, Vol. 32, No 4, 1985, pp 801-

823

2. Baldoni R, Prakash R, Raynal M, Singhal M: Efficient causally ordered communications for multimedia

real-time applications. In Proc of the 4th International Symposium on High Performance Distributed

computing, Whasington, D.C., Aug. 1995, pp 140-147

3. Baldoni R, Friedman R, Van Renesse R: The Hierarchical Daisy Architecture for Causal Delivery. 17th

IEEE Int’l Conference on Distributed Computing Systems, May 1997

4. Birman K, Joseph T: Reliable Communication in Presence of Failures. ACM Trans. Compt. Syst., 5(1),

Feb. 1987, pp17-76

5. Birman K, Schiper A, Stephenson P:Lightweight Causal and Atomic Group Multicast. ACM Trans.

Compt. Syst. Vol. 9, No. 3, Aug. 1991, pp 272-314

6. Birman K: The Process Group Approach to Reliable Distributed Computing. Communications of the

ACM, Vol. 36, No. 12, 1993, pp 36-53

7. Charron-Bost B: Concerning the Size of Logical Clocks in Distributed Systems. Inf Process Lett 39, 1991,

pp 11-16

8. Fayolle G, Flajolet P, Jacquet P: Analysis of a Stack Algorithm for Random Multiple Access

Communication: Special Issue on Random-Access Communication, IEEE Transactions on Information

Theory IT-31, 1985, pp 244-254

9. Fidge C A: Timestamps in Message-Passing Systems that Preserve Partial Ordering. Australian Computer

Science Communications, Vol 10, No. 1, 1988, pp 56-66

10. Dictionnaire HACHETTE Encyclopédique Illustré, ISBN 2-01-28-0476-4, 1996

11. Jacquet P : Contribution de l’Analyse d’Algorithmes a l’Évaluation d’ Algorithmes de Communication.

PhD thesis of l’Université de Paris-Sud Centre d’Orsay, Nov. 1989

12. Helary J, Melideo G, Raynal M: Tracking Causality in Distributed Systems: a Suite of Efficient

Algorithms. In Proc. 7th Int’l Colloquium on Structural Information and Communication on Complexity,

Carleton Scientific, June 2000

25

13. Kshemkalyani A D, Singhal M: An Optimal Algorithm for Generalized Causal Message Ordering. Proc.

15th Annual ACM Symposium on Principles of Distributed Computing, ACM, May 1996, pp 87-87

14. Kshemkalyani A D, Singhal M: Necessary and Sufficient Conditions on Information for Causal Message

Ordering and their Optimal Implementation. Distributed Computing 11:91-111 (1998)

15. Lamport L: Time, Clocks and the Ordering of Messages in Distributed Systems. Communications ACM

21(7), 1978, pp 558-565

16. Mattern F: Virtual Time and Global States of Distributed Systems. Parallel and Distributed Algorithms,

North-Holland, 1989, pp 215-226

17. Mostefaoui A, Raynal M: Causal Multicast in Overlapping Groups: Towards a Low Cost Approach. IEEE

Workshop on Future Trends of Distributed Computer Systems, Sept.1993, pp 136-142

18. Peterson L, Buchholz N, Schlichting R: Preserving and Using Context Information in Interprocess

Communication. ACM Transaction on Computer Systems, 7:217-246 (1989)

19. Pomares Hernandez S, Fanchon J, Drira K, Diaz M: Causal broadcast protocol for very large group

communication systems. Journal Studia Informatica Universalis, Editions Suger, Special Issue vol. 2: 175-

188 (2001)

20. Pomares Hernandez S, Fanchon J, Drira K, Diaz M: An Efficient Multi-Group Distributed Coordination

Algorithm for Collaboration Engineering Activities. IEEE Int. Conf. on Systems, Man and Cybernetics,

Hammamet, Tunisia, October, 2002.

21. Pomares Hernandez S, “Services De Coordination Et Algorithmes De Diffusion Causale Pour Les

Applications Coopératives Distribuées”, PhD thesis of National Institute Poltechnique of Toulouse, France,

November, 2002

22. Pomares Hernandez S, Fanchon J, Drira K: The immediate dependency relation: an optimal way to ensure

causal group communication. Annual Review of Scalable Computing, Editions World Scientific, Séries on

Scalable Computing, Vol.6: pp 61-79 (2004)

23. Prakash R, Raynal M, Singhal M: An effient causal ordering algorithm for mobile computing

environments. Technical report, Parallel Architectures Dept., Inst. Nat. de Rech. En Inf. et en Aut., France,

1995

24. Prakash R, Raynal M, Singhal M: An Adaptive Causal Ordering Algorithm Suited to Mobile Computing

Environments. Journal of Parallel and Distributed Computing, pp 190-204 (1997)

25. Ravindran K, Prasad B: Communication Structures and paradigms for distributed conferencing

applications. 12th IEEE Int. Conf. On Distributed Computing Systems, May 1992

26. Rodrigues L, Verissimo P: Causal Separators and Topological Timestamping: an Approach to Support

Causal Multicast in Large-Scale Systems. Proc. 15th Int’l Conference on Distributed Computing Systems,

Vancouver, British Columbia, Canada, May 1995

27. Schneider F: Implementing fault-tolerant services unsing the state machine spproach: A tutorial, ACM

Compt. Surveys, vol 22, No. 4, Dec. 1990, pp 299-319

28. Schwarz R, Mattern F: Detecting Causal Relationships in Distributed Computations: in Search of the

Holy Grail. Distributed Computing 7:149-174 (1994)

29. Torres-Rojas F J, Ahamad M: Plausible Clocks: Constant Size Logical Clocks for Distributed Systems.

Distributed Computing, 12:179-196 (1999)

26

Figure 1 Multi-channel scenario

Figure 2 Connection scheme

Table 1 Algorithm Description

CODE Description
I. Initially At the beginning, each process p locally

initializes its structures VT(p) and CI(p) in

the following manner:

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g| Each position in the vector VT(p) is filled by

zero.

2. CI(p)← ∅ Structure CI(p) is emptied of all elements.

II. For each message diffused by p into channel
c with i=id(p,c)

Sending procedure

3. VT(p)[i] = VT(p)[i] +1 Position i of vector VT(p) is increased by

one.

4. H(m)← ∅ H(m) is emptied of all elements when each

message is sent.

p2

p3

p1

c1

c2

c3

The delivery of m5 is
delayed.

p1

p2

p3

c1

c3
c2

t

m5

m4

m2 m3

m1

pa
pb

27

5. for all)(pCIci∈ : ci=(k, x, d , ch_dests) In lines 5-13 we construct the structure H(m)

from the information in CI(p) and update

the CI(p).

6. if destschcic _.∈ then
7.)},,{()()(dxkmHmH U←
8. cdestschcidestschci _._. ←
9. endif

If channel c belongs to the field ci.ch_dests a

new entry (k,x,d) is added to H(m) and then

the channel c is deleted from ci.ch_dests.

10. if =destschci _. ∅ then
11. cipCIpCI \)()(←
12. endif

If ci.ch_dests is empty, then the entry ci is

erased from CI(p).

13. endfor

14. t=VT(p)[i] The content of VT(p)[i] is assigned to t.

15. m=(i , t, d, message , H(m)) Construction of message m

16. send(m) into the channel c Broadcasting of message m on channel c

17. ())}\)(,,,{()(cpConnctipCIpCI U← Insertion of the element ci=(i, t, c,Conn(p) \

c) to CI(p)

III. For each m =))(,,,,(mHmessagecti received

by p with j=id(p,c)

Reception procedure

To impose a causal delivery

Condition of Multi-channel delivery

18. If not ∧+= 1])[((ipVTt

The delivery condition is divided into two

parts. The first part verifies that the

receptions for a given process satisfy the

FIFO order delivery.

19.])[()(:)(),,(lpVTxpConndmHdxl ≤⇒∈∈∀) The second part verifies that any element

(l,x,d) of H(m) such that p is connected to d

has been previously delivered to p.

 then

20. wait

If the delivery condition is not satisfied, then

the message is placed on hold until the

missing message arrives.

21. else
22. Delivery(message)

If the delivery condition is satisfied, then the

message is delivered to the application and

we proceed to update the vector VT(p) and

CI(p) as follows:

23. 1])[(])[(+= ipVTipVT The position i of vector VT(p) is increased

by one.

24. if ()pCIcxix (),,(∈∃ then
25.)()(pCIpCI ← \ (){ }cxi ,,
26. endif
27. (){ })(,,,)()(pConnctipCIpCI U←

If there exists an element identified by (I,x,c)

in CI(p) with the same sender pi of the

present message m, then this element is

replaced by an element with the identifier

(i,t,c) of m.

28. for all)(),,(mHdxl ∈ Updating process of CI(p) with regard to the

information to contained in structure H(m)

28

(lines 28-56).

29. if (d ∈ Conn(p)) then The updating process of CI(p) is divided into

two parts: the first part (lines 29-36)

concerns each entry (l,x,d) in H(m) such

that p is connected to d. The second part

(lines 37-57) concerns the remaining entries

(l,x,d) in H(m), such that d ∉ Conn(p).

30. if ())(),,(pCIdyly ∈∃ then/*x ≤ y*/
31. if x < y then /* skip */
32. endif
33. if x = y then
34. UPD(dylci ,, , c)
35. endif
36. endif

When d ∈ Conn(p), if there exists an entry

(l,y,d) in CI(p) of the same sender pl then,

we have two possibilities: x < y or x = y.

When x = y we proceed to update the CI(p)

with the function UPD() in lines 58-66.

37. else /* d ∉ Conn(p) */
38. if ())(),,(pCIdyly ∈∃ then
39. if x < y then /* skip*/
40. endif
41. if x = y then
42. UPD(dylci ,, , c)
43. endif
44. if x > y then
45. VT(p)[l] = x
46.)()(pCIpCI ← \ (){ }dyl ,,
47. (){ })(,,,)()(pConndxlpCIpCI U←
48. endif

When d ∉ Conn(p), if there exists an entry

(l,y,d) in CI(p) of the same sender pl then,

we have three possibilities: x < y, x = y, or x

> y. When x = y we proceed to update the

CI(p) with the function UPD() in lines 58-

66. When x > y the position l of the vector

VT(p) is updated with the value of x and the

previous entry (l,y,d) is replaced with a most

recent element (l,x,d).

49. else /*)(),,(pCIdyly ∈¬∃ */
50. if (VT(p)[l] < x) then
51. VT(p)[l] = x
52. (){ })(,,,)()(pConndxlpCIpCI U←
53. endif
54. endif
55. endif
56. endfor
57. endif

When d ∉ Conn(p), and there doesn’t exists

an entry (l,y,d) in CI(p), the position l of the

vector VT(p) is updated with the value of x,

and an entry identified by (l,x,d) is added to

CI(p).

IV. Update function
58. UPD(cik,x,d , c)
59. if (c ≠ d) then
60. destschci dxk _.,, ← destschci dxk _.,, \ c
61. if ()∅=destschci dxk _.,, then
62. (){ }dxkpCIpCI ,,\)()(←
63. endif
64. else /* c = d */
65. (){ }dxkpCIpCI ,,\)()(←
66. endif

In the update function when c ≠ d we first

erase the channel c from destschci dxk _.,,

and then, only if destschci dxk _.,, is empty,

the element (k,x,d) is erased from CI(p).

Finally, when c = d, the element (k,x,d) is

directly erased from CI(p).

29

Table 2 Comparison of causally ordered multi-channel algorithms

Causal

Multigroup
Algorithms

Configuration Organization Diffusion Overhead Principle

CMCA (Our

algorithm)
Dynamic Symmetric Asynchronous

(worst case)

Σ|g| : g∈G

Immediate Inter-Channel

dependency relation

CBCAST

(Isis)
Dynamic Symmetric Asynchronous

(worst case)

Σ|g| : g∈G
Time clock compression

Daisy

Architecture
Dynamic Asymmetric Asynchronous

(always)

l⋅(s)

Logical group structure /

Rediffusion servers

Causal

Separators
Static Asymmetric Asynchronous Σ|Ls| : Ls ∈P

Web topology / Rediffusion

servers

Low cost

approach
Dynamic Asymmetric

Synchronous by

phases

(always)

|G|
Synchronous execution

