
Hardware Architectures for Frequent Itemset
Mining Based on Equivalence Classes Partitioning

Martin Letras
Computer Science Department

National Institute of Astrophysics,
Optics and Electronics

Puebla, Mexico
Email: mletras@ccc.inaoep.mx

Raudel Hernández-León
Data Mining Research Team

Advanced Technologies Application Center
La Habana, Cuba

Email: rhernandez@cenatav.co.cu

Rene Cumplido
Computer Science Department

National Institute of Astrophysics,
Optics and Electronics

Puebla, Mexico
Email: rcumplido@inaoep.mx

Abstract—Frequent itemset mining algorithms have proved
their effectiveness to extract all the frequent itemsets in datasets,
however in some cases they do not produce the expected results
in an acceptable time according to the application requirements.
For this reason, FPGA-based hardware architectures for frequent
itemset mining have been proposed in the literature to accelerate
this task. Most of the reported architectures are limited by the
number of distinct items that could be processed and the available
resources in the employed FPGA device. This study proposes
a compact hardware architecture for frequent itemset mining
capable of minimg all the frequent itemsets regardless of the
number of distinct items and transactions in the dataset. The
proposed architectural design implements a partition strategy
based on equivalence classes. The partition on equivalence classes
allows to divide the search space into disjoint sets that can
be processed in parallel. Accordingly, a parallel architecture is
proposed to exploit the benefits of the proposed search strategy.

Index Terms—Frequen Itemset Mining, Hardware Architec-
ture, FPGA.

I. INTRODUCTION

Nowadays, information technology is present in every ac-
tivity that we perform: in smartphones, personal computers,
and even household appliances connected to the Internet that
interchange and generate big amounts of data [11]. This
amount of data and the diversity of the information exceeds
the human capacity to process it and obtain rules that describe
the relationship among the data [12].
Data mining has emerged to solve this problem using auto-
matic or semi-automatic processes to analyze datasets to find
patterns and then perform classification or prediction tasks
[18]. One of the most spread technique in Data Mining is the
Association Rule Mining technique, which computes rules in
form of implications among a set of items [2]. A crucial step
in the association rules generation is to count the frequency
of items and itemsets to know their relevance; this process is
known as frequent itemset mining [2].
Nevertheless, looking for frequent itemsets may become an
expensive task due to large amount of data, sparse datasets,
and a low minimum support value (henceforth 𝑠𝑚𝑖𝑛). For these
reasons, sometimes the implementations of these algorithms
cannot return a solution in an acceptable time. One way to
deal with this problem is to improve existing algorithms in

order to reducing execution time and proposing new heuristics
to explore the search space or using different data representa-
tions. In recent years, there is a trend to develop specialized
hardware architectures to reduce the execution time of algo-
rithms. In literature, there are several hardware architectures
based on FPGA (Field Programmable Gate Arrays) and GPUs
(Graphic Processor Units) that perform a full implementation
of frequent itemset mining algorithms.
This paper describes a FPGA-based hardware architecture
for frequent itemsets mining that takes advantage of inner
parallelism in the algorithms. The main goal is to produce a
compact hardware architecture in area resources that is able to
find all the frequent itemsets regardless of the number of items
and transactions in the datasets. The architecture also must be
able to achieve a better speed up compared to optimized soft-
ware implementations of frequent itemset mining algorithms.
Most of the reported work in literature has been designed for
a fixed problem size, in others words, they have a limit on the
number of different items that are processed, restricted by the
resources of the device employed or by memory constraints.
Our proposed architectures address the previous limitations by
partitioning the problem, then generating partial solutions for
each partition, and finally, combining all the partial solutions
to construct a global solution. The partition scheme is mainly
based on equivalence classes. This approach divides the entire
search space into disjoint sets of the original search space, in
consequence, all the equivalence classes may be processed in
an independent way. Accordingly, a parallel architecture also
is proposed to exploit the benefits of the independent partitions
into equivalence classes.
This paper is organized as follows; in section 2, frequent
itemset mining and the most important theoretical concepts
are exposed. In section 3 related work and previously pro-
posed hardware architectures for frequent itemset mining are
disclosed. Section 4 introduces the proposed search strategy
based on equivalence classes, continuing in section 5 with
the implementation of the proposed architectures. section
6 describes the experimental setup and the execution time
comparison. Finally, in section 7 conclusions and possible
future research lines are drawn.

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.98

289

2016 IEEE International Parallel and Distributed Processing Symposium Workshops

978-1-5090-3682-0/16 $31.00 © 2016 IEEE

DOI 10.1109/IPDPSW.2016.98

289

null

a b c d

ab ac bc bd cdad

abc abd bcdacd

abcd

ID Items
1 a, d
2 b, c, d
3 a, c
4 a, c, d
5 a, b
6 a, c, d
7 b, c
8 a, c, d
9 b, c
10 a, d

Fig. 1. Transaction dataset and search space

II. FREQUENT ITEMSET MINING

Frequent itemset mining is a method for market basket
analysis, and was introduced in [1] by Agrawal. Finding
frequent itemsets and associations rules is essential for mar-
keting applications, improving the arrangement of products on
shelves and suggesting other products.

The first algorithm for frequent itemset mining was formal-
ized by Agrawal in the 90’s [1, 2], and it is used to find patterns
in datasets. These datasets are represented by transactions;
each transaction is labeled with a unique identifier. Frequent
itemset mining can be defined as follows:

Formally, let 𝐼 = {𝑖1, . . . , 𝑖𝑛} be a set of items. Let 𝐷 be a
set of transactions, where each transaction 𝑇 is a set of items
such as 𝑇 ⊆ 𝐼 . And let 𝑋 be an itemset such as 𝑋 ⊆ 𝐼;
without loss of generality, we will assume that all items in
each transaction are sorted in lexicographic order. The support
value of the itemset 𝑋 is the number of transactions over 𝐷
containing 𝑋 . An itemset is called frequent if its support is
greater than or equal to a given threshold value(𝑆𝑚𝑖𝑛).
A brute force approach that traverses all the possible itemsets
calculating their support and removing infrequent itemsets is
inefficient, in the worst case, a total of 2𝑛 itemsets could be
generated for 𝑛 distinct items. For example in figure 1, we have
four items; the search space contains 16 itemsets but only 9 are
frequent (the gray ones) for 𝑆𝑚𝑖𝑛 = 3. The number of itemsets
and operations grows exponentially according to the number
of different items, transactions, and the 𝑆𝑚𝑖𝑛 value. Several
algorithms have been proposed to efficiently find all frequent
itemsets. There are those based on candidate generation like
Apriori [1, 2] that explores the search space using breath-
first search, and other ones based on pattern growth like FP-
Growth [8] that creates a tree structure called FP-tree, and
Eclat [19] that uses a depth-first search. These algorithms find
all the frequent itemsets but in some cases, they do not return
a response in an acceptable time according to the application
requirements.

III. RELATED WORK

In recent years hardware architectures have been explored to
offer a solution to the acceleration of frequent itemset mining
algorithms. The leading technologies are GPU and FPGA and
the most employed algorithms are Apriori [2], FP-Growth [8],

and recently Eclat [19].
In [3, 4, 16, 17] the proposed architectures are an Apriori im-
plementation that use systolic arrays. The reason to implement
a systolic array is to decrease the number of the connections
among processors elements and to ease the control. The
disadvantage of these approaches is that they are limited by
the resources of the FPGA device employed and the number
of processor elements implemented on the chip.
In [14, 15] a systolic tree structure is proposed to implement a
hardware version of FP-Growth algorithm. A systolic tree is an
array of pipelined processing elements in a multi-dimensional
tree pattern. In [10], another hardware architecture to execute
FP-Growth algorithm is proposed. Authors proposed an equiv-
alence class segmentation based on Eclat algorithm, but once
the segmentation is done, FP-growth algorithm takes the con-
trol to generate frequent itemsets. The results reported show
that the proposed architecture achieves better performance than
the hardware implementation reported in [14], specifically for
the Chess dataset, the architecture achieves a speedup of one
order of magnitude.
Recently hardware architectures based on the Eclat algorithm
have been developed [13, 20]. In [20], the architecture per-
forms a depth first search strategy. Authors proposed a binary
representation for datasets and itemsets. The architecture is
formed by an external memory, FIFOs, an intersection module,
and a support counting module. They obtain good results
for sparse datasets, and a maximum acceleration of 48x is
achieved.
All the previous works in literature have proved their efficiency
to accelerate frequent itemset mining algorithms. But all of
them are limited by the hardware resources available according
to the FPGA device employed. For this reason, our goal is
to implement a hardware architecture that can obtain all the
frequent itemset regardless of the number of different items,
transactions, and hardware resources.

IV. DATA REPRESENTATION AND SEARCH STRATEGY

PROPOSED

Our proposal consists in a variant of the search strategy
proposed for Eclat algorithm, and its primary objective is
to perform independient partitions of the search space. The
data representation employed is the vertical binary vector
because the intersection and support counting operation can
be implemented as a combinatorial system. The transactions
are coded in 32 bits integers using the compressed array
representation reported in [9]. The word size is 32 bits because
the external memory is 32 bits wide. For example in figure
2, a binary vector dataset of five items is shown. For items
𝑎 and 𝑏, their support values are calculated counting the
set bits in the correspondent vectors being 𝑆𝑎 = 8 and
𝑆𝑏 = 5. The intersection operation is performed using boolean
𝐴𝑁𝐷 operations. For example to get the itemset 𝑎𝑏, an
𝐴𝑁𝐷 operation between the binary vector of item 𝑎 and 𝑏 is
performed. The result is the binary vector 𝑎𝑏 shown in figure
2, and 𝑆𝑎𝑏 = 3.
Our search strategy is a combination of breadth and depth

290290

a b c d e

1 1 0 0 1 1

2 0 1 1 1 0

3 1 0 1 0 1

4 1 0 1 1 1

5 1 0 0 0 1

6 1 0 1 1 0

7 0 1 1 0 0

8 1 0 1 1 1

9 0 1 1 0 1

10 1 0 0 1 1

a b c d e

1 1 1 0 1 1

2 0 1 1 1 0

3 1 0 1 0 1

4 1 0 1 1 1

5 1 0 0 0 1

6 1 0 1 1 0

7 1 1 1 0 0

8 1 0 1 1 1

9 0 1 1 0 1

10 1 1 0 1 1

(a) Dataset us-
ing vertical bi-
nary vectors.

a

1 1

2 0

3 1

4 1

5 1

6 1

7 1

8 1

9 0

10 1

b

1 1

2 1

3 0

4 0

5 0

6 0

7 1

8 0

9 1

10 1

ab

1 1

2 0

3 0

4 0

5 0

6 0

7 1

8 0

9 1

10 0

(b) Intersection and
support counting op-
erations in binary
vectors.

Fig. 2. Data Representation and operations used by our proposal.

1 2 3

4 5 6

Fig. 3. Search strategy proposed for four items.

first search. This strategy has the advantage that the search
space can be partitioned, and each partition of the search space
can be processed in parallel. For example, figure 3 describes
the behaviour of the proposed strategy. The first step consists
in taking item 𝑎 and generate all the 2-itemsets being 𝑎𝑏,
𝑎𝑐 and 𝑎𝑑 frequent itemsets. The next step is to generate
all the 3-itemsets. 𝑎𝑏𝑐 is generated intersecting 𝑎𝑏 and 𝑎𝑐.
𝑎𝑏𝑑 is generated intersecting 𝑎𝑏 and 𝑎𝑑. 𝑎𝑐𝑑 is generated
intersecting 𝑎𝑐 and 𝑎𝑑 and so on, until no more itemsets could
be generated.

In this way, this search strategy can generate the equivalence
classes in an independent way.

V. HARDWARE ARCHITECTURES PROPOSED

In order to exploit the benefits of the proposed search
strategy; two hardware architectures have been proposed. The
first one consists in a compact architecture that mines each
equivalence class in a sequential manner. The second one is a
parallel implementation that distributes the workload between
two processor elements.

A. Compact Hardware Architecture

Our first proposal is the implementation of a full hardware
implementation of the proposed search strategy, The behaviour
of this architecture is divided into two parts; the first one
consists in the generation of the frequent items and the second
one consists in the frequent itemset mining using the proposed
search strategy.

Standalone
OS

Interrupt
Handler

Software
Program

Hardware
Accelerator

Programmable Logic Module
Memory

Subsystem

MMU

System Bus

Memory UART

Arbiter

Processing System

Fig. 4. Hardware architecture that performs the proposed search strategy.

Block
RAM

Block
RAM

Prefix

Suffix

Coun�ng
Set Bits

Adder(+) Support
Register

S_min
Register

Comparator
new_itemset

Load
Prefix

Load
Suffix

AXI MASTER

AXI MASTER

Address

Address

Fig. 5. Low level design of the proposed architectural design.

Figure 4 shows a high-level diagram of the proposed archi-
tecture. This architecture is composed of a general purpose
processor, an UART module, an off-chip memory, a memory
subsystem and the hardware accelerator.

Figure 5 describes a block diagram of the hardware accel-
erator. It consists of two dual block RAM memories called
𝑝𝑟𝑒𝑓𝑖𝑥 and 𝑠𝑢𝑓𝑓𝑖𝑥. The BRAMs have a storage capacity
of 122 KiB, in consequence they can store one million of
transactions but the architecture is not only limited to process
one million of transactions because the Load Suffix and Load
Prefix modules can iterate to cover more than one million of
transactions. The outputs of each memory are connected to
𝐴𝑁𝐷 gates that perform the intersection using 32-bits words.
The counting support module receives as inputs two 32-bit
words that are the result of the AND gates. The output of
the counting support module is accumulated in the support
register until all the transactions have been covered. And
finally, a comparator verifies the support register value with
the 𝑆𝑚𝑖𝑛 register value. If the current itemset is a frequent
itemset, the prefix label is concatenated with the suffix label
and then the concatenated label is stored in the off-chip
memory with its corresponding binary vector. Figure 6 shows
two finite states machines that describe the behavior of the
proposed architecture. The first state machine corresponds to
the frequent items generation task. In state 𝑆0, the architecture
receives the initial direction where the binary vectors are
stored, the number of transactions, the number of items, the
label of the actual item, the direction where the frequent item
labels will be stored and the 𝑆𝑚𝑖𝑛 value. In state 𝑆1, the
architecture reads the binary vector of the current item and
stores it in the load prefix BRAM, and then the counting set
bits module computes the support value. In state 𝑆2, if the
item is frequent, its label is stored in the off-chip memory as
a frequent itemset. State 𝑆3 verifies that all the items have

291291

S0

S1

S2

S3

S4

S0: Receive Ini�al Parameters
S1: Read Item
S2: Compare Support Value and

write in FI memory sec�on
S3: Stop condi�on
S4: Indicate comple�on

(a) Items mining state ma-
chine.

S0: Generate 2-itemsets
S1: Load Prefix
S2: Load Suffix
S3: Compare support value and
write in FI memory sec�on
S4: Stop condi�on
S5: Indicate comple�on

S1

S2

S3

S4

S5

S0

(b) Itemset mining state ma-
chine.

Fig. 6. Finite state machines of the proposed search strategy.

Fig. 7. Search space for item a.

been processed.
The second state machine describes the behaviour of the

frequent itemset mining stage. In state 𝑆0, the 2-itemsets are
mined. Table I describes the operations involved in state 𝑆0.
The first step consists in receiving a set of initial items, for
this example the initial items are 𝐻 = {𝑎, 𝑏, 𝑐, 𝑑} being the
𝑎 − 𝑝𝑟𝑒𝑓𝑖𝑥𝑒𝑑 itemsets the equivalence class to process. The
first item in the initial items list determines the equivalence
class to process. The second step consists in performing the
intersection and support counting of the 2-itemsets; Prefix
and Suffix BRAMs are used in this task. The item 𝑎 is
stored in 𝑝𝑟𝑒𝑓𝑖𝑥 BRAM, and the next items will be stored
in 𝑠𝑢𝑓𝑓𝑖𝑥 BRAM to perform the intersection and support
counting operation. All the frequent 2-itemsets will be stored
in the off-chip memory.

Once that the 2− 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 have been calculated, the next
step corresponds to state 𝑆1 and it consists in the 𝑘−𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠
mining. Table II describes the operations employed in this
stage using the search space of figure 7. The 2− 𝑖𝑡𝑒𝑚𝑠𝑒𝑡𝑠 =
{𝑎𝑏, 𝑎𝑐, 𝑎𝑑}, so in state 𝑆1 the binary vector of 𝑎𝑏 is stored
in Prefix BRAM, and in state 𝑆2, then itemset 𝑎𝑐 is stored
in Suffix BRAM. In state 𝑆3, the intersection operation and
the support counting operation indicate that 𝑎𝑏𝑐 is a frequent
itemset and in consequence, 𝑎𝑏𝑐 is written in the off-chip
memory. The itemset 𝑎𝑏 is not flushed from the Prefix BRAM
because there is an itemset that shares the same prefix. So,
𝑎𝑏 and 𝑎𝑑 are intersected to generate a new itemset. In this
case, 𝑎𝑏 is flushed from memory because the next itemset in
memory is 𝑎𝑏𝑐 and it is a 3-itemset and they do not share
the same prefix. The intersection of two itemsets can only be
performed, if both of them have the same cardinality and share
the same prefix. For example, the prefix of itemset 𝑎𝑏𝑐 is 𝑎𝑏

TABLE I
2-ITEMSETS GENERATION.

Frequent itemsets in
memory

Prefix
BRAM

Suffix
BRAM

Frequent

{ } a b Yes
{ab} a c Yes
{ab, ac} a d Yes
{ab, ac, ad} a - Yes

TABLE II
OPERATIONS PERFORMED BY THE ARCHITECTURE

Frequent itemsets in
memory

Prefix
BRAM

Suffix
BRAM

Result
in
Suffix
BRAM

Frequent Output Flush
prefix
BRAM

{ab, ac, ad} ab ac abc Yes Yes No
{ab, ac, ad, abc} ab ad abd Yes Yes Yes
{ab, ac, ad, abc, abd} ac ad acd No Yes Yes
{ab, ac, ad, abc, abd} ad - - No No Yes
{ab, ac, ad, abc, abd} abc abd abcd No No Yes

and the prefix of itemset 𝑎𝑐𝑑 is 𝑎𝑐, although they have the
same cardinality they do not share the same prefix, and they
cannot be intercepted to generate a new itemset. In contrast
for itemsets 𝑎𝑏𝑐 and 𝑎𝑏𝑑, they share the prefix 𝑎𝑏 and the same
cardinality, in consequence they can generate the itemset 𝑎𝑏𝑐𝑑.

The previous steps are executed until no more itemsets can
be generated.

B. Dual Core Hardware Architecture

With the intention to get a speed up, a dual-core architecture
is proposed. Figure 8 shows a high-level representation. In
the logical programmable area, two hardware accelerators are
implemented with the intention of distributing the workload
between the two of them.

Previously it has mentioned that the proposed search strat-
egy has the advantage of splitting the search space into
disjoint sets or classes, in consequence, each core can process
an equivalence class independently. Figure 8 describes the
partition of the search space for four items. The first processor
element receives the set of items 𝐻 = {𝑎, 𝑏, 𝑐, 𝑑} and it
processes the equivalence class 𝑎. Meanwhile, the second
processor element receives the sets of items 𝐻 = {𝑏, 𝑐, 𝑑}
and it process the equivalence classes 𝑏, 𝑐 and, 𝑑. The dual
core architecture obtains a parallelism to process independent
equivalence classes, and this impacts directly on the perfor-
mance of the proposed search strategy.

VI. EXPERIMENTAL RESULTS AND PERFORMANCE

EVALUATION

A. Experimental setup

The hardware architectures have been evaluated using area
and execution time metrics. The area evaluation is performed
using the hardware report usage that provides Vivado HLS
synthesizer. The execution of the architecture has been com-
pared to the execution time of Apriori, Eclat and FP-Growth
software implementations [5, 6]. These implementations can
be found on the personal website of Christian Borgelt [7].

292292

Hardware
Accelerator

Programmable Logic Module
Standalone
OS

Interrupt
Handler

Software
Program

Memory
Subsystem

MMU

System Bus

Memory UART

Arbiter

Hardware
Accelerator

Fig. 8. Partition of the search space using 2 processor elements.

The software implementations have been tested on a PC with
an Intel i3-3217U processor at 1.8 GHz and 8 GB DDR2
RAM memory with Windows 7 ultimate. The execution time
considers the input and output operations and the CPU time for
all the algorithms and the hardware architectures. The FPGA
device employed is a Zynq 7020 of Xilinx.

B. Validation datasets

In the literature diverse datasets have been used to test the
functionality of the software algorithms and hardware archi-
tectures. In [2], an algorithm is proposed to generate synthetic
datasets that imitates the characteristics of transactions in the
retailing environment.

TABLE III
DATASETS USED TO VALIDATE THE HARDWARE ARCHITECTURE.

Dataset Size
(MB)

Average
Length
Transaction

Number of
Transactions

Number
of Items

Chess 0.013 37 3196 75
T40I3N500k 11.9 40 500k 299
T40I3N1000k 24.1 40 1000k 300
T60I5N500k 18.9 60 500k 500

The characteristics employed to generate the datasets are:
number of transactions ∣𝐷∣, average size of transactions ∣𝑇 ∣,
average size of the maximal potentially large itemsets ∣𝐼∣,
number of potentially large itemsets ∣𝐿∣ and, number of items
∣𝑁 ∣. All these characteristics are used to generate synthetic
datasets. For this work, three values for ∣𝑇 ∣: 40, 60 and 90
have been chosen. The values for ∣𝐼∣ are 3, 5 and 10. Table
III summarizes the dataset parameter settings, and also an
estimated of the size in MB of the datasets.

C. Performance evaluation

In this section the performance results for the compact
architecture and the dual core architecture are presented. From
figure 9 to 12, the compact hardware architecture and the
dual core hardware architecture are compared to Apriori, FP-
Growth, and Eclat; the 𝑦 axis represents the execution time
of each experiment and the 𝑥 axis represents the minimum
support value. Figure 9 shows the performance of the three
software implementations and the hardware architectures for
the chess dataset. For chess dataset, FP-growth obtained the

0.20.30.40.50.60.70.80.91
10

−2

10
−1

10
0

10
1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Fig. 9. Execution time comparison (Chess).

0.0450.050.0550.060.0650.070.0750.080.0850.090.095

10
1

10
2

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Fig. 10. Execution time comparison (T40I3N500k).

best results among the four software implementations. The
maximum speedup obtained by the compact architecture is
2.9x and 5.8x for the dual core architecture compared to the
Fp-growth algorithm.

The better performance reported for the hardware architec-
tures is when they have to deal with sparse datasets (Figures
10, 11, 12). The experiments show that the proposed archi-
tectures have good performance and it obtains a speedup of
4x for the compact architecture and 12.7x for the dual core
architecture compare with the best software implementations
(it depends on the dataset and the support value). Table IV
shows the area reports for both architectures. The operation
frequency reported for both is 114 Mhz. The elements re-
ported are DSP48E, Flip Flops and LUTs. For the compact
architecture, the usage of Flip-Flops (3 %) and LUTs (9 %) is
minimum because the architecture only needs a few registers
to store 𝑆𝑚𝑖𝑛 value and the control signals, this is the most
compact design obtained.

For the dual core architecture, although there has been
an increment in the resources employed, the architecture is
still a compact one. Intuitively, an advantage of the compact
design is that the number of cores that can be attached to the
architecture can grow, and the workload can be divided among
other processor elements to speed up the execution time.

293293

0.040.050.060.070.080.090.1
10

1

10
2

10
3

Support

R
un

tim
e

(s
ec

on
ds

)

Apriori
Eclat
Fp−Growth
FIM Hardware
Dual Core FIM Hardware

Fig. 11. Execution time comparison (T40I3N1000k).

0.050.0550.060.0650.070.0750.080.0850.090.095

10
1

10
2

10
3

Apriori
Eclat
Fp−Growth
FIM Hardwar e
Dual Core FIM Hardwar e

Support

Ru
nt

im
e

(s
ec

on
ds

Fig. 12. Execution time comparison (T60I5N500k).

TABLE IV
HARDWARE RESOURCES USED BY PROPOSED HARDWARE ARCHITECTURE.

Compact Architecture Dual Core Architecture
Name DSP48E FF LUT DSP48E FF LUT
Expression - 0 2618 - 0 3806
Multiplexer - - 1943 - - 2891
Registers - 3475 - - 5234 -
Shift Memory - 0 164 - 0 279
Total 20 3475 4725 32 5234 6976
Utilization (%) 9 3 9 14 4 13

Compactness is the main advantage of the proposed hard-
ware architecture. Although, it is a compact design, both
versions accelerate the frequent itemset mining problem and
speedup can be achieved.

VII. CONCLUSIONS

In this paper, a search strategy for frequent itemset mining
that finds all the frequent itemsets regardless of the number
of different items. The proposed search strategy fits well
for hardware implementations because it splits the search
space into separate equivalence classes making disjoint sets of
the original dataset. In consequence, the amount of itemsets
stored in the memory is reduced, this is an advantage for
memory constrained scenarios like in the hardware architecture
development. Another advantage of the partition into separate

equivalence classes is that the equivalence classes can be
distributed among a set of processor elements to parallelize
and distribute the workload. The most remarkable feature of
this architecture is that gets a 4x to 12.7x speedup despite its
compactness.
Based on the results obtained in this research, it is possible to
implement an array of processor elements, in other words,
scale up the proposed dual-core architecture from 2 to 𝑛
processor elements to get a better speedup.

ACKNOWLEDGMENT

Martin Letras is supported by the Mexican National Council
for Science and Technology (CONACyT), scholarship number
298024.

REFERENCES
[1] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. Mining association rules

between sets of items in large databases. In ACM SIGMOD Record, volume 22,
pages 207–216. ACM, 1993.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data bases, VLDB, volume
1215, pages 487–499, 1994.

[3] Zachary K Baker and Viktor K Prasanna. Efficient hardware data mining with the
apriori algorithm on fpgas. In Field-Programmable Custom Computing Machines,
2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 3–12. IEEE, 2005.

[4] Zachary K Baker and Viktor K Prasanna. An architecture for efficient hardware data
mining using reconfigurable computing systems. In Field-Programmable Custom
Computing Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on, pages
67–75. IEEE, 2006.

[5] Christian Borgelt. Efficient implementations of apriori and eclat. In FIMI’03: Pro-
ceedings of the IEEE ICDM workshop on frequent itemset mining implementations,
2003.

[6] Christian Borgelt. An implementation of the fp-growth algorithm. In Proceedings
of the 1st international workshop on open source data mining: frequent pattern
mining implementations, pages 1–5. ACM, 2005.

[7] Christian Borgelt. Christian borgelt’s web pages. url-
http://www.borgelt.net/fimgui.html, 2015.

[8] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In ACM SIGMOD Record, volume 29, pages 1–12. ACM, 2000.

[9] Raudel Hernández-León, J Hernández-Palancar, Jesús A Carrasco-Ochoa, and
José Fco Martı́nez-Trinidad. Algorithms for mining frequent itemsets in static
and dynamic datasets. Intelligent Data Analysis, 14(3):419–435, 2010.

[10] Alejandro Mesa, Claudia Feregrino-Uribe, René Cumplido, and José Hernández-
Palancar. A highly parallel algorithm for frequent itemset mining. In Advances in
Pattern Recognition, pages 291–300. Springer, 2010.

[11] Philip E Ross. Top 11 technologies of the decade. IEEE Spectrum, 48(1):27–63,
2011.

[12] Philip Russom et al. Big data analytics. TDWI Best Practices Report, Fourth
Quarter, 2011.

[13] Shaobo Shi, Yue Qi, and Qin Wang. Accelerating intersection computation in
frequent itemset mining with fpga. In High Performance Computing and Com-
munications & 2013 IEEE International Conference on Embedded and Ubiquitous
Computing (HPCC EUC), 2013 IEEE 10th International Conference on, pages
659–665. IEEE, 2013.

[14] Song Sun, Michael Steffen, and Joseph Zambreno. A reconfigurable platform
for frequent pattern mining. In Reconfigurable Computing and FPGAs, 2008.
ReConFig’08. International Conference on, pages 55–60. IEEE, 2008.

[15] Song Sun and Joseph Zambreno. Design and analysis of a reconfigurable platform
for frequent pattern mining. Parallel and Distributed Systems, IEEE Transactions
on, 22(9):1497–1505, 2011.

[16] DW Thoni and Alfred Strey. Novel strategies for hardware acceleration of frequent
itemset mining with the apriori algorithm. In Field Programmable Logic and
Applications, 2009. FPL 2009. International Conference on, pages 489–492. IEEE,
2009.

[17] Ying-Hsiang Wen, Jen-Wei Huang, and Ming-Syan Chen. Hardware-enhanced
association rule mining with hashing and pipelining. Knowledge and Data
Engineering, IEEE Transactions on, 20(6):784–795, 2008.

[18] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and
techniques. Morgan Kaufmann, 2005.

[19] Mohammed Javeed Zaki. Scalable algorithms for association mining. Knowledge
and Data Engineering, IEEE Transactions on, 12(3):372–390, 2000.

[20] Yan Zhang, Fan Zhang, Zheming Jin, and Jason D Bakos. An fpga-based accelerator
for frequent itemset mining. ACM Transactions on Reconfigurable Technology and
Systems (TRETS), 6(1):2, 2013.

294294

