
978-1-5090-5859-4/17/$31.00 c©2017 IEEE

A compact FPGA-based microcoded coprocessor
for exponentiation in asymmetric encryption

L. Rodriguez-Flores∗, Miguel Morales-Sandoval†, R. Cumplido∗, C. Feregrino-Uribe∗, I. Algredo-Badillo‡

∗Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Tonantzintla, Mexico
lrodriguez@inaoep.mx

†Cinvestav Unidad Tamaulipas, Mexico
‡Ingenieria en Tecnologias de la Informacion, Universidad Politecnica de Tlaxcala, Mexico

Abstract—Exponentiation in multiplicative groups is the most
time-consuming and critical operation for implementing asym-
metric cryptography for key exchange, digital signatures, and
digital envelopes in security protocols. Most of the designs pre-
viously reported to support this operation are mainly devoted to
achieve the highest performance. However, in current computing
paradigms highly dominated by interconnected small, computing-
constrained devices, small but efficient cryptographic hardware
designs are better preferred. This paper presents a novel co-
processor for exponentiation, having as main design goal to
have a compact design well suited for constrained computing
environments. As key aspect, the proposed coprocessor uses a
microprogramming approach together with a pipelined datap-
ath that processes operands digit-by-digit. The coprocessor is
designed to exploit the available resources in modern FPGAs,
thus reducing the usage of standard logic. The experimental
results reveal that our design achieves better efficiency than other
implementation approaches.

I. INTRODUCTION

Asymmetric (public key) cryptosystems, such as RSA,
DSA, DH, and ElGammal, base their security in the loga-
rithm discrete problem [1]. For a multiplicative group F?p =
{1, 2, ...p− 1} with p a prime number, the discrete logarithm
problem is defined as: Given a generator g and an element
y in F?p, find the smallest positive integer x such that gx =
y mod p. This problem has been considered computationally
hard [1]. As F?p is a subset of the finite field Fp, it is common
to refer to exponentiation in F?p or Fp indistinctly.

The exponentiation gx is the most time-consuming opera-
tion in public key cryptosystems. That is why several custom
hardware modules have been proposed to accelerate this costly
operation, most of the related works have had the main design
goal of high performance and throughput [2].

However, with the advent of new computing paradigms
as the Internet of Things (IoT), recently a design goal in
cryptographic hardware is to create hardware modules with
small area resources and more efficient designs, with better
usage of the constrained computing resources available.

Field Programmable Gateway Arrays (FPGAs) are already
used in emerging IoT applications such as Smart City infras-
tructure, Smart Grid, intelligent factory automation, etc [3].
Furthermore, FPGAs have been successful implementation
platforms for cryptography algorithms, and for compact de-
signs [4]. Compact designs in modern FPGAs is mainly

achieved by taking advantage of the high-performance capa-
bilities of embedded IP-cores such as DSP48E and Block Ram
memories (BRams) [5], [6].

In this paper, we explore the design of compact hardware
for Fp exponentiation having as key features:
• The implementation of a low area datapath that processes

the digits of the operands digit-by-digit. This allows
to propose a hardware architecture with a simplified
datapath. When this design is implemented in the modern
FPGAs recommended for IoT applications, less standard
logic is used but the embedded IP blocks are used as
much as possible.

• A more compact design is obtained by implementing
the control unit using a microprogramming approach. Fp
exponentiation hardware found in the literature usually
implement the control logic as a FSM to orchestrate the
dataflow and algorithm execution. However, in this work
we demonstrate that the microprogramming approach is
a good alternative since the control unit is simplified and
the associated area reduced.

The proposed design was described in VHDL, prototyped
and validated for the Xilinx Virtex 7 FPGA. Different operand
and digit sizes were considered during experimentation, lead-
ing to various configurations for the memory blocks and datap-
ath. As a result, it was possible to find those configurations that
achieve smaller area, higher throughput, or higher efficiency.

The rest of this paper is organized as follows: Section II
briefly reviews exponentiation in Fp. The proposed compact
architecture for Fp exponentiation is presented in Section III.
Section IV describes and discusses the experimentation results.
Finally, Section V summarizes contributions of this work and
gives directions for future work.

II. Fp EXPONENTIATION

Modular exponentiation is often implemented using the
Montgomery Powering Ladder exponentiation (MPL) algo-
rithm (Algorith 1) that is a constant time algorithm resistant
to Simple Power Analysis attacks [7].

The modular multiplication is the underlying operation in
Fp exponentiation. The Montgomery method [8] has been used
extensively for modular multiplication because it uses simpler

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 229

and less costly operations as additions and shifts, well suited
for hardware implementations.

A. Montgomery method
Montgomery multiplication is defined as follows. Let the

modulus p be an integer number of N -bits, 2N−1 ≤ p < 2N .
Let R and p being relative primes, this means gcd(p,R) = 1.
Thus, it is possible to compute the numbers R−1 and p′ using
the identity R × R−1 + p × p′ = 1, with 0 < R−1 < p and
0 < p′ < R, using methods such as the extended Euclidean
Algorithm.

The Montgomery product of two numbers A,B ∈ Fp is
defined by equation 1, where A′, B′ are the Montgomery
numbers corresponding to A,B respectively, and A′ = A ×
R mod p, B′ = B ×R mod p.

MMult(A,B) = C ′ = A′ ×B′ ×R−1 mod p (1)

The Montgomery algorithm has a significant advantage
when many consecutive multiplications are required, since
number conversions will be only required at the beginning
and the end of the accumulative multiplications, such as in Fp
exponentiation.

Algorithm 1 Montgomery Powering Ladder algorithm for Fp
exponentiation
Require: m ∈ Fp

Require: e = (eL−1, · · · , e0) ∈ N
Ensure: me mod p
1: R0← 1;
2: R1← m;
3: for i = L− 1 downto 0 do
4: if ei == 1 then
5: R0← R0× R1 mod p;
6: R1← R1× R1 mod p;
7: else
8: R0← R0× R0 mod p;
9: R1← R1× R0 mod p;

10: end if
11: end for
12: return R0;

B. Digit-digit Fp exponentiation
Due to the large operands size (1024-4096 bits) usually

required in some logarithm discrete based cryptosystems,
parallel implementations of Fp exponentiation consume a high
number of area resources and thus of energy. One approach to
shrink down the hardware designs is not to process operands
in parallel but iteratively by means of a digit-based processing
approach [9], [6].

A small, digit-based design for Fp multiplication, as the
one proposed in [9] can be used to compute the partial
multiplications in lines 5,6 and 8,9 of Algorithm 1. The design
in [9] uses a digit-by-digit processing approach, which has the
following advantages:
• Operands can be stored in memory blocks, each operand’s

digit stored in a memory word (sequential data access but
parallel processing).

• The datapath complexity will depend on the digit size
instead of the operand size (scalable design).

• Smaller width of datapath and processing modules i.e.,
multipliers (compact designs).

III. HARDWARE DESIGN FOR DIGIT-DIGIT Fp
EXPONENTIATION

In this work, we retake the digit-by-digit processing ap-
proach proposed in [9] and apply it to construct a functional
Fp exponentiator, well suited to accelerate that costly operation
in cryptographic protocols.

The drawback with the algorithm proposed in [9] is the
use of a shift register to store the partial results of the
multiplication. Since the result (in a shift register) must be
used as the next input operand (in block memory), it would
be used more logic than needed and additional latency will be
required to transfer data from the shift register to the memory
at each iteration.

In order to serves as a building block for constructing the Fp
exponentiatior, in this work we redesign the compact multiplier
presented in [9]. Main changes include:
• Removing the shift register and use a memory block to

store the digits of partial results.
• Modification of the control logic in the multiplier, allow-

ing that the memory block for the partial multiplication
reads and writes in the same memory address.

• The frequency of the hardware implementation was im-
proved by adding more register for specific variables in
the digit-by-digit processing algorithm.

Algorithm 2 is the modified version of the algorithm origi-
nally presented in [9]. From this algorithm, we provide a new
functional hardware architecture (Figure 1) for Montgomery
multiplication that keeps all the operand and result in external
memory blocks and perform the processing under a digit-by-
digit fashion. The result is obtained iteratively and stored in
memory A.

Algorithm 2 Digit-digit Montgomery algorithm
Require: X=

∑n−1
i=0 Xiβ

i, Y =
∑n−1

i=0 Yiβ
i, p=

∑n−1
i=0 piβ

i,
0 < X, Y < 2× p,R = βn with p′ = −p−1 mod β

Ensure: A =
∑n−1

i=0 aiβ
i = X × Y × R−1 mod p

1: A← 0;
2: for i← 0 to n− 1 do
3: c0 ← 0
4: for j ← 0 to n− 1 do
5: sj ← [Aj +Xj × Yi]
6: if j = 0 then
7: qi ← (sj × p′) mod β
8: end if
9: rj ← qi × pj

10: {cj+1, tj} ← sj + rj + cj
11: if j > 0 then
12: Aj−1 ← tj
13: end if
14: end for
15: An−1 ← cn
16: end for
17: return A;

Although the digit-by-digit processing approach simplifies
the design, the control logic for data routing and algorithm
execution becomes more elaborated. The control block is
required to manage memory addresses, multiplexers, set/reset
registers, and enable/disable write memories.

The MPL architecture can be implemented using two inde-
pendent Montgomery datapath multipliers. At each iteration,
it is required to compute one square and one multiplication

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 230

× +

sj

× qi t6j

× + cj

p′

Bram-y

Bram-x

Bram-p

Bram-A

m
u
x

/k

/k

/k

/k

/ k

/k

/2k

/
2k + 1

/
k

/2k

/ 2k + 1

/k + 1

(msb)

/

k (lsb)

/k

/ k

/

k

/

k + 1

/k

Fig. 1. Datapath for the Montgomery hardware implementation.

over different parameters. The first multiplier always takes
R0 as one input, and the second multiplier always takes R1.
The second input operand in each multiplier depends on the
current bit tested in the exponent. Additionally, to implement
the square operation, dual port memories are required because
the same operand in memory must be assigned to the two
input buses in the multiplier.

Furthermore, it is not possible to overwrite the memories
of operands, operands must be kept and used in the next
iterations of Algorithm 2, at least during an entire i iteration.
Consequently, two temporary memories R00 and R11 are
required. Firstly, the operands are stored in R0 and R1 and
the partial results are written in R00 and R11, but in the next
iteration, R00 and R11 now store the operands and R0 and
R1 the partial results.

At each partial Montgomery multiplication control signals
and memory addresses are the same for both datapaths, thus
a single control logic module can be used and shared by both
Montgomery multipliers. Another control logic module is still
needed to orchestrate the dataflow of Algorithm 1 and control
signals of the four memories (R0, R1, R00, R11). The MPL
architecture design is shown in Figure 2.

Control
Mont.

Datapath
Mont.

Datapath
Mont.

Control
MPL

C
on

tr
ol

M
em

or
ie
s

Bram-p

R1

R0

R11

R00

Fig. 2. Digit-digit compact MPL architecture.

A. Control block
In order to analyze the impact of the control logic module

in the entire hardware architecture for the Fp exponentiator,
two implementation options were followed: the first one is
the classic used based on finite state machine (FSM) and the
second one was the microcode approach.

TABLE I
MICROCODE FOR THE CONTROL MODULE.

addr-x addr-p addrA wrA rst-cj load-qi mux-cj to store
0 3f 3b 1 0 0 0 0x0ffb8
0 0 3c 1 0 0 0 0x003c8
1 0 3d 1 0 0 0 0x103d8
2 1 3e 1 1 1 0 0x207ee
3 2 3f 1 1 0 1 0x30bfd
4 3 3f 0 0 0 0 0x40ff0
5 4 0 1 0 0 0 0x51008
...

...
...

...
...

...
...

...

3e 3d 39 1 0 0 0 0x3ef798
3f 3e 3a 1 0 0 0 0x3ffba8

TABLE II
IMPLEMENTATION RESULTS FOR THE DATAPATH BLOCK (1024 BITS

OPERAND SIZE)

Digit Slices BRams DSP Freq. (MHz)

16 16 0 4 232.61
32 66 0 11 135.64
64 230 0 33 97.66

The control module for the Montgomery multiplier imple-
mented with a FSM only depends on the actual state. The
FSM is mainly constructed with counters, comparators, and
registers. An FSM implementation requires a considerable
amount of standard logic to implement all these components
together with the logic to enable or disable control signals in
those components depending on the current state. Contrary, a
microprogramming approach stores the necessary signals in a
memory, and only logic to read these instructions is needed
as well as a memory block to store the microprogram.

Suppose that the operand has size = 1024 and the digit size
is k = 16, so there are 1024/16 = 64 digits per operands, all
of them sequentially accessed but processed in parallel. Since
the latency in the Montgomery multiplier is 64∗65+4 = 4162,
a Montgomery multiplication, for this example, takes 4162
cycles. Note that at each i iteration of Algorithm 2, the control
signals are identical. Consequently, it is possible to store only
the signals for one iteration and read them many times. In the
previous example, it is required to store only 65 control signals
and read them 64 times. The microcode for the architecture in
Figure 2 is presented in the Table I. The address of the Bram-
y memory is used as the index to count how many times the
microcode is read. We propose to use the block memory that
stores the operand P to store the microcode, and use a dual
port memory; one port to read the operand P and the other to
read the microcode.

IV. IMPLEMENTATION RESULTS

All the design of the MPL was modeled in VHDL, validated
in simulations with Modelsim 10.4, and synthesized for the
Virtex 7 Xilinx FPGA using ISE 14.7. The datapath and the
control logic (FSM and microprogramming) modules of the
exponentiator were independently implemented obtaining the
results shown in Tables II and III, respectively.

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 231

TABLE III
IMPLEMENTATION RESULTS FOR THE CONTROL BLOCK, USING THE

MICROPROGRAMMING AND FSM APPROACHES (1024 BITS OPERAND
SIZE)

Digit Slices BRams DSP Freq. (MHz)

16 8 0 0 447.42
32 9 0 0 490.67
64 9 0 0 397.93

16 (FSM) 34 0 0 227.58
32 (FSM) 20 0 0 339.21
64 (FSM) 15 0 0 398.40

Most of the logic in the datapath are multipliers and
adders which are implemented by the embedded DSP modules.
Contrary to the datapath, the hardware resources for the control
unit decrease with bigger digits in the FSM approach, but in
the microprogramming approach the resources do not vary.

The MPL exponentiator architecture was implemented with
k = 16, 32, 64 bits digit sizes and 1024 bits operand size,
obtaining the results shown in Table IV. The microprogram-
ming control reduces the required slices and increments the
efficiency. With k = 16 is obtained the best efficiency. Thus,
2048 and 4096 bits operand sizes were tested with k = 16
digit size, shown in Table V. From these results, it seems that
the digit size affects the required slices more than the operand
size. If the operand size is incremented, he datapath does not
need to be modified, but the control logic needs to use bigger
counters and comparators. Invariably, the architecture requires
more clock cycles when the operands’ size increases.

TABLE IV
IMPLEMENTATION RESULTS FOR MPL ARCHITECTURE, USING THE

MICROPROGRAMMING AND FSM APPROACHES (1024 BITS OPERAND
SIZE)

Digit Slices BRams DSP Freq. Throughput Efficiency
(MHz) (Mbps) (Kbps/slice)

16 84 6 8 208.33 0.050 0.595
32 213 6 22 109.20 0.102 0.482
64 607 11 66 89.62 0.322 0.531

16 (FSM) 104 6 8 192.41 0.046 0.444
32 (FSM) 228 6 22 99.60 0.093 0.411
64 (FSM) 574 10 66 80.21 0.288 0.503

TABLE V
IMPLEMENTATION RESULTS FOR THE MPL WITH MICROPROGRAMMING

APPROACH (16 BITS DIGIT SIZE)

Size Slices BRams DSP Freq. Throughput Efficiency
(MHz) (Mbps) (Kbps/slice)

1024 84 6 8 208.33 0.050 0.595
2048 105 6 8 207.38 0.025 0.239
4096 95 6 8 210.08 0.012 0.134

Table VI show a comparison with the state of the art works.
Okzusoglu [5] presents a compact hardware architecture for
a modular exponentiation based on the Montgomery method
and MPL, using a systolic array approach. To the author’s
knowledge, [6] is the most compact implementation of Fp

exponentiation. However, our proposed architecture is smaller
than [6] and outperforms implementations in [5] [6] in terms
of efficiency.

TABLE VI
RESULTS AND COMPARISON FOR A 1024-BIT EXPONENTIATION.

Work Alg. FPGA Area Freq. Thrg Efficiency
(slices) (MHz) (Kbps) (Kbps/slice)

[5] MPL Spartan3E 3899 119.05 128.84 0.03
[2](k=2) LSB Virtex-5 4060 384.62 503.60 0.12

[10] MPL Virtex-5 3218 346.02 322.01 0.10
[11] LSB Virtex-5 6776 401.00 747.40 0.11

[6](k=32) LSB Virtex-7 1060 485.00 439.48 0.41
our (k=16) MPL Virtex-7 84 208.33 50.00 0.59
our (k=32) MPL Virtex-7 213 109.20 102.00 0.48

V. CONCLUSIONS

A compact design for exponentiation in Fp, well suited for
implementing asymmetric encryption over constrained small
computing devices was discussed. A key feature to achieve
compactness without loss of efficiency was to use a digit-
by-digit computing approach and implement the control logic
using microcoding. The proposed hardware design can be
used in embedded security applications based on the discrete
logarithm problem. Further research can be conducted to
use the ideas presented here to obtain a compact design for
cryptosystems based on the Elliptic Curve Discrete Logarithm
Problem.

REFERENCES

[1] K. S. McCurley, “The discrete logarithm problem,” in Cryptology and
Computational Number Theory, ser. Proceedings of Symposia in Applied
Mathematics, C. Pomerance, Ed., vol. 42. Providence: American
Mathematical Society, 1990, pp. 49–74.

[2] G. Sutter, J. Deschamps, and J. Imana, “Modular multiplication and ex-
ponentiation architectures for fast RSA cryptosystem based on digit se-
rial computation,” IEEE Transactions on Industrial Electronics, vol. 58,
no. 7, pp. 3101–3109, July 2011.

[3] K. Morris, “Fpgas in the IoT,” Electronic Engineering Journal, 2014.
[4] D. B. Roy, P. Das, and D. Mukhopadhyay, ECC on Your Fingertips:

A Single Instruction Approach for Lightweight ECC Design in GF(p).
Cham: Springer International Publishing, 2016, pp. 161–177.

[5] E. Oksuzoglu and E. Savas, “Parametric, secure and compact implemen-
tation of RSA on FPGA,” in International Conference on Reconfigurable
Computing and FPGAs, 2008, pp. 391–396.

[6] I. San and N. At, “Improving the computational efficiency of modular
operations for embedded systems,” Journal of Systems Architecture,
vol. 60, no. 5, pp. 440 – 451, 2014.

[7] P. C. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,” in
Proceedings of the 19th Annual International Cryptology Conference
on Advances in Cryptology, ser. CRYPTO ’99. London, UK, UK:
Springer-Verlag, 1999, pp. 388–397.

[8] P. Montgomery, “Modular multiplication without trial division,” Math-
ematics of Computation, vol. 44, no. 170, pp. 519–521, 1985.

[9] M. Morales-Sandoval and A. Diaz-Perez, “A compact FPGA-based
Montgomery multiplier over prime fields,” in Proceedings of the 23rd
ACM International Conference on Great Lakes Symposium on VLSI, ser.
GLSVLSI ’13. New York, NY, USA: ACM, 2013, pp. 245–250.

[10] T. Wu, S. Li, and L. Liu, “Fast, compact and symmetric modular expo-
nentiation architecture by common-multiplicand Montgomery modular
multiplications,” Integration, the VLSI Journal, vol. 46, no. 4, pp. 323
– 332, 2013.

[11] A. Rezai and P. Keshavarzi, “High-throughput modular multiplication
and exponentiation algorithms using multibit-scan-multibit-shift tech-
nique,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 23, no. 9, pp. 1710–1719, Sept 2015.

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 232

