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Abstract—Abstract—The Burrows-Wheeler Transform (BWT)
has been used in several applications demanding high volume
of data and real-time capabilities. Current research focuses on
reducing the time to compute the BWT by software or hardware
means. This paper presents a novel FPGA architecture based
on a Linear Sorter (LS) to efficiently calculate the BWT. The
architecture is composed of a control logic and several identical
Comparison Units (CU), in order to provide scaling flexibility.
The proposed hardware implementation sorts the string as it
is fed, substitutes only the required characters and efficiently
computes the BWT without knowing the Longest Common Prefix
(LCP). The architecture is implemented in an FPGA showing a
significant reduction in the cycles required to compute the BWT.
The results show that the cycles involved to calculate the BWT
are reduced for any given string in comparison to those reported
in previous works where the LCP is not known in advance.

Index Terms—Burrows-Wheeler Transform, String Sort, Lin-
ear Sorter, FPGA.

I. INTRODUCTION

THE Burrows-Wheeler Transform (BWT) [1], [2], [3] has

been widely used in real time and high volume data,

demanding applications such as string matching in genome

sequences [4], [11], shape matching in computer vision [5],

compression and other applications [6]. Due to the nature of

these applications it is necessary to have hardware efficient

architectures capable of computing the BWT in a fast manner.

Hardware implementations of the BWT are required to

perform several operations. The BWT calculation not only

implies several lexicographic sorts at initial and semi-final

stages of its computation, but it also requires to perform data

substitutions when necessary. The BWT is fully obtained when

no more substitutions are required. The output is a set of

identification numbers corresponding to the suffix of the BWT.

A straightforward implementation of the BWT requires a

large amount of resources, specially of memory. Figure 1

shows an example of a direct implementation. To compute the

BWT, a rotation matrix is built from the input string. After

this, the matrix’s rows are lexicographically sorted until the

BWT is placed in the last column along with an identifier (j)

to locate the input string.

However, the BWT can be computed without the rotation

matrix. The transform is computed by assigning an index to

each character in the string and then sorting these. Afterwards,

those sets of repeated characters are identified and marked
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Fig. 1. Example of the BWT on a string.

for a further substitution with their suffix. The substitution

continues until there are no sets of repeated characters. Finally,

indexes are read and the BWT is computed by obtaining

the prefix. The prefix can be obtained by applying the mod
operation of each index minus one with the string size as

shown by Eq. 1:

ip = (i− 1) mod n; (1)

where ip is the prefix of index i and n is the string length.

More details and an example are found in Section III.

Inspired by the procedure described above, in this paper, we

present a novel FPGA architecture to carry out the BWT. Our

approach deals with the fact that substitutions have to be per-

formed several times when computing the BWT. However, not

all characters of a string should be substituted. Identifying and

replacing only those required characters decreases the number

of clock cycles required to compute the BWT. Moreover, the

proposed architecture is capable of sorting characters whilst

these are being fed, thus decreasing the total number of clock

cycles required to compute the BWT.

In order to describe our approach, this paper is organized

as follows: Section II discusses previous hardware imple-

mentations. Section III describes the proposed approach to

compute the BWT with a Linear Sorter (LS). Section IV

describes in detail the proposed architecture design. Section V

presents an analysis of the steps required to compute the BWT

and a comparative analysis to previous proposed hardware

implementations. Section VI shows the experimental setup

and discusses the results obtained. Finally, conclusions are

presented in Section VII.
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II. RELATED WORK

Hardware implementations to compute the BWT without

the rotation matrix have been presented in several works [9],

[8], [10]. The main difference among these works relies on the

approach taken to sort the strings as this is one of the most

time consuming tasks of the BWT.

In [9], the authors based their architecture on the

Weavesorter algorithm to sort the string. The operation begins

by right shifting a string’s value and comparing it at every

step. The sorted string is obtained by left shifting the stored

data. However, in order to complete the BWT, equal elements

should be substituted via software operations. After this the

whole string should be sorted again.

Another approach was taken in [8], where the authors use a

parallel sorting strategy. Strings can be sorted in n/2 steps,

which is faster than the previous approach. However, the

sorted string should be output completely and fed again with

substituted data. Afterwards, the parallel sorting architecture

will only sort data that has changed. This work is faster than

applying the Weavesorter algorithm [9].

Finally, another architecture presented in [10] takes advan-

tage of a FIFO network to sort the data. To the best of our

knowledge, this approach takes the minimum number steps to

perform the BWT. However, it makes a significant assumption:

the length of the Longest Common Prefix (LCP) should be

known in advance. The architecture should be synthesized

based on the length of the LCP. This assumption introduces an

advantage, when compared to other implementations, as only

one iteration is needed to perform the BWT, hence a block

of size equal to the LCP is stored for all characters in the

string, which provides all necessary data for the sorting. A

main drawback in this architecture is the requirement to know

LCP in advance, which also leads to its inability to work in

those cases where the LCP may be variable.

Motivated by the above, our proposed architecture is based

on a Linear Sorter (LS). The LS for BWT (LSBWT) is

capable of computing the BWT without knowing the LCP

beforehand. Moreover, the elements are sorted as they are

fed to the architecture due to the LS characteristics. During

the substitution phase in other implementations, the whole

string was output and fed again. In contrast, the architecture

proposed in this work addresses the challenging task of having

to substitute only the required elements. Thus, not all string

elements should be fed again for extra iterations, because

only substituted elements are changed. Likewise, only the

substituted elements should be sorted.

III. LINEAR SORTER FOR BWT

Our work is based on the suffix sorting approach [8], where

the rotation matrix is not needed. For the sake of clarity,

consider the same input string as in the previous example

(”TASGASC”). Figure 2 illustrates the computation of the

BWT. The steps involved are:

1) Assign an index to each character in the string.

2) Sort the characters lexicographically without modifying

the index assigned to each character.

3) Set a sort counter to 1.

4) Identify groups of equal characters.

5) Substitute each character for the one positioned x places

after it; where x is the value of the sort counter. If x
is bigger than the remaining lenght of the string, the

count of the remamining x places continues from the

beginning of the string. Do not modify the assigned

index.

6) Sort the substituted characters within each group.

7) Check for repeated characters in each group. If yes,

increase the sort counter and repeat from step 5. If not,

go to the next step.

8) Read the assigned indexes of all the characters in the

sorted string.

9) Compute the prefixes of the assigned indexes read.

10) The result is the string comprised by the characters

pointed by the prefixes.

Fig. 2. Example of the BWT by the prefix method.

The LSBWT is based on an LS, which has the advantage

of sorting data on the fly. Architectures inspired on LS have

been used previously [7], but not for implementing the BWT.

An example of an LS is depicted in Fig. 3. Each node is

interconnected with its immediate neighbors. All nodes are

connected to the input. The data input compares with all nodes.

By knowing left, and in-node values, nodes can decide whether

to shift right, hold its current value or store the incoming data.

Fig. 3. Example of a Linear Sorter.

The LSBWT architecture when implemented on a FPGA

presents high flexibility to scale the design, as it replicates the

Comparison Unit (CU); an advantage of sorting while data

is fed; and it does not need to know the Longest Common

Prefix (LCP) beforehand. It is worth pointing out that LSBWT

presents a key innovation: substituting only required data

instead of the whole string.
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IV. PROPOSED ARCHITECTURE

The proposed architecture is based on a LS. In LSBWT

nodes are referred as Comparison Units (CU). Each CU is

capable of storing data and id and comparing to left and

right incoming data. These capabilities are implicit to an LS.

However, CUs are also capable of computing several control

signals required to identify sets of equal characters that should

be substituted.

Figure 4 shows the internal logic of a CU. Behavior of the

CUs can be described in the next processes:

• Comparing data.

– If data at the left CU (DATA LEFT ) is equal to
data in the actual CU (DATA NOW ). The process

sets EQL flag when true.

– If data at the right CU (DATA RIGHT ) is equal
to DATA NOW . The process sets EQR flag when

true.

– If input data is less than DATA NOW . The pro-

cess sets LESS OUT when true.

• Operating data.

– Checking if a substitution should be performed.

When a substitution is required data stored is set to

the maximum value (MAX V ALUE) by perform-

ing a parallel load in the DATA NOW register.

– Storing input data or left data and shifting actual
data. The CU stores data when the data fed

(DATA INPUT ) is less than DATA NOW .

When false, DATA NOW remains unchanged. To

decide which data is stored between DATA LEFT
and DATA INPUT ; CU checks if input

LESS IN (which is CU’s output LESS OUT
to the left) equals 1. This means that CU to the

left stores DATA INPUT and current CU stores

DATA LEFT . LESS IN equal to zero means

that current CU stores DATA INPUT . During

this process, the behavior is similar to a shift register

— before storing data the CUs shift their data to

the right.

Fig. 4. Logic diagram of a CU.

The LSBWT comprises several CUs, the number of CUs

needed is equal to the size of the string to be transformed. The

proposed architecture is capable of only substituting elements

that are equal to one of its immediate neighbors. In order

to achieve this, additional resources are needed. The most

important components are:

• Priority encoder, outputs the location of the first ‘1’ read

from left to right of the SUST flags.

• One-hot decoder, has the output of the priority encoder

as input.

• Enable multiplexer, enables are selected depending on

several conditions.

1) For the first sorting iteration all enables are set.

2) For ongoing iterations if EQL flag is 0 enables are

one-hot decoder’s output.

3) For ongoing iterations if EQL flag is 1, the enables

are the sum of all previous outputs of the one-hot

decoder.

• Round end: Set one of its outputs when the first iteration

is completed. The other output generates a pulse each

time another iteration is completed. The pulse remains

set when the BWT is completed.

The architecture diagram, in Fig. 5, draws four CUs to

demonstrate its functionality. The BWT is computed as fol-

lows:

1) A reset signal writes the maximum number to the data

value of CUs and sets enables.

2) Data and indexes are fed to the CUs.

3) Data is sorted while being input.

4) The first iteration ends when the last data arrives and a

pulse is generated.

5) With this pulse EQL and SUST values are stored in a

register.

6) CUs’ data value is set to maximum where a substitution

takes place.

7) Substitution starts.

8) Data is substituted when required by using the priority

decoder and the one-hot decoder.

9) Another pulse is generated when SUST register is empty.

10) With this pulse EQL and SUST values are stored in a

register.

11) If all SUST values equal zero, the BWT is completed.

If not, the architecture iterates from step 5.

Fig. 5. Reduced block diagram with 4 CUs.

During the substitution phase identifying the groups of

characters to be substituted was a challenging task. The task

was accomplished by considering that:

• Two groups of different characters can be together (e.g.

“AAASSS”). The groups should be divided.
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• After a substitution and a sort iteration of a group of

characters, characters of the sorted group may be equal to

adjacent characters. The architecture should not compare

the characters within the group with adjacent characters.

The comparisons are only within each group.

For the first case the signals EQL and SUST are used.

The signal SUST will inform when a character is equal to

one adjacent. The additional information provided by EQL

–character equal on the left– allows to know the beginning

of a group of characters. If SUST = ‘1’ and EQL = ‘0’, the

character is the first in a group.

For the second case, after identifying repeated characters,

the CUs with the remaining characters on the string are

disabled.

The next section compares the proposed hardware architec-

ture to previous developed approaches.

V. STEPS ANALYSIS AND COMPARISON

The LSBWT is capable of sorting a string of a length equal

to the number of CUs in the architecture. The steps needed

are the following:

• The LS sorts the string as it is fed, taking n cycles in

this process; where n is the string size.

• The architecture takes n cycles to output the string when

finished.

• The next cycle after the first sort is used to store the

required registers.

• In the next cycle, the architecture indicates the BWT

is completed or resets the registers if a substitution is

needed.

• If another iteration is needed the architecture takes mi

cycles to sort the string; where m is the number of

characters that should be substituted for the ith iteration.

Additionally, it takes 2 cycles to generate the final pulse

of the iteration and resets the CUs if needed.

• The previous point may be performed k times; where k
is the number of iterations.

For the worst case, mi is equal to n for all i iterations. The

expression for the number of steps needed in the worst case

scenario is 2n for the string’s input and output; plus 2 for

storing in registers and reseting or identifying the end; plus

(n + 2)(k − 1) which represents the steps for each iteration

additional to the first one. The expression is given by Eq. 2.

steps = n(k + 1) + 2k; (2)

Table I compares the number of steps taken by the archi-

tectures proposed in [8] and [9]. The work regarding FIFO

networks was not considered in this comparison as there is

not a reported expression for the steps needed to compute

the BWT [10]. The steps comparison is for the worst case

scenario. For the Parallel Sorter, the worst case is when it takes

n/2 to sort a string. For our approach, the worst case is when

the whole string should be substituted during every iteration.

The number of steps for the Weavesorter does not depend

on the content of the string, only on its size and necessary

iterations. Table I also shows the increase in the number of

steps in relation to the proposed approach.

TABLE I
COMPARISON OF THE NUMBER OF STEPS TO COMPUTE THE BWT IN

HARDWARE.

Expression
of steps

Steps for
n=128, k=8

Step count
(normalized)

Weavesorter
[9]

2n(k + 1) 2304 1.97

Parallel Sorter
[8]

( 3
2
k + 1)n 1664 1.42

Linear Sorter
Proposed approach

n(k + 1) + 2k 1168 Base line

TABLE II
RESOURCE SUMMARY.

Selected Device: XC6VLX75T
Used Available Percentage

Slice
Registers

1419 93120 1%

Slice
LUTs

5434 46560 11%

Fully used
LUT-FF pairs

1419 5434 26%

Bonded
IOBs

22 240 9%

BUFG/
BUFGCTRLs

1 32 3%

From the results shown in Table I it can be seen that

the Weavesorter implementation takes almost two times the

number of steps to compute the BWT when compared to our

approach. LSBWT speed up may increase when the complete

string is not substituted in every iteration. The Parallel Sorter

(PS) is sensitive to the string content; namely, the characters

order. The LSBWT is sensitive to the string’s content too;

namely, the number of repeated characters. However, the

proposed approach outperforms the PS. The best case scenario

for the PS is when the input string is already sorted. The

expression of the steps in PS is (n+ 1)(k + 1) + k which is

1 step slower than LSBWT worst case scenario.

VI. EXPERIMENTAL RESULTS

LSBWT design was synthesized in a Kintex 7 XC7K70T

using ISE 14.7. The architecture reaches a frequency of

152.022MHz (Clock period: 6.578ns) for 128 CUs. The

resource utilization is presented in Table II.

The general expression for the steps required to compute

the BWT is given by eq. 3

steps = 2n+ 2 +

k−1∑

i=1

(2 +mi); (3)

where n represents the length of the string, k the iterations

needed and mi the number of characters that should be

substituted at iteration i.
To verify eq. 3, experiments were performed with 10 ran-

dom strings taken from this text. Table III shows the number

of steps required to sort each string. Likewise, the number

of iterations and substitutions at each iteration are presented.

Results show that the number of steps counted are the same

as the number of steps computed with eq. 3.
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TABLE III
STEPS FOR 10 RANDOM STRINGS OF LENGTH 16.

Iterations (k) Substitutions per iteration Total steps
2 7 43
2 8 44
2 11 47
3 7,2 47
3 10,2 50
3 11,4 53
3 13,2 53
3 10,6 54
4 12,5,2 59
6 13,8,6,4,2 77

The number of steps to compute the BWT given a certain

string for the PS and the proposed approach depends on

different characteristics of the string. String details used in

[8] are not enough to make a fair comparison. However, the

experiment for the worst case scenario, where 127 out of 128
characters are the same, is a good test to assess such worst case

in our approach. Experimental results are shown in Table IV.

These results suggest that LSBWT reduces 47% the number of

steps required by the PS architecture and 73% the steps taken

by the Weavesorter. The approach presented in [10] for the

worst case yields an architecture that should store the complete

rotation matrix, which translates in a high demand of memory.

TABLE IV
STEPS TAKEN FOR A STRING WITH 127 EQUAL CHARACTERS OUT OF 128.

Steps for worst case Percentage increase
Weavesorter

[9]
32768 73%

Parallel Sorter
[8]

16639 47%

Linear Sorter
Proposed approach

8768 Base line

The last experiment consist of comparing the three reported

architectures and the proposed architecture by performing the

BWT for two strings of size 128 with LCP equal to 8. The

characteristics of the string were chosen to match the reported

cases. The comparison against the Weavesorter and the FIFO

network architecture was chosen due to the fact that both

architectures are not sensitive to the string’s content. However,

the comparison against the PS architecture serves only to show

the proposed approach performance. Note that even when both

strings are taken from English text, have the same size and

LCP, the content of the string affects the results and it was

not possible to get the same strings. Moreover, is worthy to

point out that to make the comparison as fair as possible,

the comparison was made based on the steps taken by each

architecture. The corresponding results are presented in Table

V.

Results in Table V show that our approach outperforms the

Parallel Sorter and the Weavesorter. The number of steps are

reduced by 76% for the Weavesorter approach and by 57%
for the parallel sorter approach. However, the FIFO network

computes the BWT in the least number of steps. The main

reason is that the approach taken in [10] is based on knowing

the LCP beforehand and synthesizing a custom architecture

TABLE V
BWT PERFORMANCE COMPARISON FOR 128 STRING LENGTH WITH 8

LCP.

Steps for
First String

Steps for
Second String

Max.
Frequency

Device

Weavesorter
[9]

2304 2304 45 MHz
Virtex
xcv300

Parallel Sorter
[8]

1234 1229 51.6 MHz
Virtex2

xv2v2000

FIFO Network
[10]

285 285 51.4 MHz
Stratix

EP1S10B672C6

Linear Sorter
Proposed approach

525 543 152 MHz
Kintex 7

XC7K70T

for the LCP. The advantage of knowing the LCP beforehand

translates in an architecture which only sorts once to complete

the BWT. The cost is a higher need of memory resources as

the LCP grows [10]. Moreover, the architecture based on a

FIFO network will not compute the BWT if the string has a

LCP greater than the one the architecture was synthesized for.

The proposed architectural design computed the BWT for a

given string with no LCP constraints.

VII. CONCLUSIONS

We have presented an FPGA architecture to carry out the

BWT. Our approach is based on the use of a Linear Sorter,

which greatly helps to accelerate the processing time in-

vested in performing the transform. Our proposed architecture

presents several remarkable advantages as it does not need to

substitute the whole string for additional iterations. In addition,

the LSBWT can automatically stops when the BWT is done,

thus there is no need to know the LCP in advance. Another

advantage is that the architecture is based on CUs, these

units are all the same, which simplifies the implementation.

Few changes are needed in order to expand the architecture.

Moreover, along with the flexibility provided by FPGAs, the

architecture can be scaled based on the application. The latter

is related to fact that LSBWT can scale until no resources are

left in the FPGA with minimum changes in the VHDL file.

The LSBWT architecture outperforms the PS and

Weavesorter approaches for any given string. The PS may take

42% more cycles to compute the BWT than our approach

and in the worst case it takes 89% more. The Weavesorter

may take 96% more cycles to compute the BWT and in the

worst case scenario it takes 273% more cycles. The number of

clock cycles taken by our approach is less than those reported

in previous works. It is true that the work in [10] implies a

reduced number of clock cycles, but its functionality is based

on knowing the LCP beforehand, which may not be known or

may even be variable in some applications.

As a future work, expanding the CUs depth in order to store

more than one character will be explored. The idea is to reduce

the number of iterations needed to compute the BWT while

expanding the memory use. A trade-off analysis between the

performance and the resource utilization will also be carried

out.
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