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Abstract 

In this paper we present an efficient causal multi-channel algorithm that can be used in a multi-

group communication environment, including in the overlapping group case. The algorithm is 

developed upon an extension we propose to the Immediate Dependency Relation (IDR), which 

was introduced by Peterson. This IDR extension can be used in multi-group environments in order 

to identify causal dependencies between messages. In the same way that the IDR characterizes the 

sufficient control information to ensure causal delivery in a broadcast case, we show that our IDR 

extension allows us to define the sufficient control information to ensure the causal delivery in a 

multi-group environment. We show that through the use of the IDR extension we can minimize the 

amount of control information sent per message without imposing restrictions in interaction or 

execution (e.g. network topology, rediffusion servers, executions models, etc). These 

characteristics allow our algorithm to be suitable for use in large distributed decentralized systems.  

We show the efficiency of our causal algorithm in terms of the overhead timestamped per 

message.       

 

Key words: Immediate Dependency Relation, Causality, Group 

Communication,  Distributed Computing. 
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IDR, Immediate Dependency Relation; 

FIFO, First In First Out; 

CMCA, Causal Multi-Channel Algorithm; 

IICD, Immediate Inter-Channel Dependency; 

PC, Propagation Constraint;  

CI, Causal Information. 

 

1 Introduction 

In Group Communication Systems, causal ordering algorithms are an essential 

tool to exchange information. The use of causal ordering provides built-in 

message synchronization and reduces the non-determinism in a distributed 

computation. Causal ordering provides an equivalent of the FIFO property at a 

global group communication level; it guarantees that actions like requests or 

questions are received before their corresponding reactions, results or responses. 

The concept of causal ordering is of considerable interest to the design of 

distributed systems, and can be found in applications of several domains, such as 

distributed cooperative engineering [20], teleconferencing [25], multimedia 

systems [2], mobile computing [23], resource allocating algorithms [29] and 

security domains [27]. 

Among the various existing causal algorithms, we can distinguish causal 

broadcasts, where each message is sent to all participants; causal multicasts, 

where a message is sent to any subset of participants; and multi-groups causal 

algorithms (which we call indifferently multi-channels algorithms), where 

participants are organized in overlapping groups.  In this last case, a message is 

broadcasted to all members of a particular group. With regard to algorithms which 

support multi-group environments, we can distinguish symmetric from 

asymmetric ones. While in symmetric algorithms all participants share the same 

role in the system and interact freely without timing or centralized constraints, 

asymmetric algorithms either present restrictions in the mode of interaction or 

introduce a large amount of control information.  

The present paper proposes a symmetric Causal Multi-Channel Algorithm 

(CMCA).  The main objective of our algorithm is to minimize the amount of 
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control information (CI) per message. The amount of information necessary to 

guarantee causal broadcast in a group g with n members is θ(n) in the worst case 

[5].  In overlapping groups, this amount is θ(g n) in the worst case [5], where g is 

the number of groups in the system. For large values of n and g, the bounds of 

θ(n) and θ(g n) are prohibitively high. An original aspect of our work is the 

definition and the use of an extension of the Immediate Dependency Relation 

(IDR) [18] [22] to the multi-group context.  We call this extension the Immediate 

Inter-Channel Dependency (IICD). The IICD relation reduces the amount of CI 

attached to the messages without imposing restrictions in interaction or execution 

(e.g. network topology, rediffusion servers, executions models, etc). In the same 

way that the IDR characterizes the sufficient control information in a broadcast 

case [22], the IICD allows us to define the sufficient control information to ensure 

the causal delivery of messages in a multi-channel situation: if any two messages 

related by IICD are delivered in causal order, then all the messages are delivered 

in causal order (IICD property). Due to IICD property, our CMCA algorithm can 

be viewed as a natural extension to the multi-channel case of the minimal causal 

broadcast algorithm proposed in [21] and [22] for the single-channel case. 

The paper proceeds as follows: first, in Section 2 we overview the works 

which tend to minimize control information in symmetric algorithms. In Section 3 

we give the basic definitions, in particular the definition of causal dependency.  

Next in Section 4, we present the immediate dependency and our proposed 

extension to the multigroup case. In Section 5, the proposed Causal Multi-channel 

Algorithm is presented in detail. Section 6 is dedicated to the proofs, which 

include the proof the IICD property, and the proof of correctness of the CMCA 

algorithm. Finally, in Section 7 we present a comparison of our algorithm versus 

other important multi-group communication works. 

2 Related Work 

As mentioned above, we have surveyed works which aim to reduce the control 

information needed to ensure causal order delivery in symmetric algorithms. The 

symmetric algorithms consider that all participants share the same role and the 

same degree of responsibility in the system; furthermore, they interact freely 

without timing or centralized constraints.  The symmetric category is concerned 

with identifying the necessary conditions to ensure a causal delivery of messages, 



4 

and/or with arranging optimal coding to represent and transmit this information. 

The asymmetric category is composed of algorithms that assume a certain 

network topology, a particular channel structure [3], and/or execution models 

[26]. The following related work involves only the symmetric category, which is 

the category we are concerned with. 

One of the first algorithms is the work done by Peterson [18]. Peterson 

introduced the context graph, which was designed to represent the causality 

between messages in a conversation algorithm in a broadcast environment.  This 

graph is directed and acyclic; its vertices correspond to the total set of messages, 

and the arcs represent the causal relationship between these messages.  The 

reduced graph as presented in [18] shows that if the causal ordering of messages is 

ensured between every pair of immediate causal predecessor and successor 

messages, then the causal ordering among all messages will be automatically 

ensured due to the transitivity of the preceding relation (see Section 4).  

The work of Prakash and Raynal [24] extends the immediate dependency 

property to support multicast environments. Prakash’s work does not use nor 

maintain context graphs to ensure causal ordering. To ensure causal ordering, a 

message m needs to carry information concerning only those messages m’ on 

which its delivery is directly dependent upon. This approach is oriented to resolve 

problems in mobile agent applications; it considers the multicast and broadcast 

case, but not the case of overlapping channels.  

An interesting work is the algorithm proposed by Kshemkalyani and 

Singhal [13]. Their causal algorithm codes information onto each message 

regarding all previous causal messages that are not yet guaranteed to be delivered 

in a causal manner by the algorithm, or that are not known to have already been 

delivered. They refer to these conditions as propagation constraints (Definition 

1). The propagation constraints (PC) specify the conditions on the information 

propagation to enforce causal ordering [13].  

 

Definition 1 The information d ∈ mi,a.Dests concerning a message mi,a sent to d 

must propagate along all causal paths, starting at message (i, a) up to, and only up 

to, the earliest messages (j, b) on any such path, such that either: 

PC 1. deliveryd(mi,a )      (j, b), i.e. it is known that mi,a has been delivered or  = → 
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PC 2. ∃ (k, c) | (i, a) → (k, c) → (j, b) ∧ d ∈ mk,c.Dests i.e. it is guaranteed that it 

will be delivered in causal order. 

The first PC means that the message mi,a is known to have been delivered 

in causal order at message (j, b) to destination d = j .  Therefore, in any future 

multicast message to destination d, the message does not need to carry 

information concerning d ∈ mi,a.Dests. The second PC means that there exists a 

message (k, c) that would ensure the causal delivery of the present message (j, b) 

with respect to (i, a). If (k, c) is causally delivered with respect to (i, a), the 

information about d ∈ mi,a.Dests does not need to be sent. 

Another example of an algorithm that falls into the symmetric category is 

the algorithm proposed by Birman [5], which is based on vector time clocks. The 

author, in his algorithm, proposes to compress the vector time by sending only the 

vector positions that have changed between the diffusion of the message in 

question and the diffusion of the prior local message. 

 

3 Preliminaries 

Participants and channels: 

The application under consideration is composed of a set of participants P 

organized into possibly overlapping groups which communicate by asynchronous 

message passing. Groups correspond to logical broadcast communication 

channels; the members of a group are connected to the corresponding channel and 

communicate by sending and receiving messages through it. We denote by C the 

set of channels, the mapping Memb : C→2P defines for each channel the set of 

connected participants, and the mapping Conn : P→2C defines for each 

participant the set of channels to which it is connected. 

  

Messages: 

We consider a finite set of messages M, where each message m∈M  is identified 

by a tuple (participant, integer, channel), m=(p,x,c) where p∈P  is the sender of m, 

denoted by Src(m),  x is the value of the local clock of p when m  is broadcasted, 

and c∈C is  the channel on which m is broadcasted, denoted by Chan(m). The set 

of destinations Dest(m) of the message m is composed of the participants 
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connected to the channel Chan(m), Dest(m)=Memb(Chan(m)). In further sections, 

additional fields will be introduced to the tuple (p,x,c) but they are not relevant in 

this section. 

 

Events: 

Let m be a message, we denote by send(m) the emission event of m by Src(m), and 

by delivery(p,m) the delivery event of m to the participant p connected to 

Chan(m). The set of events associated to M is then the set E = {send(m), m∈M} ∪ 

{delivery(p,m), m ∈ M , p ∈Dest(m)}. An emission event send(m) where 

m=(p,x,c) may also be denoted by send(p,m) or send(m,c) without ambiguity. The 

subset Ep⊆E of events involving p is Ep= {send(m), p=Src(m)}∪  {delivery(p,m), 

p∈Dest(m)}.  

 

Causal relation and causal order delivery: 

Causal order delivery is based on the causal relation →⊆E×E between the events 

E of the system.  This relation is also called the “happened before relation,” and 

was first defined by Lamport [15]. The causal relation is a strict partial order 

(transitive and antisymmetric) denoted by e→ e’, i.e. e causally precedes e’, 

defined as follows:  

 

Definition 2   The causal relation →  is the least partial order relation on E 

satisfying the two following properties: 

1) For each participant p, the set of events Ep involving p is totally ordered:  

e,e’∈ Ep ⇒ e→e’ ∨ e’→e   

2) For each message m and destination p of m, the emission of m precedes its 

delivery to p: p∈Dest(m)⇒ send(m) → delivery(p,m)  

 

Causal order delivery in channel communication presents two cases: the broadcast 

case (one channel) and the multi-channel case, which includes overlapping 

channels.  The causal delivery for the broadcast case is defined as follows [6]: 
 

Definition 3   Causal Order Delivery (one channel): 

If send(m)→ send(m’), then ∀p ∈ Memb(c) : 

delivery (p,m) → delivery (p,m’) 
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Causal order delivery ensures that if the diffusion of a message m causally 

precedes the diffusion of a message m’, in a channel c, then the delivery of m 

precedes the delivery of m’ to each participant p that belongs to c.   

 

The precedence relation on messages denoted by m→m’ is induced by the 

precedence relation on events, and defined by: 

m→m’ ⇔ send(m)→ send(m’) 
 

The case of causal delivery in a multi-channel environment is more common in 

channel communication. Two messages sent in different channels may not have 

the same sets of destinations. The definition of the causal order delivery takes this 

into account. Let us note that  if c=Chan(m) and  c’=Chan(m’), we have  

Memb(c)IMemb(c’) = Dest(m)IDest(m’). The definition is as follows: 

 

Definition 4     Multi-channel causal order delivery: 

If send(m,c)→ send(m’,c’), then ∀p ∈ Memb(c)IMemb(c’) : 

delivery(p,m) → delivery(p,m’) 
 

Multi-channel causal order delivery guarantees that if the diffusion of a message 

(m, c) causally precedes the diffusion of a message (m’, c’), where c and c’ are the 

diffusion channels of messages m and m’ respectively, then the delivery of m 

causally precedes the delivery of m’ for all participants p that may receive both 

messages, i.e. that belong to both channels c and c’ [17]. 

 

4 The Immediate Dependency Relations 

4.1 Single channel case 

The Immediate Dependency Relation (IDR) is the transitive reduction of the 

causal precedence. The IDR is included in the causal precedence and is the 

smallest relation which generates it by transitive closure. This relation is 

important for causal delivery algorithms and protocols since it is necessary, but 

also sufficient, that the delivery of messages related by IDR respects the order of 
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their emissions to ensure the causal delivery of all messages. We present below 

the definition of the IDR relation and its theorem regarding causal delivery. 

 

Definition 5   Immediate dependency relation ↓ (IDR): 

m↓m’⇔[ (m → m’) ∧ ∀ m”∈ M, ¬ (m → m”→ m’)] 

 

Thus, a message m directly precedes a message m’, iff no other message m’’ 

belongs both to the causal future of m, and to the causal past of m’.  

 

Theorem 1   Causal broadcast delivery using IDR relation: 

If ∀ m,m’ ∈ M,  m ↓ m’ ⇒ ∀p ∈ Memb(c): delivery(p,m) → delivery(p,m’) 

then ∀ m,m’ ∈ M,  m → m’ ⇒ ∀p ∈ Memb(c) : delivery(p,m) → delivery(p,m’) 

 

This property has been shown in [18] (for a formal proof see [21] and [22]). 

 

4.2 Multi-channel case 

In this section, we extend the principle of immediate dependency to the case of 

multi-channel diffusion.  We call this extension the “Immediate Inter-Channel 

Dependency Relation” and we refer to it by its acronym IICD.  In the same way 

that the IDR allows us to define the sufficient control information in a broadcast 

case, the IICD allows us to characterize the sufficient control information to 

ensure the causal delivery of messages in a multi-channel situation. 

 

For convenience, henceforth, we will denote send(m,c) by (m,c).  

Definition 6 Immediate Inter-channel Dependency Relation (IICD) ↑: 

(m,c)↑(m’,c’) ⇔ [((m,c) → (m’, c’))∧∀(m”, c’’)∈ M, ((m,c)→ (m”, c’’)→ (m’, c’) 

⇒ c’’≠ c ∧ c’’≠c’)] 

 

By this definition, a message m broadcasted on channel c has an immediate 

dependency relation with a message m’ broadcasted on c’, if m’ causally depends 

on m, i.e. (m, c)→ (m’, c’), and if for any intermediate message (m”, c’’) such that 

(m, c)→ (m”, c’’)→ (m’, c’), the channel c’’ differs from the channels c and c’.  
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We note that in the case of a single channel, the relation ‘↑’ coincides with the 

IDR relation denoted  by ‘↓’, which has been previously defined. 

 

The following proposition establishes that if any two messages related by IICD 

are delivered in causal order, then all the messages are delivered in causal order. 

 

Theorem 2 (Proof in Section 6) 

If ∀ m,m’ ∈ M, (m,c) ↑ (m’,c’) ⇒ ∀p ∈ Memb(c)I  Memb(c’) :  

delivery(p,m) → delivery(p,m’) 

then ∀ m,m’ ∈ M, (m,c)  →  (m’,c’) ⇒ ∀p ∈ Memb(c)I  Memb(c’):  

delivery(p,m) → delivery(p,m’) 

 

As we show in Section 6, the information concerning the IICD relation between 

messages is therefore sufficient to ensure their causal delivery. 

 

4.3 Illustration of Immediate Inter-channel Dependency 

 

In order to better illustrate Definition 6 and Theorem 2,  we present in an informal 

way the following scenario example. 

 

Scenario: The Multi-channel space diagram in Fig. 1 is composed of c1={ p1, pa, 

pb, p2}, c2={ p2, p3} and c3={ p1, p3} where pa, pb are local processes to channel c1.  

Consider the emission of message m4, such that ((m2, c1)||(m3, c1))↑(m4, c3).  

According to Definition 6, the messages which have an IICD with m4 are 

messages m2 and m3.  Therefore, the information that corresponds to these 

messages is sent as control information to m4. This information is not taken into 

account for the delivery of m4 by participant p3 since p3 ∉ Memb(c1)I  Memb(c3).  

Participant p3 only uses this information to update his system history file and for 

future diffusion of messages, as in the case of the diffusion of message m5.   

Let’s now consider message m5 (Figure 1).   At the moment of diffusion of 

m5, we apply Definition 6 to each message in the causal history of p3.   We find 

that the messages that have an IICD with m5 are m2, m3 and m4.   Thus, as in the 
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previous cases, the control information timestamped to message m5 corresponds to 

the messages which have an IICD to m5. Message m5 is delivered to p2 (p2 ∈ 

Memb(c1)I  Memb(c2)) only after messages m2 and m3 have been delivered.  

These messages, m2 and m3, are delivered to p2 only after message m1 has been 

delivered.  This is ensured by the immediate dependency relation (IDR). 

Figure 1 
 

5 The Causal Multi-Channel Algorithm (CMCA) 

An informal description of the algorithm and data structures is the following: our 

algorithm uses the IICD relation presented in Definition 6 and Mattern’s vector 

clocks. The information of a process related to a past message is a list of channels, 

through which the causal information representing this message is not known by 

the process to have been transmitted. The CMCA algorithm minimizes the 

overhead by avoiding the transmission of redundant information. In the next 

sections we present in detail the proposed algorithm. We first present a 

description of the local identifiers used, then the data structures, followed by the 

algorithm specification; lastly, a precise roadmap of the code is presented. 

 

5.1 Local identifiers 

In this algorithm, a participant locally manages an identifier for each channel to 

which it belongs. The distribution of the participants in the channels is transparent 

to the participants.  This means that a given participant is aware only of a list of 

identifiers and not of the channels´ constitution. For example, in Fig. 2, 

participants p1 and p2 interact through channels c2 and c3 with participant p3.   

Nevertheless, neither one of them knows that both are interacting with the same 

participant. 

We recall that P is the set of participant identifiers, C the set of channels, 

the mappings Memb :C→2P and Conn :P→2C  define for each channel the set of 

connected participants, and for each participant the set of channels to which it is 

connected.  
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Let I  be an initial interval of integers disjoint from P, the mapping id :P×C→ I 

associates to each participant p and  each channel c∈ Conn(p) a unique identifier 

id(p,c) ∈ I. The mapping id is one to one, i.e. for any pairs (p,c), (p’,c’) ∈ P×C, 

we have  id(p,c)=id(p’,c’) ⇒ (p,c)=(p’,c’).  We often denote by pi the unique 

participant p, such that i=id(p,c)  for some channel  c, and we have i=id(p,c) 

⇒p=pi. For any i∈ I , we denote by ch(i) an unique channel c such that i=id(p,c) 

for some p, and we have i=id(p,c) ⇒ ch(i)=c. 

For example, in Fig. 2, participant p1 has two identifiers, one for each channel it 

belongs to (c1 and c3). 

Figure 2 
 

5.2 Data structures 

 

Local states 

The state of a participant p is defined by two data structures: VT(p) and CI(p).   

- VT(p) is the vector time. For each participant q and each channel c∈ Conn(q), 

there is an element VT(p)[j] where j=id(q,c)   The size of VT is thus equal to the 

sum of all channel sizes Σ c∈C |Memb(c)|.  

- CI(p) is the control information structure. It is a set of entries ctkci ,, = 

(k,t,c,ch_dests) where  (k,t, c) is a message identifier (the message diffused by the 

participant pk  at its local clock value t,  in the channel  c∈ Conn(pk)  and ch_dest 

is a set of channel identifiers explained below.  

  

The information in the vector time VT(p) contains the local view which the 

participant p has of the causal history of the system. In particular the element 

VT(p)[j] represents the greatest message number from the identifier j and ‘seen’ 

by  p.  It has a total view if, at a given instant t, it contains information of the last 

known message from each participant.  It has a partial view if it contains this 

information only for a subset of the participants.  It is through the VT(p) structure 

that we are able to guarantee the causal delivery. 
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The structure CI(p) also contains information about the causal history of p. The 

information in CI(p), at any moment, is a partial copy of VT(p), i.e. for each entry 

(k, t, c, ch_dests) of CI(p), we have t=VT(p)[k] (See Lemma 6.2 : )(),,( pCIcxk ∈  

])[( kpVTx =⇒ ). The set ch_dest contains the channels where the identifier (k,t,c) 

(identifier of a message in the causal history of p) may not have been already 

broadcasted: when  p broadcasts a new message m in one of the channels of 

ch_dest, then m must carry the information (k, t, c) in its field H(m) to ensure its 

causal delivery. 

 

Messages 

A message m is composed of an identifier (k,t,c) and an attached causal 

information H(m). Formally, a message m is a tuple m = (k, t, c, H(m)), where:  

- k is the identifier of the sender  p=Src(m) for the channel c, i.e. k=id(p,c)  

- t =VT(p)[k]  is the (local) clock value of p for k when m is sent 

- c is the channel in which m is broadcasted, c=Chan(m)  

- H(m) is a set of tuples (i, t, c) representing messages    

 

The structure H(m) contains identifiers of messages causally preceding the 

message m and needed for the causal delivery of m.   The structure H(m) is built 

before the message is broadcasted and attached to it.  

 

Note. The following nomenclature is used in the algorithm: i , j , k and l represent 

channel member identifiers; t, x and y are logical clocks; c and d are diffusion 

channels; and lastly, C  is the set of channels in the system. 

 

5.3 Algorithm specification 

I. Initially, 

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g|  
2. CI(p)← ∅ 
 

II. For each message diffused by p into channel c with i=id(p,c) 

3. VT(p)[i] = VT(p)[ i] +1 
4. H(m)← ∅ 
5. for all )( pCIci∈ : ci=(k, x, d , ch_dests) 
6.     if destschcic _.∈  then 
7.           )},,{()()( dxkmHmH U←  
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8.           cdestschcidestschci \_._. ←  
9.     endif 
10.     if =destsci. ∅ then 
11.          cipCIpCI \)()( ←  
12.     endif 
13. endfor 
14.  t=VT(p)[ i] 
15. m=( i , t, c, content , H(m)) 
16. send(m) into the channel c 
17. )}\)(,,,{()()( cpConnctipCIpCI U←  
 

III.   For each m = ( i, t, c, content, H(m)) received by p with   j = id(p, c) 

To impose a causal delivery 

18. If not ∧+= 1])[(( ipVTt  
19. )])[()(:)(),,( lpVTxpConndmHdxl ≤⇒∈∈∀ then  
20.       wait 
21. else 
22.     Delivery(content) 
23.     1])[(])[( += ipVTipVT  
24.      if ( )pCIcxix (),,(: ∈∃  then 
25.          )()( pCIpCI ←  \ ( ){ }cxi ,,  
26.      endif  
27.     )}(,,,{()()( pConnctipCIpCI U←   
28.      for all )(),,( mHdxl ∈  
29.          if (d ∈ Conn(p)) then 
30.             if ( ))(),,( pCIdyly ∈∃  then/*x ≤ y*/ 
31.                if x < y  then /* skip */ 
32.                endif 
33.                if x = y then 
34.                   UPD( dylci ,, , c ) 
35.                endif 
36.             endif   
37.          else /* d ∉ Conn(p) */ 
38.             if ( ))(),,( pCIdyly ∈∃  then   
39.                 if x < y then /*skip */  
40.                 endif 
41.                 if x = y then 
42.                    UPD( dylci ,, , c )  
43.                 endif 
44.                 if x > y  then 
45.                    VT(p)[l] = x 
46.                    )()( pCIpCI ←  \ ( ){ }dyl ,,   
47.                    ( ){ })(,,,)()( pConndxlpCIpCI U←  
48.              endif 
49.              else /* )(),,(: pCIdyly ∈¬∃  */   
50.                  if (VT(p)[l] < x) then 
51.                     VT(p)[l] = x 
52.                    ( ){ })(,,,)()( pConndxlpCIpCI U←  
53.                  endif 
54.               endif 
55.          endif 
56.      endfor 
57. endif 
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IV. Updating 
58. UPD(cik,x,d , c)  
59.    if (c ≠ d) then 
60.       destschci dxk _.,, ← destschci dxk _.,, \ c 
61.        if ( )∅=destschci dxk _.,,  then 
62.             ( ){ }dxkpCIpCI ,,\)()( ←  
63.        endif 
64.    else /* c = d */ 
65.        ( ){ }dxkpCIpCI ,,\)()( ←  
66.    endif 

 

5.4 Algorithm Description 

We provide in this section a description of the CMCA algorithm presented in 

Section 5.3.  We do the presentation in a sequential order with respect to the 

numeration of the lines.  Our explanation is focused on the description of the 

updating process of structures Hm and CI. 

 

Table 1 
 

6 Proofs 

We first show in Section 6.1 that the causal delivery of messages in immediate 

inter-channel dependency is sufficient to ensure the causal delivery of all 

messages. Next, we present the proof of correctness of the CMCA algorithm. This 

proof has two aspects: we first show in Section 6.2 that no delivery order is 

imposed to messages which are not causally dependent on each other.  Secondly, 

we demonstrate in Section 6.3 that the algorithm indeed delivers in proper order 

any pair of messages causally dependent on each other. 

 

6.1 Proof of the IICD property 

 

Let m and m’ be messages, the distance d(m,m’) is defined for any pair m and m’ 

such that send(m)→send(m’):  d(m,m’) is the greatest integer n such that for some 
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sequence of messages (mi, i= 0...n) with  m= m0 and m’=mn, we have  

send(mi)↓send(mi+1) for all i =0…n-1.  

 

Theorem 2 

If ∀ m,m’ ∈ M, (m,c) ↑ (m’,c’) ⇒ ∀p ∈ Dest(m)IDest(m’): delivery(p,m) → 

delivery(p,m’) 

then ∀ m,m’ ∈ M, (m,c)  →  (m’,c’) ⇒ ∀p ∈ Dest(m)IDest(m’):  delivery(p,m) 

→ delivery(p,m’) 

Proof: 

Let m and m’ be such that send(m)→send(m’) we show that ∀p ∈ 

Dest(m)IDest(m’) : delivery(p,m) → delivery(p,m’). We know this property is 

satisfied if send(m) ↑ send(m’). Otherwise, let d(m,m’) = n,  c=Chan(m) and  

c’=Chan(m’).  By definition of the IICD ↑, we can find a message m’’=(k’’, x’’, 

c’’)  such that send(m) → send(m’’) → send(m’) and  such that Chan(m’’)=c or  

Chan(m’’)=c’. If we have not send(m)↑send(m’’) and/or send(m’’)↑send(m’), we 

can repeatedly find new intermediate messages and constitute a sequence (mi=(ki, 

xi, ci) , i=0…h), such that m=m0 , m’=mh  and for all  i=0…h-1, 

send(mi)→send(mi+1). Due to the finite distance d(m,m’) = n, the size of such 

sequence is bounded by n, and thus, in a finite number of steps, we build a 

sequence such that for all  i=0…h-1, send(mi)↑send(mi+1) . Furthermore, by 

construction there is an integer 0≤k≤n-1 such that Chan(mi)=c  for all i≤k and 

Chan(mi)=c’ for all  i>k.  Let a common recipient p ∈ Dest(m)IDest(m’), this 

means that p ∈ Memb(c)IMemb(c’), and thus, that p receives all the messages of 

the sequence (mi=(ki, xi, ci) , i=0…h). Due to hypothesis, send(mi)↑send(mi+1) 

implies  delivery(p, mi)→delivery(p, mi+1) for all  i=0…h-1, and this induces that 

delivery(p,m) → delivery(p,m’). □ 

 

6.2 Proof of correctness (1) 

In this section we show that the delivery restrictions imposed by the algorithm do 

not exceed the causal delivery constraints. No delivery order is imposed to 

messages which are not causally dependent on each other. This is shown in 

Theorem 3: if a message m appears in the structure H(m’) of a message m’, then m 
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causally precedes m’.  This means that the constraints applied to the delivery of a 

message only depend on its causal past. 

 

Theorem 3   For any two messages m=(k,x,c) and m’ then:   

(k,x,c) ∈ H(m’)  ⇒ send(m) → send(m’)  

Proof:  Let p= Src(m’), if (k,x,c) ∈ H(m’), due to instruction lines 5 and 7, (k,x,c) 

∈ CI(p) when m’ is sent by process p. There are two cases:  

A) The element (k,x,c) is added to CI(p) by instruction line 27 when  m is 

delivered to p. This must have occurred prior to the emission of m’ and thus we 

have delivery (m) → send(m’), and thus send(m) → send(m’). 

B)  The element (k,x,c) is added to CI(p) by instruction lines 47 or 52 when 

some message m1=(k1,x1,c1) ≠ m’, such that  (k,x,c) ∈ H(m1) was delivered to  p. 

In that case, we have delivery(p,m1) → send(m’).  

Cases A and B  show that if  (k,x,c) ∈ H(m’) then either  send(m) → 

send(m’) or for some m1=(k1,x1,c1) ≠ m’ we have (k,x,c) ∈ H(m1) and  send (m1) → 

send(m’). If send(m) → send(m’) does not hold, then case B holds and we can 

apply the same deduction to the messages m and m1 because (k,x,c) ∈ )( 1mH . We 

have m1 ≠ m because otherwise send(m) → send(m’). If send(m) → send(m1) does 

not hold, we iterate the step and exhibit a message m2 ≠ m  such that send(m2) → 

send(m1) and (k,x,c) ∈ H(m2).  At step  i-1, we have (k,x,c) ∈ H(mi-1), for some 

message mi-1 ≠ m such that send(mi-1) → send(mi-2) , and if send(m) → send(mi-1) 

does not hold, we can find a message mi ≠ m such that  send(mi) → send(mi-1)…. 

send(m1) → send(m’)  and  (k,x,c) ∈ H(mi). Because such a sequence may not be 

infinite, for some step i and message  mi  we must have send(m) → send(mi), and 

the property  send(m) → send(mi) → send(mi-1)…. send(m1) → send(m’) 

concludes the proof. □ 

 

 

The following Lemma is a consequence of the previous theorem and used in the 

next section. 

Lemma 1   If a state s of a process p satisfies VT(p)[l] = x ≠ 0,  then the event 

send(m) where m=(l,x,c) with c = ch(l),  is in the past ↓s of s.  

Proof: There are two cases, depending on whether p is connected to c or not.  
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1.  p∈ Memb(c). In that case, VT(p)[l] may be modified and set to x only on 

the delivery to p of the message m=(l,x,c) received from l on the channel c 

(instruction line 23). The event delivery(p,m) then belongs to ↓s as well as the 

corresponding emission event send(m).  

2.  p ∉ Memb(c). In that case, VT(p)[l] may be modified and set to x only on 

the reception by p of a message m’ such that (l,x,c) ∈ H(m’)  (instruction lines 45 

and 51). The delivery event delivery(p,m’)  then belongs to ↓s and also the 

corresponding emission event send(m’). Using Theorem 3, we can conclude that 

send(m) → send(m’), and  that send(m) is also a cause of s (send(m) belongs to 

↓s). □ 

 

6.3 Proof of correctness (2) 

The second proof of correctness shows that whenever two messages m and m’ are 

causally dependent, i.e. send(m)→send(m’), we have 

delivery(p,m)→delivery(p,m’) for any common destination p∈Dest(m)IDest(m’).  

Due to Theorem 2, it is sufficient to prove this property for messages m and m’  in 

immediate inter-channel dependency, and indeed Theorem 4 shows that if 

send(m)↑send(m’), we have delivery(p,m)→delivery(p,m’) for any common 

destination p∈Dest(m)IDest(m’). We show that if send(m,c)↑send(m’,c’), when 

the reception of m’ by some destination p∈Dest(m)IDest(m’) occurs, either the 

message m has already been delivered to p, or H(m’) contains the entry (l,x,c) 

corresponding to m  or an entry (l,y,c) with x < y (for a message emitted after m 

by the same source on the same channel). This ensures that m has to be delivered 

to p before m’.    

To make the proofs clearer, we give some definitions:   

Due to the total order of the actions of a single participant p, its behaviors can be 

modeled by alternated sequences of states and events s0, e1, s1, e2, s2 ,.. ,en, sn , 

where the states si are values of VT(p) and CI(p), and where each event ei is an 

action send(p,m) or delivery(p,m) for some message m, and represents the 

associated sequence of instructions. The causal past of an event e∈E, denoted ↓e, 

is the set of the events which precede e for the relation →, i.e. ↓e={e’∈E, e’→e}. 

The immediate cause of a state s of  a participant p, denoted ◦s, is the unique last 
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event which occurred on p before reaching the state s, for instance ei=◦si  in the 

sequence s0, e1, s1, e2, s2 ,.. ,en, sn . The causal past of a state s, denoted ↓s is the 

set of events composed of its immediate cause ◦s and the causal past of ◦s, 

formally ↓s ={◦s }U↓(◦s ). 

The following four Lemmas are used in the proof of Theorem 4. Lemma 2 ensures 

that the structure CI(p) is a ‘partial copy’ of VT(p),  i.e.  for each entry (l,x,c) in 

CI(p)  we have x = VT(p)[l]. 

 

Lemma 2 (l,x,c) ∈ CI(p) ⇒ x = VT(p)[l]  

Proof:   There are two cases: 

1) c ∈ Conn(p): the element (l,x,c) is added to CI(p) either at instruction line 17 

on sending the message (l,x,c),  and instruction line 3 ensures that x = VT(p)[l], 

either on delivery of the message (l,x,c)  at line 27, and when this instruction is 

executed, test line 18 and instruction line 23 ensure that x = VT(p)[l].  

2) c ∉ Conn(p): the element (l,x,c) is  added to CI(p) due to instruction line 47 

(resp. at line 52), and the instruction previously executed at line 45, (resp. at line 

51) is precisely the instantiation  VT(p)[l] = x. □ 

 

The following Lemma shows that the values of the array VT(p) are modified 

accordingly with the values of H(m) by the algorithm when a message m is 

delivered . 

 

Lemma 3 After the delivery of a message m to the participant p, for each entry 

(l,x,c) in H(m)  we have VT(p)[l] ≥ x.   

Proof: There are two cases: 

1) c ∈ Conn(p): The condition for the delivery of m at line 19 is precisely VT(p)[l] 

≥ x.  

2) c ∉ Conn(p): The code beginning line 37 is executed. If condition line 38 is 

true, either (l,y,c) ∈ CI(p) for some y ≥ x , in which case, due to Lemma 2, we 

have VT(p)[l]=y ≥ x, or the instruction line 45 is executed yielding VT(p)[l] = x. 

Otherwise, condition line 38 is false, execution starts line 49 and the instruction 

lines 50 and 51 ensure that VT(p)[l] ≥ x.  □ 
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Lemma 4 If at state s of a process  p we have VT(p)[l] = x ≠ 0 with c=ch(l)  then 

for any c’ ∈ Conn(p) one of the two following cases holds:  

1) There exists an entry (l,x,c) ∈ CI(p)  such that c’ ∈ (l,x,c).Dest. 

2) There exists a message m’  with c’=Chan(m’) and an event e=send(p, m’,c’) or  

e=delivery(p,m’,c’) in the past of s, such that (l,x,c) ∈ H(m’). 

Proof: There are two cases: 

1) c ∈ Conn(p): the  value of VT(p)[l] is set to x by instruction line 23 and the 

entry (l,x,c) is added to CI(p) with (l,x,c).Dest=Conn(p) at instruction line 27. The 

channel c’ ∈ Conn(p) is suppressed from (l,x,c).Dest only in two cases:  

- when a message m’ with (l,x,c) ∈ H(m’)  is emitted by p to the channel c’ 

(instruction line 8); in that case, send(p, m’, c’) is in the past of s,  

- or when a message m’ with (l,x,c) ∈ H(m’)  is delivered to p through the 

channel c’ (UPD line 34); and in that case, delivery(p, m’,c’)  belongs to ↓s. 

2) c ∉ Conn(p): the  value of VT(p)[l] is set to x by instruction line 45 (resp. line 

51); and in that case, the entry (l,x,c) is added to CI(p) with (l,x,c).Dest=Conn(p) 

by instruction line 47 (resp. line 52). The channel c’ ∈ Conn(p) is suppressed 

from (l,x,c).Dest only in two cases :  

- either when a message m’ with (l,x,c) ∈ H(m’)  is emitted by p to the channel 

c’ (instruction line 8); in that case, send(p, m’, c’) is in the past of s,  

- or when a message m’ with (l,x,c) ∈ H(m’)  is delivered to p through the 

channel c’ (UPD line 42); and in that case, delivery(p, m’,c’)  belongs to ↓s. □  

 

The following lemma is a direct consequence of the previous one and of Theorem 

3. It shows that when a process p such that VT(p)[l] = x ≠ 0 with c = ch(l), 

broadcasts a message m to a channel c’ without the information (l,x,c), it implies 

that this information (the tuple (l,x,c) ) had been previously broadcasted to the 

same channel c’.  

 

Lemma 5 If a process p such that VT(p)[l] = x ≠ 0 where c = ch(l), executes the 

action send(m’’,c’), then one of the two following cases holds:  

1) (l,x,c) ∈ H(m’’)  
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2) There is a message m’ broadcasted to the same channel c’ = Chan(m’) = 

Chan(m’’) such that (l,x,c) ∈ H(m’) and send(m’,c’)→ send(m’’,c’). Furthermore, 

the message m=(l,x,c) is such that  send(m,c) → send(m’,c’) → send(m’’,c’). 

 

Proof:  

If (l,x,c) ∉ H(m’’) when send(m’’,c’) occurs, then due to instruction lines 6 and 7,  

no entry (l,x,c) ∈ CI(p) exists such that c’ ∈ (l,x,c).Dest. Then, by the previous 

Lemma 4, a message m’ exists such that (l,x,c) ∈ H(m’) and send(m’,c’)→ 

send(m’’,c’). Due to Theorem 3, we have send(m,c) → send(m’,c’). □ 

 

Theorem 4  

∀ m,m’ ∈ M, send(m) ↑ send(m’) ⇒ ∀p ∈ Dest(m)IDest(m’) : delivery(p,m) → 

delivery(p,m’). 

Proof:  

We prove by induction on the distance d(m,m’) between m and m’. The distance 

d(m,m’) is defined for any pair of messages m and m’ such that 

send(m)→send(m’), and is the greatest integer n such that for some sequence of 

messages (mi, i= 0...n) with  m= m0 and m’=mn, we have  send(mi)↓send(mi+1) for 

all i =0…n-1.  

 

If d(m,m’)=1, then send(p,m)↓send(p’,m’). If p≠p’, we have  

delivery(p’,m)→send(p’,m’).  Let m=(k,x,c), we have (k, x, c) ∈ CI(p’) after  

delivery(p’,m) (instruction line  27), and thus (k, x, c) ∈ H(m’)  (instruction line 

7). For any  q ∈ Dest(m)IDest(m’) the delivery of m to q precedes the delivery of 

m’, and we have delivery(q,m) → delivery(q,m’). 

 

Induction step n. We suppose the property true for any messages m and m’ such 

that d(m,m’) < n, and show that it holds if d(m,m’) = n. Let m and m’ be such that 

send(m)↑send(m’) and d(m,m’) = n, there is a message sequence (mi=(ki, xi, ci) , 

i=0…h), such that m=m0 , m’=mh  and for all  i=0…h-1, send(mi)↓send(mi+1). By 

definition of d(m,m’) we have h ≤ d(m,m’). Furthermore, due to hypothesis  

send(m)↑send(m’), we also have c0≠ci≠cn  for all  i=1…h-1. 
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For all i=0…h, we denote by pi the participant such that ki = id (pi ,ci ) and by si 

the state of pi  at which the event send(pi, mi) occurs. We show that for all i=0…h, 

the state si satisfies the property VT(pi)[k0]  ≥ x0. The proof is by induction on the 

index i:   

At state s0 , when send(k0, x0, c0) occurs, due to instruction line 4 we must have 

VT(p0)[k0]  = x0.  

Suppose that VT(pi)[k0]  ≥ x0  at state si,  we show that VT(pi+1)[k0]  ≥ x0  at state 

si+1.  If VT(pi)[k0] = y ≥ x0  when the broadcast of  mi to ci occurs, by Lemma 5 

only two cases may occur: 

- (k0, y, c0) ∈ H(mi). In that case, due to Lemma 3, we have VT(pi+1)[k0]  = y ≥ 

x0 after delivery(pi+1,mi), and this remains true at state si+1.  when the 

broadcast of  mi+1 to ci+1 occurs. 

- There is a message m= (k, x, ci) broadcasted on ci, such that (k0, y, c0) ∈ 

H(m) and send(k0, y, c0) → send(m) → send(mi). Due to x0 ≤ y, we have 

send(k0, x0, c0) → send(m), and because ci≠c0 , we have m≠m0. The distance 

d(m,mi) is strictly lower than d(m0,mi), thus strictly lower than n=d(m0,mh). 

We can apply to m and mi the induction hypothesis and conclude that 

delivery(pi+1,m) → delivery(pi+1,mi). Due to the fact that  (k0, y, c0) ∈ H(m) 

with y≥x0 ,  we have VT(pi+1)[k0] = y ≥ x0 after delivery(pi+1,m) and thus also 

after delivery(pi+1,mi), in particular at state si+1 when the broadcast of  mi+1 to 

ci+1 occurs.  

 

Using the induction hypothesis, we have shown that for any messages m=(k,x,c) 

and m’=(k’,x’,c’), such that send(m)↑send(m’) and d(m,m’) = n, we have 

VT(p’)[k]≥ x when send(p’,m’) occurs. Let y = VT(p’)[k] ≥ x, we can conclude that 

(l,y,c) ∈ H(m’): otherwise, due to Lemma 5, there would be a message m’’ 

broadcasted to the channel c’=Chan(m’)=Chan(m’’) such that send(m,c)→ 

send(m’’,c’)→ send(m’,c’), and this contradicts the hypothesis send(m)↑send(m’). 

For any participant q ∈ Dest(m)IDest(m’), the property (l,y,c) ∈ H(m’) ensures 

that the delivery of m to q precedes the delivery of m’, and we have delivery(q,m) 

→ delivery(q,m’).  □ 

 

The correction of the algorithm results from Theorems 3 and 4: 
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Corollary 1 

For any messages m and m’, we have   

send(m) → send(m’) ⇒ ∀p ∈ Dest(m)IDest(m’) : delivery(p,m) → 

delivery(p,m’) 

 

7 The Causal Multi-Channel Algorithm vs other 
algorithms 

In this section we compare the characteristics of our CMCA algorithm with other 

main existing algorithms (Table 3).  The CMCA algorithm presents a symmetric 

organization, meaning that, among other things, our algorithm considers all 

participants to be equal, which permits them to interact without the need of a 

mediator. The CMCA algorithm allows an asynchronous diffusion of messages, 

providing participants the freedom to interact at the moment they desire. Finally, 

it’s compatible with a dynamic configuration.  Because of its dynamic 

configuration, one does not need to know in advance the exact composition of the 

channel participants.  Furthermore, the dynamic configuration permits the channel 

composition to change during the execution time.   

As one can observe in Table 3, the only other algorithm which shares the 

same characteristics as our CMCA algorithm is the Isis CBCAST algorithm.  The 

remaining ones have sacrificed some of these properties in order to reduce the 

amount of control information needed to be sent. Let us first consider the Daisy 

Architecture algorithm [3].  The authors have sacrificed a symmetric organization 

by structuring participants into sub-channels and by using re-diffusion servers, 

thus impeding a direct interaction among participants.  Next, let’s take the 

example of the algorithm presented by the work of Causal Separators [26].  The 

main disadvantage of this algorithm is its static configuration, meaning that it 

must be carried out off-line.  Finally, let’s consider the causal “Low cost 

approach” algorithm [17].  To our knowledge, this algorithm does use a minimal 

amount of control information; however, its disadvantage is that it works by 

synchronous phase execution, and thus, considerably limits the interaction among 

participants and introduces delays in the transmission. 
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Table 2 
 

Now, let us discuss the amount of control information needed to be sent by each 

algorithm during the diffusion of messages in order to ensure a causal delivery.  

As previously noted, the “Low cost approach” algorithm is the algorithm which 

sends the least amount of control information.  This algorithm only timestamps 

onto each message a vector of size |G|, where |G| is the number of channels in the 

system.  As far as the Causal Separators algorithm is concerned, it timestamps a 

vector of size |Ls| per message, where |Ls| represents the number of participants in 

a causal zone.  Since the message in question must cross through one or more 

causal zones in order to reach its destination, the final amount of causal 

information becomes Σ|Ls|, which is the sum of the different causal zones crossed.  

The case of the Daisy Architecture algorithm is similar to the previous one 

mentioned, in the sense that the sub-channels are of a fixed size denoted by l, and 

therefore, the amount of control information sent is l⋅(s), where s refers to the 

number of sub-channels that the message in question must cross in order to reach 

its final destination. 

 

With respect to the overhead generated by the CBCAST of Isis algorithm, we find 

that in the worst case Σ|g| : g∈G, which is the sum of the elements of each group 

of the system.  This appears to be the same overhead generated by our CMCA 

algorithm, but by reconsidering the study completed in [22], we briefly mention 

that the overhead is determined by the probability that different conditions will 

arise. In the CBCAST algorithm, the overhead is determined by the number of 

messages received either in parallel or in sequential order between local 

emissions. In our algorithm, the amount of overhead is only determined by the 

number of parallel messages received.  As presented in [22], if the behavior is a 

serial reception, the amount of overhead generated in the single-channel case is 

equal to |CI|=1, while in the multigroup case it is equal to |CI|=|G|. 
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8 Conclusions 

In this article we mentioned briefly that an optimal size of control information 

(overhead) and a symmetric organization are some of the characteristics of causal 

algorithms suitable to support large decentralized distributed systems.  We have 

shown in this paper that our IDR extension for the multi-channel case minimizes 

the overhead timestamped per message without introducing restrictions in 

interaction or execution. Finally, we have presented an efficient causal algorithm 

for the generic multi-channel case, including the overlapping case, which is based 

on our IDR extension. We showed the efficiency of our causal algorithm in terms 

of the overhead timestamped per message. 
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Figure 1 Multi-channel scenario 

 
Figure 2 Connection scheme 

 
 

 
Table 1 Algorithm Description 

CODE Description 
I. Initially At the beginning, each process p locally 

initializes its structures VT(p) and CI(p) in 

the following manner:  

1. VT(p)[k] = 0 ∀ k:1…Σ g∈G |g|  Each position in the vector VT(p) is filled by 

zero. 

2. CI(p)← ∅ Structure CI(p) is emptied of all elements. 

II. For each message  diffused by p into channel 
c with i=id(p,c) 

Sending procedure 

3. VT(p)[i] = VT(p)[ i] +1 Position i of vector VT(p) is increased by 

one. 

4. H(m)← ∅ H(m) is emptied of all elements when each 

message is sent. 

p2 

p3 

p1 

c1 

c2 

c3 

The delivery of m5 is 
delayed. 

p1 

p2 

p3 

c1 

c3 
c2 

t 

m5

m4

m2 m3

m1

pa 
pb 
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5. for all )( pCIci∈ : ci=(k, x, d , ch_dests) In lines 5-13 we construct the structure H(m) 

from the  information in CI(p) and update 

the CI(p). 

6.     if destschcic _.∈  then 
7.           )},,{()()( dxkmHmH U←  
8.           cdestschcidestschci \_._. ←  
9.     endif 

If channel c belongs to the field ci.ch_dests a 

new entry (k,x,d)  is added to H(m) and then 

the channel c is deleted from ci.ch_dests. 

10.     if =destschci _. ∅ then 
11.          cipCIpCI \)()( ←  
12.     endif 

If ci.ch_dests is empty, then the entry ci is 

erased from CI(p). 

13. endfor  

14. t=VT(p)[ i] The content of VT(p)[ i] is assigned to t. 

15. m=( i , t, d, message , H(m)) Construction of message m  

16. send(m) into the channel c Broadcasting of message m on channel c 

17. ( ) )}\)(,,,{()( cpConnctipCIpCI U←  Insertion of the element ci=(i, t, c,Conn(p) \ 

c) to CI(p) 

III.   For each m = ))(,,,,( mHmessagecti  received 

by p with  j=id(p,c) 

  

Reception procedure 

To impose a causal delivery 

Condition of Multi-channel delivery  

18. If not ∧+= 1])[(( ipVTt  

The delivery condition is divided into two 

parts. The first part verifies that the 

receptions for a given process satisfy the 

FIFO order delivery.  

19. ])[()(:)(),,( lpVTxpConndmHdxl ≤⇒∈∈∀ ) The second part verifies that any element 

(l,x,d) of H(m) such that p is connected to d 

has been previously delivered to p. 

       then  

20.       wait 

If the delivery condition is not satisfied, then 

the message is placed on hold until the 

missing message arrives. 

21. else  
22.     Delivery(message) 

If the delivery condition is satisfied, then the 

message is delivered to the application and 

we proceed to update the vector  VT(p) and 

CI(p) as follows: 

23.     1])[(])[( += ipVTipVT  The position i of vector VT(p) is increased 

by one. 

24.      if ( )pCIcxix (),,( ∈∃  then 
25.          )()( pCIpCI ←  \ ( ){ }cxi ,,  
26.      endif  
27.      ( ){ })(,,,)()( pConnctipCIpCI U←  

If there exists an element identified by (I,x,c) 

in CI(p) with the same  sender pi of the 

present message m, then this element is 

replaced by an element with the identifier 

(i,t,c) of m.    

28. for all )(),,( mHdxl ∈  Updating process of CI(p) with regard to the 

information to contained in structure H(m) 
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(lines 28-56).  

 

 

29.       if (d ∈ Conn(p)) then The updating process of CI(p) is divided into 

two parts: the first part (lines 29-36) 

concerns each entry (l,x,d)  in H(m) such 

that p is connected to d. The second part 

(lines 37-57) concerns the remaining entries 

(l,x,d)  in H(m),  such that d ∉ Conn(p). 

30.             if ( ))(),,( pCIdyly ∈∃  then/*x ≤ y*/ 
31.                if x < y  then /* skip */ 
32.                endif 
33.                if x = y then 
34.                   UPD( dylci ,, , c ) 
35.                endif 
36.             endif   

When d ∈ Conn(p), if there exists an entry 

(l,y,d) in CI(p) of the same  sender pl then, 

we have two possibilities: x < y  or x = y. 

When x = y we proceed to update the CI(p) 

with the function UPD() in lines 58-66.  

37.        else /* d ∉ Conn(p) */ 
38.             if ( ))(),,( pCIdyly ∈∃  then   
39.                 if x < y  then /* skip*/  
40.                 endif 
41.                 if x = y then 
42.                    UPD( dylci ,, , c )  
43.                 endif 
44.                 if x > y  then 
45.                    VT(p)[l] = x 
46.                    )()( pCIpCI ←  \ ( ){ }dyl ,,   
47.                    ( ){ })(,,,)()( pConndxlpCIpCI U←  
48.              endif 

When d ∉ Conn(p), if there exists an entry 

(l,y,d) in CI(p) of the same  sender pl then, 

we have three possibilities: x < y, x = y, or x 

> y. When x = y we proceed to update the 

CI(p) with the function UPD() in lines 58-

66. When x > y the position l of the vector 

VT(p) is updated with the value of x and the 

previous entry (l,y,d) is replaced with a most 

recent element (l,x,d).    

49.              else /* )(),,( pCIdyly ∈¬∃  */   
50.                  if (VT(p)[l] < x) then 
51.                     VT(p)[l] = x 
52.                     ( ){ })(,,,)()( pConndxlpCIpCI U←  
53.                  endif 
54.               endif 
55.           endif 
56.       endfor 
57.    endif 

When d ∉ Conn(p), and there doesn’t exists 

an entry (l,y,d) in CI(p), the position l of the 

vector VT(p) is updated with the value of x, 

and an entry identified by (l,x,d) is added to 

CI(p). 

IV.  Update function  
58. UPD(cik,x,d , c)  
59.    if (c ≠ d) then 
60.       destschci dxk _.,, ← destschci dxk _.,, \ c 
61.        if ( )∅=destschci dxk _.,,  then 
62.             ( ){ }dxkpCIpCI ,,\)()( ←  
63.        endif 
64.    else /* c = d */ 
65.        ( ){ }dxkpCIpCI ,,\)()( ←  
66.    endif 

In the update function when c ≠ d we first 

erase the channel c from destschci dxk _.,,  

and then, only if destschci dxk _.,,  is empty, 

the element (k,x,d) is erased from CI(p). 

Finally, when c = d, the element (k,x,d) is 

directly erased from CI(p). 
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Table 2 Comparison of causally ordered multi-channel algorithms 

Causal 

Multigroup 
Algorithms 

Configuration Organization Diffusion Overhead Principle 

CMCA (Our 

algorithm) 
Dynamic Symmetric Asynchronous 

(worst case) 

Σ|g| : g∈G 

Immediate Inter-Channel 

dependency relation 

CBCAST 

(Isis) 
Dynamic Symmetric Asynchronous 

(worst case) 

Σ|g| : g∈G 
Time clock compression 

Daisy 

Architecture  
Dynamic Asymmetric Asynchronous 

(always) 

l⋅(s) 

Logical group structure / 

Rediffusion servers 

Causal 

Separators 
Static Asymmetric Asynchronous Σ|Ls| : Ls ∈P 

Web topology / Rediffusion 

servers 

Low cost 

approach 
Dynamic Asymmetric 

Synchronous by 

phases 

(always) 

|G| 
Synchronous execution 

 

 


