
978-1-5090-5859-4/17/$31.00 c⃝2017 IEEE

Approximate Frequent Itemsets Mining on Data
Streams Using Hashing and Lexicographic Order in

Hardware
Lázaro Bustio-Martı́nez

René Cumplido
Martı́n Letras-Luna

Claudia Feregrino Uribe
National Institute for Astrophysics, Optics and Electronic.

Luis Enrique Erro No 1,
Sta. Ma. Tonantzintla, 72840, Puebla, México.

Email: {lbustio, rcumplido, mlteras, cferegrino}@inaoep.mx

Raudel Hernández-León
José M. Bande-Serrano

Advanced Technologies Application Center.
7𝑎 ♯ 21812 e/ 218 y 222,

Rpto. Siboney, Playa, C.P. 12200, Havana, Cuba.
Email: {rhernandez, jbande}@cenatav.co.cu

Abstract—Frequent Itemsets Mining is a Data Mining tech-
nique that has been employed to extract useful knowledge
from datasets; and recently, from data streams. Data streams
are an unbounded and infinite flow of data arriving at high
rates; therefore, traditional Data Mining approaches for Frequent
Itemsets Mining cannot be used straightforwardly. Finding al-
ternatives to improve the discovery of frequent itemsets on data
streams is an active research topic. This paper introduces the
first hardware-based algorithm for such task. It uses the top-
𝑘 frequent 1-itemsets detection, hashing and the lexicographic
order of received items. Experimental results demonstrate the
viability of the proposed method.

I. INTRODUCTION

We are in the Big Data era. In order for these big data
to be useful, they must be processed to obtain their hidden
knowledge. Data Mining (DM) gathers the tools needed to
face such immense data volumes. One DM technique that
has achieved outstanding results is Frequent Itemsets Mining
(FIM).

Datasets were the most used data sources for FIM, but
recently data streams are gaining attention due to the novel
applications that employ them (financial analysis and data
centers among others) [1]. In streams, data evolves over
time and are transmitted at high speeds making impossible
to store them for offline processing. This situation provokes
that traditional approaches for mining datasets cannot be used
straightforwardly. Therefore, finding alternatives to improve
this task on data streams is an active research topic. One
of such alternatives is to develop parallel algorithms that
can be implemented in custom hardware architectures taking
advantage of the intrinsic parallelism of such devices.

The main goal of this paper is to propose a method for fre-
quent itemsets mining based on hashing and the lexicographic
order of the received items. This approach is oriented to
discover frequent itemsets in data streams composed of small
transactions in large alphabets. It is valid to say that, upon
to our knowledge, that this is the first algorithm proposed to

solve this subproblem and the first one to use the lexicographic
order of received items and hashing for the frequent itemset
detection.

II. THEORETICAL BASIS

Let 𝐼 = {𝑖1, 𝑖2, .., 𝑖𝑛} be a set of 𝑛 items and 𝐷 be a
transactional data source: An itemset 𝑋 is a set of items over
𝐼 such that 𝑋 ⊆ 𝐼 . A transaction 𝑡 ∈ 𝐷 over 𝐼 is a couple
𝑡 = (𝑡𝑖𝑑,𝑋) where 𝑡𝑖𝑑 is the transaction identifier, and 𝑋 ⊆ 𝐼 .
The support of an itemset 𝑋 is the fraction of transactions in
𝐷 containing 𝑋 . An itemset is called frequent if its support
is greater than a given minimal support threshold minsup.
An important characteristic of frequent sets is that they are
composed of subsets that have been also frequent (Downward
Closure property) [2]

A data stream is a continuous, unbounded and not necessar-
ily ordered, real-time sequence of data items. In data streams,
three major constraints can be verified [1]: Continuity: items
in streams arrive continuously at a high rate; Expiration: items
can be accessed and processed just once, and Infinity: the total
number of data is unbounded and potentially infinite.

In data streams, a window is an excerpt of transactions that
can be created using one of the following three approaches:
Landmark, Damped or Sliding Window Models. This paper is
focused on Sliding Window Model (SWM). In SWM, given
a window 𝑊 of size 𝑤 = ∣𝑊 ∣ only the latest 𝑤 transactions
are utilized in the mining process. As new transactions arrive,
the old ones in the sliding windows are excluded [1].

As it was stated before, data streams are infinite and it is
unrealistic to store all the data transmitted, but it is indeed
possible to store an excerpt of them. Besides, the number of
itemsets obtained grows exponentially with the input data size,
so the excerpts of data stream must be larger enough to be
useful and at the same time shorter enough to fit in memory.
A valid solution to this dilemma is using hash functions. In

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 149

Tr
an

sa
ct

io
n’

s

 le

ng
th

Alphabet’s length

Data streams are
composed of long
transactions in a
large alphabet.

Data streams are
composed of short
transactions in a large
alphabet.

Data streams are
composed of long
transactions in a
small alphabet.

Data streams are
composed of short
transactions in a
small alphabet.

12

3 4

Fig. 1. Different subproblems derived from the Frequent Itemsets Mining on
data streams.

this paper, the 𝐻3 hash family is used due to its advantages
which are described in [3].

III. RELATED WORK

FIM has been applied to discover frequent itemsets on
datasets and recently, on data streams. Algorithms based on
Apriori [2], Eclat [4] and FP-Growth [5] were the most
used algorithms for FIM on datasets. For data streams, from
the reviewed literature was noticed that Space-Saving [6]
and systolic trees-based approaches were preferred (for space
reason, the state-of-the-art section only refers the most relevant
paper).

Apriori-based approach iterates several times over the data
and needs to download the dataset into the hardware: this
violates all the constraints of data streams [7]. Algorithms
derived from Eclat represent the data using the vertical dataset
representation, which avoids the itemsets generation stage
from Apriori, but data must be known before processing. Once
again, this violates the three constraints of data streams [8].
FP-Growth derived approaches uses a tree-like data represen-
tation which data can go through the tree without delays. But
two traverses over the data are needed, one to build up the
tree and other for the mining itself. Although the tree-like data
structure is very well suited for data streams processing, these
two traverses violate the Infinity, Continuity and Expiration
constraints of data streams [9]. Also, due to the immense
itemsets explosion of FIM problem, a tree-based approach can
be only used in problems where alphabets are short. Space-
Saving was used for FIM in data streams, but all derived
papers were focused on detecting frequent 1-itemsets, which
is a reduced version of general FIM [10]. In [11] authors
adopt a tree-based approach using LWM and SWM. Also, a
preprocessing stage, formed by a top−𝑘 frequent 1−itemsets
detection process performed in software), was introduced and
a parallel algorithm designed to be implemented in hardware
devices (such as FPGAs) was proposed.

From the review of the state-of-the-art it is derived that the
frequent itemsets detection problem can be divided into four
distinct subproblems as it is presented in Figure 1. This paper
is oriented to solve the fourth subproblem of FIM on data
streams.

Transactions

Q
(Hash H3)

Block
Controller

hash_address
hashed transaction

T
(Hash Table)

data_out

data_in
addr

Transactions Reception

Itemsets
generator

Memory
controller
(Hash H3)

Itemsets
Memory (L)

itemsetA itemsetB

itemsetA itemsetB

Frequent
itemsets

Transaction response
(transaction, ocurrences)

Frequent Itemsets Mining

Transaction
request

Producer

Consumer

Fig. 2. Schematic of the proposed method based on hashing and lexicographic
order of received items.

IV. PROPOSED METHOD

When the number of elements in 𝐼 is large, the number
of itemsets produced is intractable, so new mining strategies
according to Figure 1 should be adopted. One of these strate-
gies is the use of the lexicographic order of received items
and the detection of top−𝑘 frequent 1−itemsets (which can
be seen as a preprocessing stage). Using this preprocessing, all
itemsets detected as infrequent are removed, this avoids the use
of hardware resources to process unpromising data (supported
on the Downward Closure property). Figure 2 shows a diagram
of the proposed method.

Following a proper order, the tree-based data structure used
in [11] can be mapped into a linear array, where nodes can
be directly accessed just by knowing their positions. Let be
an item 𝑖𝑡𝑒𝑚 in position 𝑖 of a transaction 𝑡 received from
a data stream 𝑆 assuming a lexicographic ordering in items
of 𝑡. Let be 𝐿 a linear array of generated itemsets. Let be
𝐹 a FIFO queue of generated itemsets represented by their
positions in 𝐿. Therefore, the generated itemsets from 𝑖𝑡𝑒𝑚𝑖

and 𝑖𝑡𝑒𝑚𝑖−1 can be known using the following expressions:
(1) 𝑙𝑑 = 𝐿𝑒𝑥𝐷𝑖𝑠𝑡(𝑖𝑡𝑒𝑚𝑖, 𝑖𝑡𝑒𝑚𝑖−1), (2) 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝐴 = 𝑓×2(𝑙𝑑)

and (3) 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝐵 = 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝐴 + 2(𝑙𝑑−1) where 𝑓 is the
positions in 𝐿 of generated itemsets which are stored in 𝐹 ; and
𝑖𝑡𝑒𝑚𝑖 and 𝑖𝑡𝑒𝑚𝑖−1 are the current and previous items received
from 𝑡 respectively. 𝐿𝑒𝑥𝐷𝑖𝑠𝑡 is lexicographic distance which
is defined as the number of items following the lexicographic
order that separates two items.

The proposed mining method is implemented using two
separate parallel processes considering the Producer-Consumer
design pattern. One of the proposed processes (named Trans-
actions Reception) receive transactions from the processing
window and store them in an intermediate buffer. The other
process (named Frequent Itemsets Mining), simultaneously
generates the itemsets using the transactions stored and obtains
the frequency counting of the generated itemsets.

When a transaction 𝑡 is received by the Transactions recep-
tion process, then a hash function is evaluated.

For each transaction 𝑡 received:

1) If a collision does not occur, then 𝑡 is stored in the slot
𝑝 = ℎ𝑞 (𝑡) of 𝑇 . In consequence, the collisions field is
set to 0 and the occurrences field is set to 1.

2) If a collision occurs, then it is verified if the slot 𝑝 is
already occupied by 𝑡𝑜𝑙𝑑 = 𝑡 or by another transaction
𝑡𝑜𝑙𝑑 ∕= 𝑡 already stored.

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 150

0...00000000010110 0...0000000000011 0...0000000000000000100001011001101 1
... ...

Hash Table

occurrences collisions
0 bits

transactions
1 + n + log2(n)log2(|W|)log2(|W|)

Fig. 3. A tuple in hash table 𝑇 .

FIFO A
d_in
rd_en
wr_en
rst

d_out
F
I
F
O
s

F

FIFO B
d_in
rd_en
wr_en
rst

d_out

Control
d_in_FIFO_A

rd_en_FIFO_A
wr_en_FIFO_A

rst_FIFO_A

d_in_FIFO_B
rd_en_FIFO_B
wr_en_FIFO_B

rst_FIFO_B

ALU_en
ALU_start

q
item

previous

transaction_request

transactions
start
clk
rst

res_expr_A
res_expr_B
ALU_end

q_FIFO_A
q_FIFO_B

stream
start

clk
rst

LD ^ X

- ^ +1

ItemsetA

ItemsetB

en
start
q
item
prev

ALU_end

ALU

Fig. 4. Hardware-level schematic describing the Frequent Itemsets Mining
process.

a) If the slot 𝑝 is already occupied by 𝑡𝑜𝑙𝑑 = 𝑡, then
the occurrence counting is incremented.

b) If the slot 𝑝 is already occupied by a transaction
𝑡𝑜𝑙𝑑 ∕= 𝑡, then a new hash function ℎ𝑛𝑒𝑤 is
randomly generated and this is repeated using ℎ𝑛𝑒𝑤

(this procedure is called rehashing). The rehashing
is repeated until an empty slot is found, or until the
stop condition is reached (the maximum number of
rehashing allowed is reached). If the stop condition
is reached and no empty slot is found, then the
collision counting for 𝑡 in 𝑝 is incremented by 1.

The Frequent Itemsets Mining process requests a transaction
to the Transactions Reception process, and using Equations
(1),(2) and (3) itemsets are generated and stored using the
same hashing approach applied in Transactions Reception. A
diagram of the Frequent Itemsets Mining process is represented
in Figure 2.

Figure 4 shows a hardware-level schematic of the itemsets
generation process. When a transaction 𝑡 is received, it is
separated in items in the Control block. Each item and the
previously received are used to generate itemsets, which are
stored in Itemsets Memory and they are pushed into the FIFOs
F block. When an item is processed, then it is needed to read
and to store some values simultaneously in FIFOs F. The
FIFOs F block was implemented using two FIFOs to allow
simultaneous accesses. When an item 𝑖𝑡𝑒𝑚𝑖 is processed, then
the generated 𝑓 value is read from FIFO A and the obtained
itemsets’ indices are stored in FIFO B. Following, when the
item 𝑖𝑡𝑒𝑚𝑖+1 is processed, then the 𝑓 value is read from FIFO
B and produced itemsets’ indices are stored in FIFO A. For
the next items, FIFOs 𝐴 and 𝐵 are cyclically switched for
reading and writing. This switching process is controlled in
the Control block. The itemsets’ indices are calculated in the
ALU block using Equations (1), (2) and (3). The hardware
architecture that implements the proposed method is named

LexOrd.

V. EVALUATION

The LexOrd architecture was described using the High-
Level Synthesis (HLS) with C language using the Vivado
Design Suite 2015.2 and targeted for the Xilinx Zynq-7000
XC7Z020-CLG484 FPGA device. This device was selected
because it allows the use of external memories by using
HLS. After the LexOrd architecture was synthesized and
implemented, the utilization report is showed in Table I and
the maximum operating frequency obtained was 114 MHz.
From the synthesis results, it was noticed that the critical
resource are memories (BRAM 18). By using the 92% of
total memories available, the LexOrd architecture can handle
processing windows up to 1000000 transactions with 1650825
items allowing a maximum of 4 collisions. Higher processing
windows can be handled by using external memories.

The throughput obtained by the Lexord architecture must
be analyzed separately for the Transactions Reception pro-
cess and the Frequent Itemsets Generator process. Consid-
ering the theoretical throughput is determined by 𝑡ℎ𝑟𝑇𝑅 =
(1+⌈log2 (∣𝐼∣)⌉+∣𝐼∣)×𝑀𝑎𝑥𝑂𝑝𝐹𝑟𝑒𝑞

𝑐𝑐 where 𝑀𝑎𝑥𝑂𝑝𝐹𝑟𝑒𝑞 is the
maximum operating frequency obtained and 𝑐𝑐 are the clock
cycles needed to complete the task. The maximum number
of items in each transaction is determined by the available
memory in the selected FPGA, and the LexOrd architecture
can handle transactions up to 32 items. As the Transactions
Reception process implements a pipeline, after six clock cycles
it is considered that the processing rate is constant, so, the
throughput for the this process is 4.3 Gbps.

The Frequent Itemsets Mining process generates itemsets
from transactions composed of 𝑛 items (in the worst case) of
⌈log 2(∣𝐼∣)⌉ bits each item. Thus, the throughput is 𝑡ℎ𝑟𝐹𝐼𝑀 =
(∣𝐼∣×⌈log2 (∣𝐼∣)⌉)×𝑀𝑎𝑥𝑂𝑝𝐹𝑟𝑒𝑞

𝑐𝑐 where 𝑐𝑐 = 8. So, the throughput
for the Frequent Itemsets Mining process is 2.28 Gbps.

From the review of the state-of-the-art, it was noticed that
the reported results are hard to replicate due to the lack
of required implementation details and the lack of precise
experimental designs. Also, researches oriented to FIM are
focused to discover frequent 1-itemsets instead obtain frequent
k-itemsets. So, to verify the performance of the LexOrd
architecture, traditional software-based algorithms for FIM
were used. To do so, the SPMF Data Mining Library [12]
was used. Hardware architectures reported in [11] were also
used for comparison.

TABLE I
RESULT OF SYNTHESIS AND IMPLEMENTATION OF THE LEXORD

ARCHITECTURE.

Name Avaible Total Utilization (%)

BRAM 18 280 259 92
DSP48E 220 2 0

FF 106400 1423 1
LUT 53200 45811 86

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 151

TABLE II
DESCRIPTION OF THE SELECTED DATASETS.

Datasets Size
(MB)

#
Trans.

#
Items

Ave.
Trans.

Density

Connect 9.039 67557 129 43 33.33
MSNBC 4.217 989818 17 1.68 9.88
T40I10D100K 15.116 100000 942 39.6 4.20

TABLE III
PROCESSING TIME (IN SECONDS) COMPARING THE LEXORD

ARCHITECTURE AGAINST THE SELECTED BASELINE ALGORITHMS FOR

THE TOP−15 FREQUENTS 1−ITEMSETS ON SELECTED DATASET.

Datasets Sup.
Thres.

Apriori Eclat FP-
Growth

SysTree𝐿 SysTree𝑆 LexOrd

Connect

1% 77.9380 41.7930 0.3790 0.0024 0.0037 3.4452
5% 74.8530 37.7800 0.3700 0.0024 0.0037 3.4452
10% 65.4130 37.7080 0.3240 0.0024 0.0037 3.4452
15% 48.6870 1.5310 0.3100 0.0024 0.0037 3.4452
20% 47.8200 1.3920 0.2860 0.0024 0.0037 3.4452

MSNBC

1% 0.8740 0.9730 0.8240 0.0044 0.0068 0.0283
5% 0.8380 0.5290 0.7890 0.0044 0.0068 0.0283
10% 0.5650 0.4130 0.7510 0.0044 0.0068 0.0283
15% 0.5410 0.3900 0.7110 0.0044 0.0068 0.0283
20% 0.4130 0.3760 0.6570 0.0044 0.0068 0.0283

T40I10D100K

1% 0.5680 0.1570 0.1880 0.0008 0.0012 0.0067
5% 0.2310 0.1170 0.1380 0.0008 0.0012 0.0067
10% 0.1880 0.0740 0.1270 0.0008 0.0012 0.0067
15% 0.1690 0.0690 0.1310 0.0008 0.0012 0.0067
20% 0.1000 0.0670 0.1160 0.0008 0.0012 0.0067

Datasets were chosen from related works, and they are used
for comparing the performance of the proposed method against
the state-of-the-art implementations. Details of the selected
datasets are given in Table II.

Using the SPMF, several experiments were conducted us-
ing a Dell Precision T7500 workstation. This workstation
is equipped with an Intel Xeon E5620 processor (2.4 GHz,
12 MB cache, 4-cores, 8-CPU model) and 8 GB of RAM.
Datasets where preprocessed to obtain the top−𝑘 frequent
1−itemsets and then were reduced keeping those top−𝑘 fre-
quent 1−itemsets and excluding the others. For experiments,
frequents itemsets were obtained for 1%, 5%, 10%, 15% and
20% of support threshold using Apriori, FP-Growth, Eclat
from [12] and SysTee𝐿,𝑆 from [11].

Table III shows the result obtained from the experiments
conducted. Column Sup. Thres. contains the minimum support
threshold used. The processing time (in seconds) obtained are
represented under the algorithms’ names. From experiments
conducted it was demonstrated that the LexOrd architecture
outperforms all the selected software-based baseline algo-
rithms for several support threshold values selected. As it was
expected, the processing time needed for the LexOrd architec-
ture grows as the size of the received transactions increase, but
still are competitive compared against SysTree𝐿,𝑆 . Although
the SysTree𝐿,𝑆 architectures outperforms the LexOrd archi-
tecture, it must be noticed that the SysTree𝐿,𝑆 is oriented to
discover frequent itemsets when the number of items in 𝐼 is

low (second subproblem). The LexOrd architecture does not
take care about the number of items in 𝐼 , but the number of
items in received transactions must be short (fourth subprob-
lem). Considering the Density column (which is calculated
using in Table II 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 𝐴𝑣𝑒.𝑇𝑟𝑎𝑛𝑠.

#𝐼𝑡𝑒𝑚𝑠 × 100), the LexOrd
architecture performs better in sparse datasets than in dense
datasets.

Software-based algorithms are dependent of the support
threshold where the use of a too low support threshold
conduces to a heavy processing time. The LexOrd architecture
is insensitive to minimum support value, which it is a very
valuable feature of this architecture. In LexOrd, all hard-
ware resources needed for mining incoming data streams are
available and remain invariant whether the minimum support
threshold is 1% or 99% leading to obtain the same processing
time.

VI. CONCLUSIONS

The LexOrd architecture was proposed to deal with such
cases where the number of items in alphabets is large and
transactions are short. This architecture performs one order
of magnitude faster than the selected software-based baseline
algorithms in software. Although the systolic tree-based ap-
proach outperforms the LexOrd architecture, it should be con-
sidered that both architectures are oriented to solve different
subproblems and is still competitive. By mean of this proposed
method, the fourth subproblem of FIM on data streams is
solved.

REFERENCES

[1] A. Cuzzocrea, “Models and Algorithms for High-Performance Dis-
tributed Data Mining,” Jour. of Par. and Dist. Comp., vol. 73, no. 3,
pp. 281 – 283, 2013.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association
Rules in Large Databases,” in Proc. of the 20th Intl. Conf. on Very
Large Databases, ser. VLDB ’94, 1994, pp. 487–499.

[3] J. Carter and M. N. Wegman, “Universal Classes of Hash Functions,”
Journal of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

[4] M. J. Zaki, “Scalable Algorithms for Association Mining,” Knowl. and
Data Eng., IEEE Trans. on, vol. 12, no. 3, pp. 372–390, 2000.

[5] J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns Without Candidate
Generation,” SIGMOD Rec., vol. 29, no. 2, pp. 1–12, May 2000.

[6] A. Metwally, D. Agrawal, and A. E. Abbadi, “An Integrated Efficient
Solution for Computing Frequent and Top-k Elements in Data Streams,”
ACM Trans. Database Syst., vol. 31, no. 3, pp. 1095–1133, Sep. 2006.

[7] Z. Baker and V. Prasanna, “Efficient Hardware Data Mining With the
Apriori Algorithm on FPGAs,” in Proc. of the 13th Ann. IEEE Symp.
on Field-Prog. Custom Comp. Mach., ser. FCCM ’05, 2005, pp. 3–12.

[8] Y. Zhang, F. Zhang, Z. Jin, and J. D. Bakos, “An FPGA-Based
Accelerator for Frequent Itemset Mining,” ACM Trans. Reconf. Technol.
Syst., vol. 6, no. 1, pp. 1–17, may 2013.

[9] S. Sun and J. Zambreno, “Mining Association Rules With Systolic
Trees,” in Intl. Conf. on Field Prog. Logic and Apps, 2008. FPL 2008.
IEEE, 2008, pp. 143–148.

[10] J. Teubner, R. Müller, and G. Alonso, “Frequent Item Computation on
a Chip,” Knowl. and Data Eng., IEEE Trans. on, vol. 23, no. 8, pp.
1169–1181, 2011.

[11] L. Bustio, R. Cumplido, R. Hernández, J. M. Bande, and C. Feregrino,
4th Intl. Workshop, NFMCP 2015, Rev. Sel. Papers. Springer, 2016,
ch. Frequent Itemsets Mining in Data Streams Using Reconfigurable
Hardware, pp. 32–45.

[12] P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani, C. Wu., and V. S.
Tseng, “SPMF: a Java Open-Source Pattern Mining Library,” Jour. of
Mach. Learn. Res. (JMLR), vol. 15, pp. 3389–3393, 2014.

2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)

20-23 February, Bariloche Argentina 152

