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Abstract

Security is a crucial requirement in the envisioned applications of the Internet of Things

(IoT), where most of the underlying computing platforms are embedded systems with

reduced computing capabilities and energy constraints. In this paper we present the design

and evaluation of a scalable low-area FPGA hardware architecture that serves as a building

block to accelerate the costly operations of exponentiation and multiplication inGFðpÞ, com-

monly required in security protocols relying on public key encryption, such as in key agree-

ment, authentication and digital signature. The proposed design can process operands of

different size using the same datapath, which exhibits a significant reduction in area without

loss of efficiency if compared to representative state of the art designs. For example, our

design uses 96% less standard logic than a similar design optimized for performance, and

46% less resources than other design optimized for area. Even using fewer area resources,

our design still performs better than its embedded software counterparts (190x and 697x).

Introduction

With the coming of Ubiquitous Computing [1], the Internet of Things (IoT) [2], and Wearable

Computing [3], it is expected that electronic devices in the form of embedded systems acquire,

store, process and communicate sensitive data in industrial sectors such as the medical, sur-

veillance, nuclear, and defense, to mention some examples. Security in these embedded and

networked devices has become critical, and currently it is one of the main aspects delaying the

deployment of pervasive computing environments [4]. Some suppliers are addressing system

security at the component level, with encryption being one of the most effective ways to pro-

vide the security services of authentication, integrity and confidentiality [5, 6].

It is hard for some security schemes such as those based on public key cryptography to

achieve high throughput without the help of hardware modules [7]. That is why the develop-

ment of hardware cryptographic modules for security is an active area of research. Some

microcontrollers found in current embedded devices, for example Atmel and Microchip, now

include hardware encryption/decryption engines, which demonstrates the support for hard-

ware encryption/decryption not only for 32-bit processors, but also for 8-bit and 16-bit. Atmel
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has chosen to integrate the public key cryptographic security protocols ECDH (key agreement

protocol) and ECDSA (sign-verify digital signatures for authentication) on its ATECC508A

encryption chip [8]. In another example, Infineon has added secure authentication protocols

to a power module designed for IoT applications, such as internet-connected industrial drives.

For example, its MIPAQ Pro power module incorporates a security microcontroller to provide

authentication of original parts [9].

The security services provided by means of public key cryptographic algorithms [10–12]

demand a large number of arithmetic operations on abstract algebraic structures (finite fields

and groups), usually executed over large numbers (160–3072 bits), which makes them consid-

erably time-consuming operations. This situation has motivated the creation of specialized

hardware with faster computation as the main design goal, which comes at the cost of a high

consumption of hardware resources [13, 14].

However, the computing constraints of embedded systems demand implementations of

cryptographic modules using fewer area resources [15]. This implementation approach is con-

sidered in the research field of lightweight cryptography [15]. Although that research has

mainly focused on private key algorithms and cryptographic primitives [16], the one for public

key cryptography has been recently increasing [17].

For hardware realization of algorithms Field Programmable Gate Arrays (FPGAs) could be

preferred because of flexibility, low cost, fast time to market, and long-term maintenance [18].

Particularly for cryptographic applications, FPGAS have the advantage that the hardware

design can be re-configured or reprogrammed whenever a new security requirement is neces-

sary or when the algorithm must be adapted to support higher security levels [19]. Today

FPGAs are not only used as rapid prototyping devices but as final products [20]. Moreover, by

providing on-chip integration of processors and co-processors, FPGAs are now becoming a

preferred platform for System-on-Chip (SoC). Low-cost and low-power FPGAs are available

in the market, and it is expected they become popular for applications such as wireless sensor

network (WSN) or the Internet of Things (IoT) [21]. For example, Xilinx and Digilent pro-

moted the MicroZed Industrial IoT Starter Kit which is based on Zynq-7000 Programmable

SoC. Since FPGAs are considered as final implementation devices it is desirable to integrate

many functionalities in the same FPGA, in which cryptographic modules are only a part of an

entire system [22].

Nowadays, modern FPGAs have a large amount of programmable logic components and

some resources on chip, such as Digital Signal Processing (DSPs) and Block Rams (BRams)

[23]. If FPGAs are the implementation technology, all resources on chip (DSPs, BRams, etc.)

are available even if they are not used. However, a substantial amount of power can be saved

using embedded blocks instead of programmable logic [24]. Furthermore, embedded blocks

are smaller and have between 5x and 12x lower power than equivalent programmable logic

implementations [24]. The use of DSPs and BRams in FPGA-based cryptography hardware

architectures could contribute to save standard configurable logic for implementing other sys-

tem components and also to save power consumption [25].

This work focuses on a low area FPGA-based hardware construction for the main and most

time-consuming operation in the standardized public key cryptosystems RSA [10], DSA [12]

and DH [26]: the exponentiation operation inGFðpÞ. The use of DSPs and BRams in the

FPGA is exploited to reduce the reconfigurable logic. Other related works have also considered

this design strategy [25, 27, 28]. Our approach is to first create novel digit-digit based arithme-

tic algorithms inGFðpÞ that favor the design of the corresponding hardware architectures.

Under this approach, the multiplier, multiplicand and modulus are partitioned and processed

in digits of k bits, similar to a software approach except that parallelism is exploited.

Compact FPGA HW architecture for PKE in embedded devices
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We show in this work that the digit-digit approach allows low-area hardware designs for

exponentiation inGFðpÞwithout loss of efficiency, while keeping the advantages of a custom-

ized but flexible hardware module suitable for encryption in embedded devices. These advan-

tages come with the property of scalability, thus supporting exponentiation over any field

GFðpÞwith the same datapath, which only depends on the size k of the digit and not on the

size of p.

The main contributions in the present paper are the design of a novel Montgomery multi-

plication algorithm, its corresponding low-area hardware architecture, and a low-area hard-

ware architecture for the Montgomery Powering Ladder (MPL) forGFðpÞ exponentiation that

uses two hardware modules of the Montgomery multiplier as main building blocks. The main

advantage of the design of the MPL hardware architecture is that all the data of the operands

and temporary values are mapped to external memory blocks, so the datapath complexity is

reduced. These memory blocks are used as both input and output sources thus maximizing

their utilization. For example, the same memory block is used for storing input operand and

the partial results during the execution of the algorithm. That is, at the beginning of a clock

cycle one digit di is read and used as input parameter in the multiplier to obtain the digit ri of

the partial result. At the end of the same clock cycle, ri is stored in the same memory block

replacing di. As main distinctives, the hardware architecture for exponentiation inGFðpÞ pro-

posed in this paper:

• Has as main goal low area instead of high performance,

• Implements a datapath based on the digit size instead of the operands size,

• Stores all operands and partial results in memory blocks,

• Is scalable, the same datapath could be used to compute modular exponentiation for differ-

ent operand sizes since datapath is based on the digit size, not in the operand size,

• The efficiency is not lost even using fewer area resources.

The results obtained from a wide experimental evaluation reveal specific configurations

{operand-size, digit-size} that lead to lower-area designs as well as more efficient designs, or

with better performance if compared to related works.

The rest of this paper is organized as follows: Section Exponentiation inGFðpÞ reviews the

operations of multiplication and exponentiation inGFðpÞ. Section Proposed Method presents

the digit-digit computation approach for multiplication and exponentiation inGFðpÞ, and the

design details of the proposed hardware architectures. Section Implementation Results pro-

vides details about the experimentation, describes the implementation results, and provides

comparisons. Finally, section Conclusion summarizes the contributions of this work and gives

directions for future work.

Exponentiation inGFðpÞ
The finite fieldGFðpÞwith p a prime number is defined as the set of integers {0, 1, . . ., p − 1}

together with the operations of addition and multiplication modulo p [29]. Exponentiation in

GFðpÞ is defined as ge mod p with g 2 GFðpÞ and e 2 N. The basic method for exponentiation

by multiplying g by itself e − 1 times is totally inefficient. Faster algorithms have been proposed

to compute ge, one of the most used nowadays is the Montgomery Powering Ladder method

[30].
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The Montgomery Powering Ladder algorithm (MPL)

The MPL algorithm was originally proposed as a way to speed up the scalar multiplication in

the elliptic curve domain [30]. Later, Joe and Yen [31] extended its scope to execute exponenti-

ation in an abelian group. The main advantages of MPL are that it does not have conditional

jumps nor extra operations, as in other approaches, which makes it resistant to certain kind of

side channel attacks, such as the Simple Power Analysis (SPA) attack [32]. The MPL method

forGFðpÞ exponentiation is listed in Algorithm 1. It is assumed that the exponent e is L bits in

size, and ei is the ith bit of e.

Algorithm 1 MPL method for exponentiation inGFðpÞ
Require: g 2 GFðpÞ, e ¼ ðeL� 1; � � � ; e0Þ2 2 N and p a prime number defining GFðpÞ
Ensure: ge mod p
1: R0  1; R1  g;
2: for i = L − 1 downto 0 do
3: if ei = 1 then
4: R0  R0 × R1 mod p;
5: R1  R1 × R1 mod p;
6: else
7: R0  R0 × R0 mod p;
8: R1  R1 × R0 mod p;
9: end if
10: end for
11: return R0;

The crucial operation in the MPL algorithm isGFðpÞmultiplication. One of the most used

algorithms for efficient multiplication inGFðpÞ is the Montgomery method [33]. This algo-

rithm employs only simple addition, subtraction and shift operations to avoid trial division by

the modulus p, which is very expensive in hardware implementations.

Montgomery multiplication

The Montgomery multiplication algorithm [33] (MMA) listed in Algorithm 2 has been used as

a foundation for diverse implementations of modular multiplication. Given two numbers

A;B 2 GFðpÞ, they are first transformed to the Montgomery domain by doing A0 = A × R mod

p and B0 = B × R mod p. A0 and B0 are called Montgomery numbers. MMA uses A0, B0 together

with a number R such that gcd(p, R) = 1. Here, p is an N-bit integer number with 2N − 1�

p< 2N. It is common to use R = 2N. Based on this fact, it is possible to compute the numbers

R−1 and p0 using the identity R × R−1 + p × p0 = 1, with 0< R−1 < p and 0< p0 < R, using

methods such as the extended Euclidean Algorithm. The Montgomery product is defined as

A0 × B0 × R−1 mod p.

Algorithm 2 Montgomery multiplication algorithm (MMA)
Require: Integers A0, B0, R = 2N, and p a N-bit prime number.
Ensure: A0 × B0 × R−1 mod p
1: t  A0 × B0

2: q  (t mod R) × p0 mod R
3: u  (t + qp)/R
4: if u � p then
5: u  u − p
6: end if
7: return u;

The transformation of A to A0 and viceversa can be done using the MMA algorithm, since

A0 = MMA(A, R2), and A = MMA(A0, 1).
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Thus, one modular multiplication A × B mod p inGFðpÞ requires to compute the next four

MMA multiplications:

A0 ¼ MMAðA;R2Þ

B0 ¼ MMAðB;R2Þ

Z0 ¼ MMAðA0;B0Þ

C ¼ MMAðZ0; 1Þ:

The additional operations for number conversion, together with the additional computa-

tion of p0, makes the Montgomery method inefficient for computing a single multiplication in

GFðpÞ if compared with traditional multiplication algorithms.

However, the Montgomery algorithm is significantly faster when many consecutive multi-

plications are required, such as in aGFðpÞ exponentiation (see Algorithm 1). In this case,

domain conversion is needed only at the beginning and at the end of the cumulative

multiplications.

Proposed method

Digit-digitGFðpÞ exponentiation algorithm

The notation used from here on is shown in Table 1. Let X, Y be numbers inGFðpÞ. Using the

radix β = 2k, the digit-based representation of X, Y is defined as in Eq 1.

X ¼
Xn� 1

i¼0

Xib
i
; Y ¼

Xn� 1

i¼0

Yib
i

Xi;Yi 2 f0; 1; . . . ; b � 2; b � 1g

ð1Þ

Lets define MMD(X, Y, p) as the function that computes the Montgomery product of X, Y,

processing them internally in a digit-by-digit fashion. With the previous notation, Algorithm 1

can be transformed into Algorithm 3, where the exponentiation operation ge mod p is com-

puted using a digit-by-digit processing. In that algorithm, it is assumed that both g and ge are

in the Montgomery domain. The exponent e is expressed in the same way than in Algorithm 1,

but ‘1’ must be treated as a Montgomery number, that is, it must be transformed to 1 × 2N

mod p.

Table 1. Notation.

Symbol Description

N Operand size in bits

n Total k-bit digits of operands

p The modulus definingGFðpÞ
X, Y, A Elements inGFðpÞ
β Radix β = 2k

p0 Precomputed value, p0 = −p−1 mod β

Zi The ith digit of element Z 2 GFðpÞ
e Exponent

ei The ith bit of exponent e
L Exponent size in bits

X<i> Value of X at iteration i

https://doi.org/10.1371/journal.pone.0190939.t001
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Algorithm 3 Digit-digit MPL algorithm

Require: e = (eL − 1, � � �, e0)2, g ¼
Pn� 1

i¼0
gib

i, p

Ensure: C ¼
Pn� 1

i¼0
Cib

i
¼ ðgeÞ � R mod p

1: X  1 × 2N mod p;
2: Y  g;
3: for i = L − 1 downto 0 do
4: if ei == 1 then
5: X  MMD0(X, Y, p);
6: Y  MMD1(Y, Y, p);
7: else
8: X  MMD0(X, X, p);
9: Y  MMD1(Y, X, p);
10: end if
11: end for
12: return X;

A direct hardware implementation of Algorithm 3 requires two modules for the MMD
function, say MMD0 and MMD1, which can work in parallel at each iteration. The main advan-

tage of Algorithm 3 is that the k-bit digits of operands X and Y can be stored in n × k memory

blocks, so the hardware realization of the MMD function does not require internal logic to

store its operands.

However, note that in Algorithm 3 the partial result at iteration i become the input data at

iteration i + 1. That is, the operands’ digits are used and overwritten during the same iteration.

So, the main challenge to implement Algorithm 3 without using additional and redundant

storage for operands is to design a control logic that correctly parses, accesses and reuses the

operands’ digits directly from block memories.

The critical component in Algorithm 3 is the embedded Montgomery multiplier. Some

works in the literature have studied and proposed a hardware module for the Montgomery

algorithm using a digit-digit approach. The most recent is reported in [34], and could well

serve as the MMD0 and MMD1 modules required in Algorithm 3. Although the multiplier pre-

sented in [34] was developed to be used in cryptography operations such as in RSA cryptosys-

tems, the multiplier as it is could not be useful for constructing a hardware architecture for

Algorithm 3. The main reasons are:

• The multiplier in [34] does not take into account that the result of the multiplication is used

again as one of the input operands, as it is required in the MPL algorithm. The internal and

external dataflow in the multiplier should be redesigned to avoid additional and redundant

storage.

• In [34], the partial results at each iteration i are stored in a shift register, not in a memory.

Thus, additional latency would be required to move the content of the shift register at the

end of the main loop in Algorithm 3 to the memory storing the multiplication operands.

The first step in our design methodology was to redesign the Montgomery hardware archi-

tecture in [34] in order to have a useful MMD module based on the Montgomery multiplier

for Algorithm 3. Once having the new digit-digit Montgomery multiplier, the next step in the

methodology was to design the novel hardware architecture forGFðpÞ exponentiation.

Hardware architecture for digit-digitGFðpÞmultiplication

Algorithm 4 was presented in [34] for iterative computation of a Montgomery product. In that

algorithm, the product is obtained one digit at a time per clock cycle, stored and obtained

from a shift register A that shifts k-bits (one digit) to the right at a time. This shift register rep-

resents the variable A in Algorithm 4 that stores the partial multiplications at each iteration i.

Compact FPGA HW architecture for PKE in embedded devices
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Algorithm 4 Iterative digit-digit MMA algorithm presented in [34]

Require: X ¼
Pn� 1

i¼0
Xib

i, Y ¼
Pn� 1

i¼0
Yib

i, p ¼
Pn� 1

i¼0
pib

i, 0 < X, Y < 2 × p, R = βn,
with p0 = −p−1 mod β
Ensure: A ¼

Pn� 1

i¼0
aib

i
¼ X � Y � R� 1 mod p

1: A  0;
2: for i  0 to n − 1 then
3: c<0>  0
4: for j  0 to n − 1 do
5: s<j>  [A0 + Xj × Yi]
6: if j = 0 then
7: q<i>  (s<j> × p0) mod β
8: end if
9: r<j>  q<i> × pj
10: {c<j+1>, t<j>} s<j> + r<j> + c<j>

11: A  SHR(A)
12: An−1  t<j>

13: end for
14: A  SHR(A)
15: An−1  c<n>

16: end for
17: return A;

On the one hand, the Montgomery multiplier in Algorithm 4 delivers the result in a shift

register. On the other hand, the input operands for the multiplier reside in memory blocks.

This is the main inconvenient when using Algorithm 4 as the MMD module for Algorithm 3,

because the multiplication result at iteration i (stored in a shift register) must be the input data

to the multiplier at iteration i + 1 (and must reside in a memory block). A shift register—mem-

ory block interface would be needed to solve this problem, of course with the associated cost of

additional resources and an increased latency.

In the present paper we redesign Algorithm 4 and its corresponding datapath in such a way

that the product and partial results in A reside in a memory block. The main changes in the

dataflow include the control for the read/write operations over A in lines 5, 11, 12, 14 and 15

in Algorithm 4. With these changes, the partial Montgomery multiplication at the end of itera-

tion i, in Algorithm 3, can be now treated as an input operand at iteration i + 1 by multiplexing

data ports in the corresponding memory blocks, thus avoiding the introduction of more logic

and time overhead.

Algorithm 4 is based on the Montgomery algorithm proposed by C. Walter [35], Algorithm

5. From a sequential computing approach, the lines 3 and 4 of Algorithm 5 could be performed

by the set of operations described in Eq 2. Once q<i> has been computed, the partial multipli-

cations t1 = X × Yi and t4 = q<i> × p, and addition t5 = A<i> + t1 could be performed in a digit

by digit fashion. That is, for each iteration i in Algorithm 5, A<i+1> is computed by processing

iteratively the digits Xj, Aj, and pj from X, A<i>, and p respectively, thus computing a digit j of

A<i+1> at a time (see Fig 1).

Algorithm 5 Iterative Montgomery Multiplication [36]
Require: Integer X and Y, with 0 � X, Y < 2 × p, R = βn+1 with gcd(p,
β) = 1, and p0 = −p−1 mod β
Ensure: A = X × Y × R−1 mod p ¼

Pn
i¼0

Aib
i

1: A  0;
2: for i  0 to n do
3: q<i>  (A0 + X0 × Yi) × p0 mod β
4: A<i+1>  ([A<i> + X × Yi] + q<i> × p)/β
5: end for
6: return An;
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t1 ¼ X � Yi

t2 ¼ A0 þ X0 � Yi

q<i> ¼ t2 � p0 mod b

t4 ¼ q<i> � p

t5 ¼ A<i> þ t1 þ t4

A<iþ1> ¼ t5=b

ð2Þ

Fig 1 shows the digit by digit operations for computing A<i+1> iteratively. At the beginning

of iteration i, q<i> is computed. Then, each digit of A<i+1> is obtained at each next clock cycle

j. Note that the first digit (always equal to zero) will be discarded at the end of iteration i when

the operation t5/β executes. So, digits of A<i+1> must be stored in the corresponding output

memory starting from iteration j = 2.

Algorithm 6 reflects the modifications to Algorithm 4 needed for computing a digit-digit

Montgomery multiplication, well suited to be used in the proposedGFðpÞ exponentiator.

Algorithm 6 New iterative Montgomery Multiplication algorithm

Require: X ¼
Pn� 1

i¼0
Xib

i, Y ¼
Pn� 1

i¼0
Yib

i, p ¼
Pn� 1

i¼0
pib

i, 0 < X, Y < 2 × p, R = βn

with p0 = −p−1 mod β
Ensure: A ¼

Pn� 1

i¼0
aib

i
¼ X � Y � R� 1 mod p

1: A  0;
2: for i  0 to n − 1 do
3: c<0>  0
4: for j  0 to n − 1 do
5: s<j>  [Aj + Xj × Yi]
6: if j = 0 then
7: q<i>  (s<j> × p0) mod β

Fig 1. A<i+1> computation in a digit by digit approach.

https://doi.org/10.1371/journal.pone.0190939.g001
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8: end if
9: r<j>  q<i> × pj
10: {c<j+1>, t<j>} s<j> + r<j> + c<j>

11: if j > 0 then
12: Aj−1  t<j>

13: end if
14: end for
15: An−1  c<n>

16: end for
17: return A;

The inner loop of Algorithm 6 requires n clock cycles. One clock cycle is needed at the

beginning to compute q<i>. One clock cycle at the end of the inner loop is necessary to store

the last carry, c<n>, in memory A, as explained previously. So, the computing of q<i> (i> 0)

and the writing of c<n> can occur during the same clock cycle. Additionally, the output of

each memory bank can be pipelined to reduce the critical path at the cost of an extra cycle in

the latency. If this is done, the total latency of the hardware module for MMD implementing

Algorithm 6 requires n(n + 1) + 4 clock cycles.

The novel hardware architecture for digit-by-digit Montgomery multiplication is shown in

Fig 2. In that figure, the module for implementing the MMD function has three k × k multipli-

ers, four internal registers, and two 2k-bit adders. q<i>, which is computed only at the first

j-iteration, depends of p0 and t2. Once q<i> is computed, t1 and t4 could be computed in paral-

lel. Finally, the partial results are added to obtain A<i+1>. The dataflow from and to the mem-

ory blocks is orchestrated by a control module realized as a finite state machine.

Hardware architecture for MPL

The hardware module for MMD in Fig 2 is used to construct the hardware architecture for the

MPL algorithm. The inputs of the MMD module are the digits Xj, Yi, pj, p0, and the Aj digits of

the partial multiplication A<i>.

Consider the case ei = 1 in the execution of Algorithm 3. The operand Y is the two inputs to

the MMD multiplier at line 6. Thus, digits from Y are read at the outer (Yi) and at the inner

loop (Yj) of Algorithm 6. The same applies to X when ei = 0. Therefore, we considered dual

port memories when designing the MPL architecture to store and access digits from X and Y
to execute Algorithm 3.

The MMD hardware module in Fig 2 now delivers the multiplication result to a memory,

and that memory becomes in one Montgomery Multiplier operand at the next iteration.

Instead of moving all the content of the memory assigned to A<i+1> to one of the input memo-

ries assigned to X or Y, our approach is to define a strategy to switch the role of the memories:

at one time behaving as an input operand (with read operations) and at another time behaving

as the multiplication result (with write operations).

In this context, a total of four memories are required: BRam-XX, BRam-YY, BRam-X, and

BRam-Y. At the beginning of Algorithm 3, g and ‘1’ are loaded into BRam-X and BRam-Y
respectively, and BRam-XX and BRam-YY play the role of write memories. In the next itera-

tion, the memories change their role, so BRam-XX and BRam-YY are the input operands and

BRam-X and BRam-Y are now write memories to store the multiplication result in the next

iteration. This process continues until all bits of the exponent are processed.

The hardware architecture for the MPL algorithm is shown in Fig 3. The main blocks,

denoted by MMD0 and MMD1, are digit-by-digit Montgomery multipliers executing Algo-

rithm 6. The input ports for these modules are the current input operands at iteration i and the

output port corresponds to the resulting multiplication delivered digit-by-digit. Other signals

such as p0, p and Aj for MMD shown in Fig 2 have been omitted for clarity.
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A control unit manages the entire dataflow and stimulates the memory blocks for reading

and writing. As we commented before, dual-port memories are used to access two digits at a

time from an operand, respectively addressed by the outer and inner loops in Algorithm 6.

These two ports are indicated in the block memories of Fig 3 as ‘a’ and ‘b’.

The proposed hardware architecture presented in Fig 3 takes advantage of available embed-

ded BRams in commercial FPGAs. The exponent e, the modulus p, and the four temporary

variables BRam-X, BRam-Y, BRam-XX and BRam-YY were mapped to FPGA BRams. The

exponent e and modulus p were mapped to single port BRams since only one word per cycle is

Fig 2. New digit-digit Montgomery multiplier architecture, memory and result reside in memory blocks.

https://doi.org/10.1371/journal.pone.0190939.g002
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required. However, the other operands were mapped to dual-port BRams to read from and

write to the memory during the same clock cycle. Since all the operands are stored in indepen-

dent BRams, they can be accessed in parallel without memory bottlenecks. Nevertheless, in the

digit-digit multiplication approach only one digit (word) per clock cycle is computed at a time,

thus increasing the latency, see Algorithm 6.

Although the reusing of memories saves FPGA resources, the control unit to appropriately

stimulate these memories (to read and write digits of operands and partial results) gets more

complex. Each memory port requires signals for data input/output, read/write addresses,

enable/disable signals, among others. The control unit is in charge of all these signals for

orchestrating the algorithm execution and the data flow.

FPGA families have different number of embedded BRams, with a maximum word size.

When the word size is bigger than the one allowed, multiple block RAMs are combined to cre-

ate a single larger RAM. That can increase memory traffic, area and access time due to the

interconnections between block RAMs. Because of that, in this work, only word sizes (digit

size) of 4, 8, 16, 32, and 64 were implemented.

A relevant aspect of hardware architectures for cryptography applications is their resistance

to side-channel attacks. In order to reveal certain secret information when a hardware module

perform a encryption/decryption operation, an attacker can perform an analysis of the power

dissipation, the electromagnetic radiation, or the operating time of internal operations while

the hardware module executes. The Simple Power Analysis (SPA) and Differential Power

Analysis (DPA) proposed by Kocher [37] are two of the best known attacks. However, constant

time algorithms are resistant to certain side-channel attacks. An deep study about side-channel

attacks is presented in [38]. Our proposed Algorithm 6 is a constant time algorithm as the

MPL algorithm is. So the proposed algorithms favors the creation of hardware architecture

resistant to some side channel attacks such as SPA.

Fig 3. Digit-digit Montgomery Powering Ladder architecture.

https://doi.org/10.1371/journal.pone.0190939.g003
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Implementation results

The hardware architectures proposed in this paper for digit-digit Montgomery multiplication

and MPL exponentiation were modeled in VHDL, validated in simulation with Modelsim

10.4, and synthesized for Xilinx FPGAs. The synthesis process was totally automated to gener-

ate the configuration bitstreams. During the experimental phase, we use different FPGA fami-

lies. In order to provide a fairer comparison against related works, we use ISE 14.7 to

implement our designs in the Spartan 3, Virtex 5 and Virtex 6 families. However, to provide

results with more recent devices, already in use for Industrial IoT applications, we use Vivado

V2016.1 to synthesize in the Zynq Z-7010.

The VHDL designs are fully parametrized, so they can be easily configured for different

sizes of the digits and operands. The Montgomery multiplier and MPL algorithms were imple-

mented independently for the digit size k = 2, 4, 8, 16, 32, 64 bits, and the operand size

N = 256, 512, 1024, 2048 bits. These operand sizes are currently used in the standard public

key cryptosystem RSA. For validation, test vectors were created from software implementa-

tions of Algorithms 3 and 6. It is worth to mention that the iterative digit-digit Montgomery

multiplication algorithm proposed in [34] uses operands of size less than N. That restriction is

also kept in this work. In [39] the same algorithm of [34] was adapted to support operands

with size less than or equal to N.

In this work we also follow one of the approaches in the literature when implementing

hardware architectures in FPGAs, the use of embedded IP cores such as DSP modules and

Block Rams (BRams). This is generally done to reduce the amount of standard logic of the

FPGA, leaving more resources to implement other parts of the security protocol or from the

application. Also, this implementation approach allows incrementing the operational fre-

quency and thus improving the execution time and the throughput.

The design and implementation of cryptography hardware architectures in FPGAs depend

on the efficient use of architectural features provided in the targeted FPGA. The Xilinx FPGAs

used in this work have embedded cores DSPs and BRams which have been employed to reduce

the standard logic usage of the proposed design. BRams were used as Dual-Port RAM, and

DSP blocks were configured to a multiplier mode. Similar building blocks can also be found in

other Xilinx FPGA families such as in the Virtex, Spartan, Kintex, Artix, etc, as well as in the

Stratix II and Cyclone II devices of Intel’ FPGAs. So, the proposed technique can be adapted to

other FPGAs with similar features. If not fully, our proposedGFðpÞ exponentiator is highly

portable to other FPGA devices.

The metrics used to evaluate the proposed hardware designs are area (slices), performance

(bits processed per second—bps) and efficiency (bps per FPGA slice). Efficiency metric has

been used in previous works to evaluate the area resources used and performance achieved in

cryptographic hardware architectures [34, 40].

Digit-digit Montgomery multiplier results

The implementation results for the Montgomery multiplier in the Virtex-7 FPGA are shown in

Fig 4. The scalability of the proposed multiplier is confirmed with the area results shown in

Fig 4a, where it is observed that the size of the operands do not greatly affects the number of

slices as the digits do. The best configurations in terms of the use of area are for {k = 8, s = 256},

{k = 4, s = 512} and {k = 8, s = 1024}. When k> 16, the needed area increases considerably, pos-

sibly due to the interconnections between the CLBs.

The operands size also does not affect the frequency of the multiplier but the digit size does,

as it is shown in Fig 4b. This mainly happens because the complexity of multipliers and other

components in the datapath increases as the digits get bigger, thus also increasing the critical
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path in the circuit. A larger operand size will require more digits to process, increasing the

latency but not affecting the word size in the datapath or the complexity of the internal hard-

ware modules (adders and multipliers). However, if a greater digit size is used, the latency is

reduced. This reduction comes by increasing in the throughput, as Fig 4c reveals. The best

result is obtained for k = 64, with a throughput of 311.48 Mbps for an operand size of 1024 bits

in terms of throughput. Fig 4d reveals that the best efficient Montgomery multiplier is

achieved with a digit size k = 16 for an operand size of 512 or 1024 bits. When the operand size

is 2048 bits, the most efficient multiplier is the one using k = 64.

MPL exponentiator results

The implementation results for the Montgomery Powering Ladder architecture are shown in

Fig 5. It can be observed that the complexity of the MPL architecture strongly depends on the

underlying Montgomery multiplier. For digit sizes from 2 to 16, the area resources remain less

than 110 slices. However, the amount of area resources increases considerably when k = 32

and k = 64. In the same way, the clock frequency remains over 180 MHz when k� 16 but

degrades considerably when k = 32 and k = 64, as a consequence of the greater delays due to

the use of a larger area. Throughput is considerably reduced, to the order of Kbps, achieving

its best for greater digit sizes. In terms of efficiency, considerably better implementations are

obtained for greater digit sizes: the best results are for k� 16. When k� 16 the partial multipli-

cations fit in a single DSP module, but when k> 16 partial multiplications in the datapath

require several interconnected DSP modules, which increases the number of slices required

for interconnection and decreases the frequency.

Fig 4. Implementation results of the Montgomery multiplier (Fig 2) in the Virtex-7 FPGA.

https://doi.org/10.1371/journal.pone.0190939.g004
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The results shown in Fig 5 could guide an embedded systems manufacturer to select the

most appropriate configuration that allows embedding a hardware encryption accelerator that

complies with restrictions on the available area resources, clock frequency, throughput and

efficiency.

Comparison

In this section, a comparison of state of the artGFðpÞ hardware exponentiation (MPL: Mont-

gomery Powering Ladder, MSB: Most Significant Bit, LSB: Least Significant Bit) is presented.

Table 2 shows some of the most significant state of the art works for exponentiation inGFðpÞ.
It should be noted that a fair comparison is difficult due to the different technologies and

implementation strategies used. It is not possible to compare all the works with the same met-

ric since not all the designs exploit the FPGAs embedded blocks. For example, the digit serial

[41] approaches do not use DSPs.

However, we remark here the importance of using the embedded FPGA resources, mainly

for efficiency improvement and power saving [24]. The comparison shown in Table 2 is in

terms of the standard logic (slices) since the goal of the proposed design is compactness.

Although a fair comparison against [41–43] is not possible using slices as metric, it can be

done in terms throughput and efficiency. Since [27, 28] also use FPGA embedded resources, a

fairer comparison against those works is possible.

The hardware module for MPL implemented in [27] uses the CIOS Montgomery algorithm

asGFðpÞmultiplier. The number of slices is 3899 plus 16 BRAMs, completing an exponentia-

tion in 7.95 ms in an Spartan 3E. Compared to [27], using the same FPGA and operand size of

1024, our design with k = 16 is more compact (one-tenth the size), occupying only 375 slices.

Fig 5. Implementation result for the MPL architecture for a Virtex-7 FPGA.

https://doi.org/10.1371/journal.pone.0190939.g005
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For k = 32, our design still remains with lower area (one-fourth the size), using 900 slices. In

terms of efficiency, our design is also better than [27], improving the efficiency by 48% (with

k = 16) and 72% (with k = 32).

The results reported in [41] are among the fastest in the literature, but the FPGA area

resources (Virtex-5) consumed are too high, 4060 slices, with an execution time of 2.03 ms.

Our design is more efficient than the MPL hardware module reported in [41]. For a 1024-bit

modulus, our design with k = 16 has an efficiency of 0.286 kbps/slice twice the one achieved by

the best version reported in [41].

The hardware module forGFðpÞ exponentiation reported in [42] for a Virtex-5 FPGA

uses 3218 slices, with a throughput of 322.01 kbps and an efficiency of 0.100 kbps/slice. Our

design with k = 16 uses only 10% of the resources reported in [42] with a better efficiency of

0.286 kbps/slice (more than double).

Our results with the Virtex-5 FPGA can be compared with those of [43]. The best efficiency

reported in [43] is 0.110 kbps/slice using an area of 6776 slices. In contrast, our proposed

architecture for the same device achieves an efficiency of 0.286 kbps/slice using only 160 slices.

To the authors’ knowledge, the most compact modular exponentiation architecture for

FPGAs reported to date is the one presented in [28] for a Xilinx FPGA, using the binary algo-

rithm forGFðpÞ exponentiation and Montgomery and Karatsuba algorithms for field multipli-

cation. Our design outperforms [28] in terms of efficiency, due to the significant savings in

area resources. For a 1024-bit modulus, our design uses half the slices with a better efficiency

of 0.503 kbps/slice, and for a 2048-bit modulus, our design is one-sixth the size, as well as hav-

ing a better efficiency: 0.127 kbps/slice. [28] exploits 17-bit multipliers and 48-bit adder units

in DSP blocks to compute the multiplication of high radix integers. The smaller digit size used

there is 16, which fits the embedded multipliers in the Xilinx FPGAs. That is why the exponen-

tiation hardware module in [28] cannot be further reduced in size.

Table 2. Results and comparison for a 1024-bit exponentiation.

Work Alg. Op.Size

(bits)

FPGA Area

(slices)

BRAMs DSPs Freq

(MHz)

avg Cyc

(x 1000)

avg T

(ms)

Thrg

(Kbps)

Efficiency

(kbps/slice)

our.(k = 16) MPL 1024 Z-7010 109 3 6 106.38 4265 40.10 25.535 0.234

our.(k = 32) MPL 1024 Z-7010 249 5 22 68.49 1087 15.76 64.49 0.258

[27] MPL 1024 Spartan3E 3899 16 20 119.05 946 7.95 128.84 0.033

our.(k = 16) MPL 1024 Spartan3E 375 6 6 77.16 4265 55.29 18.521 0.049

our.(k = 32) MPL 1024 Spartan3E 900 6 22 54.59 1087 19.93 51.387 0.057

[41](k = 2) MSB 1024 Virtex-5 7303 - - 384.62 529 1.38 744.60 0.102

[41](k = 4) LSB 1024 Virtex-5 6217 - - 222.11 397 1.79 572.50 0.092

[41](k = 2) LSB 1024 Virtex-5 4060 - - 384.62 793 2.03 503.60 0.124

[42] MPL 1024 Virtex-5 3218 - - 346.02 1097 3.18 322.01 0.100

[43] LSB 1024 Virtex-5 6776 - - 401 - 1.37 747.4 0.110

[43] MSB 1024 Virtex-5 12716 - - 401 - 0.92 1113 0.087

our(k = 16) MPL 1024 Virtex-5 160 6 8 190.84 4265 22.35 45.809 0.286

our(k = 32) MPL 1024 Virtex-5 266 6 22 73.91 1087 14.71 69.605 0.262

[28](k = 16) LSB 512 Virtex-7 343 - 14 458 - 1.23 416.26 1.214

our(k = 16) MPL 512 Virtex-7 91 6 8 193.12 543 2.82 181.85 1.998

[28](k = 32) LSB 1024 Virtex-7 1060 - 26 485 - 2.33 439.48 0.415

our(k = 64) MPL 1024 Virtex-7 574 10 66 80.21 284 3.55 288.55 0.503

[28](k = 64) LSB 2048 Virtex-7 3558 - 54 399 - 5.68 360.56 0.101

our(k = 64) MPL 2048 Virtex-7 602 10 66 81.11 2174 26.82 76.37 0.127

https://doi.org/10.1371/journal.pone.0190939.t002
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The results obtained show that the proposed MPL architecture is smaller than the state of

the art in terms of slices, while the number of DSPs and memory blocks required is similar to

or less than other works reported in the literature.

Table 3 shows the power estimation generated with Xilinx XPower Analyzer (XPA).

Dynamic Powers refers to the quantity and specific use of each resource, and it is considered

signals toggling and capacitive loads charging and discharging. So, designs with higher

required resources, as well as designs with higher clock frequency will consume more power.

Also, big digits require more hardware resources, and as a result, more power consumption.

So, in low power devices, it is preferably smaller hardware architectures. On the other hand,

quiescent power (also called static power) is not affected by the activity of the design. For

example, in Table 3 quiescent power is the same for all configurations. When small digits are

used, BRams consume most of the power. However, when bigger digits are used, signals and

DSPs require similar power than BRams.

Although a high throughput is not the aim of the exponentiation architecture proposed in

the present paper, it is worth noting that the throughput achieved by our design is better than

representative software implementations, as is shown in Table 4. For example, our proposed

architecture in Virtex-7 is 600 times faster than the timing achieved in [44], which is aimed at

Wireless Sensor Network (WSN) applications.

The MSP430 and ATmega128 are two processors commonly used for sensor network

research. The proposed design in the Zynq-7010 is 190x faster than the MSP430 implementa-

tion, and 697x faster than the ATmega128 implementation. This comparison is only provided

to show that the proposed architecture is faster than the software implementations, and to

show the proposed hardware accelerates the multiplication and exponentiation in prime fields

even using fewer area resources that other hardware implementations in the literature.

These results demonstrate that our proposed design could be used as a small, high-

performance hardware accelerator for security in embedded systems.

In-circuit verification

We carried out an in-circuit verification of ourGFðpÞ exponentiation module by means of a

hardware-software co-design (see Fig 6). Under this context, theGFðpÞ exponentiator is used

Table 4. GF(p) exponentiation in software vs. proposed MPL compact hardware architecture.

Ref. Imp. Time

[45] MSP430 @ 8MHz �3 s

[46] ATmega128 8MHz 10.99 s

[47] WSN Software 22.03 s

our(k = 64) Virtex-7 3.55 ms

our(k = 32) Virtex-5 14.71 ms

our(k = 32) Zynq-Z7010 15.76 ms

https://doi.org/10.1371/journal.pone.0190939.t004

Table 3. Supply power (W) of the MPL architecture.

Size k Clocks Logic Signals BRAMs DSPs IOs Dynamic Quiescent Total

1024 8 0.005 0.003 0.008 0.021 0.006 0.007 0.049 0.178 0.227

1024 16 0.007 0.004 0.012 0.017 0.008 0.013 0.061 0.178 0.239

1024 64 0.006 0.015 0.032 0.036 0.023 0.021 0.132 0.178 0.311

2048 16 0.007 0.004 0.015 0.021 0.008 0.013 0.069 0.178 0.247

2048 64 0.006 0.014 0.029 0.036 0.023 0.021 0.128 0.178 0.307

https://doi.org/10.1371/journal.pone.0190939.t003
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as a coprocessor commanded by a general purpose processor via a bus interface. The co-design

was implemented in the Zynq 7000 SoC family device which combines ARM dual-core Cor-

tex-A9 MPCore processing system (PS) and 28 nm Xilinx programmable logic (PL) in a single

device.

The interconnection between PS and PL is a critical aspect since the overhead due to data

transfer has a crucial impact in the execution time [28]. We use the AXI4-Lite interface as the

communication bus because of its lightweight and area-efficient characteristics if compared to

other version such as the AXI4 and AXI-Stream, which are more generally used for high per-

formance designs.

The MPL hardware module was configured to receive data from the PS in words of 32 bits,

and fill FPGAs BRams with the operands p, g, e and 1 (one in Montgomery domain). Once

BRams are filled with the operators the exponentiation starts. Once the exponentiation is com-

puted the done flag is raised up. At the end of the computation, the MPL architecture sends the

result in words of 32 bits to the PS. Finally, the PS receives the partial results, merges them and

rebuilds the final result. Test vectors were created with the Java API (BigInteger) and used to

validate the proposed system-on-chip.

Fig 6. Proposed hardware-software co-design for in-circuit verification of the MPL exponentiator hardware architecture in the

Zynq Z-7010 MicroZed.

https://doi.org/10.1371/journal.pone.0190939.g006
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The resources used in the hardware-software co-design are shown in Table 5. The modular

exponentiation architecture was configured for a 1024-bit operand size and 32-bit digit size.

With this configuration the PL was configure to run at 65 MHz to meet the timing constraint

shown in Table 2. These results are provided just as a reference.

The hardware-software co-design implementation consist of four modules: Zynq PS, PS

Reset, AXI Interconect and the proposed MPL architecture. The MPL hardware architecture

for 1024 bits operand size with a digit size of 32 require 249 slices as shown in Table 2. How-

ever, to connect the coprocessor with the Zynq-7000 AXI interface was added to the MPL

incrementing the area resource to 310 slices. The AXI Interconect modules requires 151 slices,

and the PS Reset only 7 slices.

Table 6 summarize the power consumption for the proposed SoC implementation. In

descending order, the Zynq PS is the module that consumes the most of the power (89.46%).

DSPs, BRAMs and Signals are the next most time power consuming and finally the logic and

clocks are the components with the least power consumption. Again, these results are pre-

sented just as a reference, to serve as a comparison baseline for further research.

Conclusions

Embedded systems in areas such as the medical, military, and surveillance sectors demand

secure, low-power and small sized security modules that provide the security services required

in networked and pervasive environments. Public key encryption is a useful tool to provide

those security services, particularly authentication, integrity and non-repudiation. The present

paper addressed the design and implementation issues of a low-area hardware cryptographic

module to support the most time consuming operation in public key cryptosystems, exponen-

tiation in prime fieldsGFðpÞ.
Our design goal was to achieve a low-area hardware architecture suitable to be used as an

accelerator of cryptographic operations in embedded systems with reduced computing

Table 6. Supply power (W) for the SoC in the MicroZed board.

Power (W)

Clocks 0.004

Signals 0.010

Logic 0.006

BRAM 0.013

DSP 0.013

Zynq PS 1.529

Dynamic 1.575

Device Static 0.134

Total On-Chip Power 1.709

https://doi.org/10.1371/journal.pone.0190939.t006

Table 5. Area usage of the hardware-software co-design implementation in the MicroZed board.

Resource Used Available Utilization (%)

Slices 459 4400 10.43

DSP48E1 22 80 27.50

RAMB36E1 4 60 6.67

RAMB18E1 2 120 1.67

https://doi.org/10.1371/journal.pone.0190939.t005
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resources, as typically found in pervasive computing environments. The approach to achieve a

low-area design is to process the operands digit-by-digit. The results presented in this paper

allow selecting the most appropriate configuration {digit size, operand size} for the exponenti-

ation module to meet specific application requirements of the available area resources, clock

frequency, and expected throughput. In general, the most efficient designs forGFðpÞ exponen-

tiation were obtained for k = 16 and k = 64.

The proposed design forGFðpÞ exponentiation uses one-half to one-tenth of the FPGA

resources needed by the existing methods in the literature. Thus, more resources are available

for implementing other modules becauseGFðpÞ exponentiation is only a part of a complete

security scheme. So, the MPL architecture is a functional cryptographic module that can be

used as a coprocessor in the implementation of cryptographic primitives, such as digital signa-

ture in embedded systems.

Without loss of efficiency, our design allows a better usage of FPGA’s slices and at the same

time outperforms the running times ofGFðpÞ exponentiation in software implementations.
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