
Neurocomputing 175 (2016) 899–910
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
E-m
journal homepage: www.elsevier.com/locate/neucom
A scalable and customizable processor array for implementing cellular
genetic algorithms

Martin Letras, Alicia Morales-Reyes n, Rene Cumplido
Instituto Nacional de Astrofisica, Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Puebla, 72840 Mexico
a r t i c l e i n f o

Article history:
Received 1 December 2014
Received in revised form
12 May 2015
Accepted 12 May 2015

Communicated by Chennai Guest Editor

they are similar to a software implementation. Recently, combination of GAs, both sequential and parallel
Available online 6 November 2015

Keywords:
Cellular Genetic Algorithms
Hardware Architecture
FPGA
x.doi.org/10.1016/j.neucom.2015.05.128
12/& 2015 Elsevier B.V. All rights reserved.

esponding author.
ail address: a.morales@inaoep.mx (A. Morales
a b s t r a c t

Architectures design for Genetic Algorithms (GAs) has proved its effectiveness to tackle hard real time
constrained problems that require an optimization mechanism in one of their phases. Most of these
approaches are problem dependent and cannot be easily adapted to other problems. Moreover, GAs based
architectures preserve the algorithmic structure of a panmictic population in a sequential GA and therefore

and reconfigurable devices such as FPGAs have been merged to create GAs based parallel hardware archi-
tectures. This study proposes a novel hardware architectural framework that implements a fine grained or
cellular GAs while maintaining toroidal connection among individuals within the population. Achieving
massive parallelism is limited by available resources; therefore, the proposed architectural design imple-
ments a segmentation strategy that partitions the entire decentralized population while maintaining original
algorithmic interaction among solutions. The proposed architecture aims at preserving fine grained GAs
algorithmic structure while improving resources usage. It also allows flexibility in terms of population and
solutions representation size and the evaluation module containing the objective function is interchangeable.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Genetic Algorithms (GAs) are metaheuristics inspired in the
evolution theory proposed by Darwin. GAs were proposed by
Holland [1], and have widely proved to be successful in solving
different kind of engineering and scientific problems. They are
used as optimization techniques either when a deterministic
algorithm is not available or is computationally expensive or when
finding an approximate solution to the problem is acceptable.
Combinatorial, continuous domain and real-world problems have
been successfully tackled by GAs. GAs could be found in applica-
tions like robot motion planning [2], digital image processing [3,4],
geolocation [5–7] evolvable hardware [5,8,9], etc.

GA are stochastic search techniques, initially they generate a
random population of candidate solutions, each solution, also known
as individual, is encoding in some form of representation (binary,
integer or real numbers) creating a chromosome. Next, genetic
operators are applied at solutions representation level in order to
explore and exploit the search space. Genetic operators try to mimic
the natural selection process in every stage: selection, crossover and
mutation. Selection operation, in analogy to natural selection, tries to
preserve the fittest individuals from the population. There are dif-
ferent selection criteria like tournament, roulette wheel, etc.
-Reyes).
Crossover operator tries to emulate the exchange of genetic infor-
mation in reproduction processes of biological individuals. This
operator creates a couple of new individuals called offspring. Each
offspring contains part of their parents’ genetic material. Crossover
operation is useful to explore the space of possible solutions. On the
other hand, mutation operation promotes exploitation of solutions at
close by regions within the search space. Mutation changes a gene’s
value in the chromosome according to a mutation probability. A
replacement criterion is necessary in order to replace previous
individuals in the current population with those evolved. A sequence
of these genetic operators is known as a generation. A number of
generations is carried out until an approximated solution closed
enough to the exact solution is reached.

GAs executes these operations iteratively until an approxi-
mated solution closes enough to the exact solution. This process is
totally stochastic and it is difficult to know how many generations
are needed to converge to an acceptable solution. This could be a
disadvantage because there are environments where a response in
real time is needed like in embedded systems. A solution is to
design dedicated hardware that could be embedded in a system
with the purpose of reducing resources usage and of allowing low
power consumption. Due to recently advances in FPGA technology,
efficient GAs based hardware architectures are implemented using
FPGAs as a prototyping tool and later the design could be imple-
mented as an ASIC because the hardware architecture is inde-
pendent to the employed device.

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.05.128
http://dx.doi.org/10.1016/j.neucom.2015.05.128
http://dx.doi.org/10.1016/j.neucom.2015.05.128
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.128&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.128&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.05.128&domain=pdf
mailto:a.morales@inaoep.mx
http://dx.doi.org/10.1016/j.neucom.2015.05.128


M. Letras et al. / Neurocomputing 175 (2016) 899–910900
In this study, a hardware architectural framework is proposed
for fine grained or cellular GAs in order to take advantage of their
algorithmic massive parallelism together with FPGAs implicit
parallelism. The main contribution of this research is to design a
partition strategy that is able to segment the decentralized
population among a set of processor elements (PEs) while main-
taining toroidal connections among individuals. Therefore the
original algorithmic structure of a cellular GA is preserved. The
proposed architecture can also be configured to support different
population and chromosomes sizes and different objective func-
tions can also be plugged. The aim of having this architectural
framework is to enable an optimization engine as a functional
module in an embedded system.

This paper is organized as follows; in Section 2 related work is
discussed as regards previously proposed GAs based hardware
architectures both sequential and parallel approaches. Section 3
introduces the algorithmic structure of fine grained or cellular GAs.
Section 4 describes the proposed architectural framework for fine-
grained GAs continuing in Section 5 with experimental results and
a comparison analysis with related works. Finally in Section 6
conclusions and possible future research lines are drawn.
2. Related work

Several hardware architectures haven been proposed to exe-
cute GAs, many of these architectures aimed at accelerating the
search process and several were specifically designed for accel-
erating a single processing stage in GAs. Several research works
report sequential GAs based designs, and less attention has been
paid to fully exploit inner parallelism of implementation platforms
such as FPGAs. Moreover, there are few architectural designs that
target parallel GAs which in one of their forms are massively
parallel at an algorithmic level. Taking advantage of GAs implicit
parallelism and implementation platforms such as reconfigurable
devices has not been fully explored. Some previously proposed
GAs based architectures target designs independent to the pro-
blem that offer memory usage reduction because solutions are not
represented within. However, there are few proposals of fine
grained or cellular GA based architectures designs.

In [25–,28], Graphical Processors Units are employed as an
alternative to accelerate Cellular Genetic Algorithms. In [25],
authors present an implementation of cellular GAs in GPUs to
tackle the satisfiability problem 3-SAT, a well-known NP-hard
problem. A comparison between GPU and CPU shows a perfor-
mance improvement for GPU's platform. In [26], PUGACE is
introduced as a Cellular Evolutionary Algorithm framework.
PUGACE could be configured to work with distinct types of
crossover operators, selection operators and distinct fitness func-
tion. The framework was tested with the Quadratic Assignment
Problem QAP. In [28], an implementation of cellular GAs is carried
out, this approach stores individuals and fitness values in the
GPU's global memory. Fitness function evaluation and genetic
operators are fully implemented in the GPU. Experimental results
showed an improvement against CPU implementations. In [27], a
multi-GPU implementation of a cellular GA is presented. Several
test problems were assessed such as Colville Minimization, Error
Correcting Codes Design Problem (ECC) and Massively Multimodal
Deceptive Problem (MMDP), and three continuous domain pro-
blems, shifted Griewank function, shifted Rastrigin function and
shifted Rosenbrock function. Comparison against CPU and single
GPU showed that a Multi-GPU implementation overcomes in
execution time.

In [11] a GA based hardware architecture using a FPGA Xilinx
Virtex2Pro [19] was proposed, population size was defined by 8-
bits with a maximum population size of 256 individuals; a flexible
number of generations could be defined by 32-bit. Individuals'
selection is carried out by roulette-wheel selection and single-
point crossover is applied. The fitness function module can be
replaced by a different one but the entire designs should be
resynthesized. If FPGA resources in one device are not enough to
support larger populations or individuals, other FPGA devices can
be connected in order to increase overall processing capacity.
However, this approach is not fully parallel, neither at an algo-
rithmic level nor at architectural level.

In [12], a compact architecture inspired by the Optimal Indi-
vidual Monogenetic Algorithm was proposed. This design holds
only one individual during algorithm's execution, thus it reduces
memory usage in comparison to having a standard population
with more individuals. This architecture has two processing stages.
One performs a global search generating n individual randomly
and holding the fittest; at this stage different regions in the search
space are explored. A second stage performs fine changes to the
chromosome held, to this purpose; a new genetic operator called
micro-mutation was proposed.

An IP core module of a GA to be executed in hardware and that
could and could be integrated in an embedded system was pro-
posed in [13]. The main goal was to develop an architecture which
is able to use different fitness functions. The architecture contains
necessary ports and signals to interchange information from the
GA module to the fitness function module. Every time that a dif-
ferent fitness function is used, the new module needs to be loaded
and the architecture needs to be resynthesized.

Problem dependency for the objective function module was
tackled in [14]. The proposed idea was using Neural Networks
(NN) to evaluate the fitness function. Thus, a hardware imple-
mentation of a NN within the GA architecture is included. How-
ever, neurons weights are calculated in software using Matlab as a
tool; after each neuron weight is stored in lookup tables (LUTs).
Every time a different fitness function is evaluated, the NN needs
to be train again in order to store the new weights; also the
architecture design needs to be resynthesized. A sequential GA is
implemented together with the NN.

Two GA based hardware architectures were proposed in [15].
One follows the idea of local search while a second one imple-
ments a global search criterion. An algorithm called Multiple Dif-
ferent Crossover GA is proposed. This algorithm performs four
different crossover operations called: leading, order, annular and
DSO crossover. In every generation, the four crossover operators
are applied to the parents and the fittest offspring are kept. The
algorithmic GA steps of this design are sequential and their pro-
posal heavily depends on the successful application of the four
proposed crossover operators.

All previous works are hardware architectural designs that
implement sequential GAs that in some cases aim at having flex-
ibility in terms of population size, chromosome size or inter-
changeable fitness function modules. However recently, fine-
grained or cellular GAs have been explored to take advantage of
both implicit parallelism at an algorithmic and at processing
platform levels. In [21–23], a Compact Cooperative Genetic Algo-
rithm is adapted to work using a Cellular Genetic Structure to
tackle evolvable and adaptive hardware to address the scalability
issue. In these works, the population is represented as a prob-
ability distribution over the set of solutions. At each generation,
two individuals are randomly generated from a probability vector.
Then, tournament selection is performed over both. Each bit of the
probability vector is adjusted according to the result of the tour-
nament selection. Eventually, the cellular GA keeps running until
the probability vector has converged.

In [16,,17], Dos Santos et al. proposed an architecture that imple-
ments a fine-grained GA. A toroidal mesh connection among Processor
Elements (PEs) is defined in which each PE has access to two memory



M. Letras et al. / Neurocomputing 175 (2016) 899–910 901
blocks where small subpopulations are stored. According to PEs' tor-
oidal connection, individuals in current subpopulations can be selected
more than once for reproduction; thus cellular GAs' canonical algo-
rithmic structure is modified. This architecture executes a coarse-
grained parallel GA in which small sub-populations are connected in a
toroidal fashion. Memory resources are saved by allocating individuals
in this way; however inherent exploration–exploitation ability of cel-
lular GAs is modified. This architecture assessed two combinatorial
problems: the Travel Salesman Problem (TSP) and the Spectrum
Allocation Problem (SAP).

A cellular compact GA was proposed in [18,,24], this architecture
is a mixture of a cellular GA and a distributed GA. The architecture
maintains toroidal interconnections among individuals like in a
cellular GA and within each PE a probability vector is held, it
represents the entire population. A compact GA is run based on
probabilities stored. The vector is migrated to the nearest neighbors
instead of migrating individuals and genetic operations are applied
to the probabilities vector instead of to individuals. This architecture
applies migration which is an operator applied mainly in coarse-
grained or distributed GAs, at the same time the fine grained par-
allelism is maintained. The objective function aims at classifying
signals of electrocardiogram (ECG). A Neural Network is used for
signal classification while a GA calculates its weights.

Research works reported in [16–,18] aim at memory optimal
usage while preserving toroidal connection among PEs. The PEs
array in this research proposes a partition strategy to reduce
resources usage while preserving at an algorithmic level toroidal
connection among individuals taking advantage of full massive
parallelism available in this evolutionary technique.
3. Cellular Genetic Algorithm

Sequential GAs use a single population of individuals in pan-
mixia, in this way every individual can mate any other individual
of the rest of the population through genetic operations. Solutions
independence in GAs makes them suitable for parallel algorithmic
approaches. Thus, a rough classification divides them in coarse-
grained or distributed and fine-grained or cellular GAs. In cGAs,
the population is decentralized and individuals are normally
placed on a grid following a toroidal connection among them. It is
worth mentioning that several combinations of parallel approa-
ches have been proposed and assessed but due to the application
arena of this research, canonical cGAs are approached [10].

Cellular GAs are able to exploit implicit GAs massive paralle-
lism. Fig. 1 shows a square topology of cGAs where each PE cor-
responds to one individual, thus individuals interact through a
Fig. 1. Processor Elements arrangement in a toroid me
local neighborhood, some examples of common neighborhood
configuration are shown to the right in Fig. 1; each PE is part of a
neighborhood and overlaps other neighborhoods. Because cGAs
are massively parallel, solutions are locally exploited and
exploration of the search space is carried out globally throughout
the entire grid. This is one of the main differences between fine-
grained and coarse-grained GAs, not only genetic operators carried
out the exploration–exploitation of solutions but also decen-
tralized populations could affect the search process from their
topology-neighborhood configuration.

In Algorithm 1, a canonical cGA pseudocode is described. In
steps 2 and 4, an initial population is randomly generated and
individuals' fitness values are calculated according to the objective
function. In step 3, a temporary array (auxiliary pop) is initialized
to store evolved individuals within one generation. It is worth
mentioning that genetic operators are applied at a local level
within neighborhoods, thus individuals that do not belong to the
neighborhood cannot affect results of the evolutionary process
locally. Steps 5 and 6 define cycles to verify the stop condition and
to evolve the whole population synchronously. In step 8, selection
operation chooses one of the fittest individuals from the local
neighborhood to mate current or central individual. In step 9, two
selected chromosomes are recombined using one point crossover,
two points' crossover or any other crossover type; crossover pro-
motes exploration within the search space. In step 10, mutation
operation is executed with a defined probability which normally is
P_m¼1/chrom_length. Mutation carries out small changes at
chromosome's genes and therefore further exploitation of solu-
tions takes place. In general, crossover and mutation operations
balance the exploration–exploitation trade-off in GAs if no other
mechanism to control it is considered. In Steps 11 and 12, children
fitness scores are obtained and current individual is replaced by
the fittest offspring. New individuals are temporarily stored in
auxiliary pop in order to follow a synchronous updating criterion.
A sequence of these genetic operations is one generation and a
number of generations are executed until the algorithm converges
to the solution or fulfills the stop condition (step 5). In step 14, a
new evolved population replaces previous one for the next gen-
eration corresponding to synchronous updating. In the next sec-
tion, the proposed processor array with a novel partition strategy
to maintain toroidal connection among individuals and therefore
cGAs' exploration–exploitation trade-off is described.

Algorithm 1. Cellular Genetic Algorithm.

1. proc Evolve(cga)//Parameters of CGA
2. GenerateInitialPopulation(cga.pop);
3. auxiliary pop’cga.pop;
4. Evaluation(cga.pop);
sh and the common neighborhood configurations.



Fig. 2. Two PEs arrangements on a toroidal mesh holding a population of 64 individuals. Left: 4 PE holding 16 individuals each. Right: 16 PE holding 4 individuals each (NB.
Border connections are removed for simplicity).

M. Letras et al. / Neurocomputing 175 (2016) 899–910902
5. while! StopCondition() do
6. for individual’1 to cga.popSize do
7. neighbors’GenerateNeighborhood(cga,position
(individual));

8. parents’Selection(neighbors);
9. offspring’Recombination(cga.Pc,parents);
10. offspring’Mutation(cga.Pm,offspring);
11. Evaluation(offspring);
12. Replace(position(individual),auxiliary pop,offspring);
13. end for
14. cga.pop’auxiliary pop;
15. end while
16. end proc Evolve

4. Processor array for cellular GAs

In previous sections, the importance of GA and their integration
as a part of an embedded system has been explored to justify the
importance of a fully parallel design in order to save hardware
resources in GA based hardware architectures. An important
contribution of this research is to develop a processor array
architecture that is able to partition the population's grid of a cGA
while maintaining a toroidal connection among individuals and
therefore the selective pressure applied due to the population's
topology is kept; at the same time at a hardware level the aim is to
reuse physical resources. The criterion for population's partition is
to divide the whole population among PEs in tiles of different
sizes. Each PE process a subpopulation but unlike distributed GAs
[16–,18], a logical toroidal mesh is maintained and therefore the
inner fine-grain parallelism of this structure is kept.

Scalability in the proposed architecture design is defined at two
levels: (1) number of individuals per PE within a squared tile,
(2) number of PEs for the overall array. In terms of flexibility the
following considerations are needed: for medium size archi-
tecture, the processor array would result in neither the fastest nor
the most compact design. In contrast, if a compact design is
required, more clock cycles would be necessary but hardware
resources usage is optimized. However, if time constraints are
mandatory, a larger number of PEs can be implemented at a cost of
increasing the use of hardware resources. Thus, at first the user
should define the processor array size according to specific pro-
blem’s constraints. The proposed processor array offers flexibility
between time constraints and space resources necessary to exe-
cute the cGA.
In the next subsection, internal hardware structures designed
for the proposed cGA based processor array are described. All sub
modules have been developed using a top down strategy at a RTL
level. Initially, each module was tested and simulated to verify
functionality. Once each module was verified, an integration stage
took place at a top level.

4.1. Segmentation strategy

To explain the segmentation strategy the next example is
considered: a cGA with 64 individuals (one individual per PE)
distributed in a toroidal mesh would exceed available hardware
resources because of the internal hardware structures involved in
genetic operations and particularly in the fitness function. On the
other hand, if only 4 PEs fit within the physical platform, the
population can be arranged in such way that each PE holds 16
individuals. Another example considers that hardware resources
allow 16 PEs thus the population can be arranged in such way that
each PE holds 4 individuals, see Fig. 2. This is an example of
3 different ways for partitioning the decentralized population
among PEs. In these scenarios, the same quantity of registers is
necessary to store individuals, however it is possible to obtain
different occupation area according to how many PEs are available.
For example, if the architecture has 4 PEs, the circuitry of one PE is
reused to process 16 individuals, and if the architecture has 16 PEs,
the circuitry of one PE is reused to process 4 individuals.

In Fig. 2, the left example would require more time to evaluate
16 individuals in every generation but it would reduce hardware
resources usage. The right example in Fig. 2 reduces execution
time per generation because 16 individuals are evaluated every
clock cycle but increases the utilized area because 16 PEs are
required. Finding an adequate tradeoff between processing times
and hardware resources usage is aimed when hardware archi-
tecture is designed to accelerate specific algorithms in this case
cellular GAs.

The proposed processor array architecture offers the possibility
of selecting one of these scenarios according to the application
domain of a top level design. It is worth to remember that the
proposed processor array would be attached to an embedded
system and would offer certain flexibility. Once the population is
distributed among PEs, a strategy to simulate a whole toroidal
mesh of 64 individuals is mandatory. For example, if there are
4 PEs with 16 individuals within each PE; wired connections
among 64 individuals using only 4 PEs must be emulated; thus the
whole grid maintains toroidal connections among individ-
uals, see Fig. 3. Each individual must have a logical connection



Fig. 3. A logical toroidal mesh simulates connections among 64 individuals using 16 PEs. Solid line squares represent individuals in PE number 1, dotted line squares
represent PE number 2 and so on.

M. Letras et al. / Neurocomputing 175 (2016) 899–910 903
with its nearest neighbors, but physically, only connections among
4 PEs exist.

To emulate 64 physically wired PEs array, attention must be
paid to information exchanged with neighbor PEs. Fig. 3 shows an
example of having 4 PEs each with 16 individuals, thus 16 itera-
tions are needed in order to evolve the whole population. For
example, during the first iteration, current individual in each PE is
individual number one; solid line squares in Fig. 3. Next, PE
number one (corresponding individuals in solid line squares)
exchanges current individual and its fitness score to the south and
east PEs. However, North neighbor (PE number 3, individuals in
round dot line squares) needs individual 5 of PE number 1 (þ4 in
Hamming distance to current individual), and west neighbor (PE
element number 2, individuals in dash line squares) needs infor-
mation of individual number 2 in PE number 1 (þ1 in Hamming
distance to current individual). After modeling information beha-
vior of what is necessary to exchange with neighbors, it was
observed that inner PEs only need to exchange current individual
with its neighborhood. It was also observed that PEs in the frontier
needs to send individuals different to current one. Therefore,
Algorithms 2 and 3 are proposed to deal with these scenarios.

In Algorithms 2 and 3, variables i and j represent PE's position
within the processor array. For example, indexes [0, 0] correspond
to PE number one. Variable DIM defines the number of PEs per
row, with a total of 4 PEs, DIM¼2. Increment variable is calculated
by dividing number of columns in the logical toroidal mesh
between DIM, in the example, an increment equal to 4 is obtained.
Individuals variable is the number of individuals per PE, 16 for this
example. These parameters are needed for information exchange to
the closest neighbor. In Algorithm 2 example: north’ind5 because
index’ind_actþ increment where ind_act ¼ 1 and increment¼ 4,
thus index¼ 5 and individual 5 is sent to the North output; the
other output in Algorithm 2 is south’ind_act then individual 1 is
sent to the South output, thus individual 5 and individual 1 are
received by PE number 3.

Algorithm 2. Exchanging information with North and South
neighbors.

1. proc South_North_information(j,DIM,ind_act,increment,
individuals)

2. north’ind_act;
3. south’ind_act;
4. if i¼¼ 0 then
5. index’ind_actþ increment;
6. if indexZ individuals then
7. index’index-individuals;
8. end if;
9. north’index;
10. elsif i¼¼DIM-1 then
11. index’ind_act-increment;
12. if indexZ individuals then
13. index’indexþ individuals;
14. end if;
15. south’index;
16. end if;



7

8
9
1
1
1
1
1
1

Fig. 4. Internal structure of the proposed PE.

Fig. 5. Internal structure of genetic operator module.

M. Letras et al. / Neurocomputing 175 (2016) 899–910904
In Algorithm 3, first output is west’ind2 because index’
ind_actþ1 where ind_act ¼ 1, thus index¼ 2 and individual 2 is
sent through West output; second output in Algorithm 3 is east
’ind_act then individual 1 is sent through East output; indivi-
duals 1 and 3 are received by PE number 2. Algorithms 2 and 3
guarantee that PEs send and receive corresponding algorithmic
data. The proposed control mechanism is implemented within
registers bank of actual individuals, see Fig. 4. This means that
each PE needs to control current individual and neighbors in and
out.

Algorithm 3. Exchanging information with West and East
neighbors.

1

2
3
4
5
6

. proc West_east_Information(j,DIM,ind_act,increment,
individuals)
. west’ind_act;
. east’ind_act;
. if j¼¼ 0 then
. index’ind_actþ1;
. if index4 increment*(floor(ind_act/inc_ver)þ1) then
. index’increment*(floor(ind_act/inc_ver)þ1)-
increment;
. end if;
. west’index;
0. elsif j¼¼DIM-1 then
1. index’ind_act-1;
2. if indexo increment*floor(ind_act/inc_ver) then
3. index’increment*floor(ind_act/inc_ver);
4. end if;
5. east’index;
6. end if;
1

4.2. Processor Element

A PE has two registers banks, a pseudorandom number gen-
erator, a counter and the genetic operations module, see Fig. 4.
Each PE is also a systolic processor because an initial seed is pro-
pagated for each PE on the fly, it also has the option of chang-
ing the initial seed for a PE; it also exits the best individual



Fig. 7. Initializing each PE with a different seed using systolic array signals.

Fig. 6. Systolic processor arrangement in a row.

M. Letras et al. / Neurocomputing 175 (2016) 899–910 905
chromosome when the cellular GA has converged to the problem's
solution. Fig. 6 draws the systolic array’s structure.

Two banks of registers are defined, one to store current indi-
viduals, and another for temporary individuals storage. After each
PE receives its seed, the register bank for current individuals is
loaded randomly. Next, the processor array evaluates individuals
and carries out the evolutionary process through genetic opera-
tions, new individuals are stored in the temporal bank register for
synchronous cGA's updating. Once a generation is completed,
chromosomes pass from temporary to a current individuals' reg-
isters bank. Individuals at a temporary registers bank are neces-
sary because information cannot be erased from the registers bank
for current individuals because another PE could require their
information. A counter indicates current individual and when a
complete generation is assessed.

Fig. 5 shows the internal structure of the genetic operations
module. Once individuals arrive to a PE, a selection process for the
best individual among them, considering current individuals, is
carried out. Then recombination and mutation are applied to the
selected parents. Finally, offspring are evaluated and the genetic
operator module outputs the fittest individual. In following sub-
sections more details about every internal module of the genetic
operations module are provided.

4.2.1. Pseudo random number generator
Previously, it has been mentioned that GAs are stochastic

processes because almost at every stage, a random parameter is
required, either when recombining parents or mutating children.
For this module, a cellular automata array to generate pseudo
random numbers is used. After a careful review of the literature,
cellular automata guarantees good quality of random numbers
sequences; this approach is used in [11,,13,,14]. In this study, a
combination of rules 90 and 150 is used, for more details readers
are referred to [20].

Each PE has a Pseudo-Random Number Generator (PRNG). In
order to initialize cGA's solutions and configuration parameters,
the systolic array signals are used. Each row in the processor mesh
receives a seed at the systolic array input signal and one clock
cycle after, a new seed is received while previous one is sent to the
next PE. In Fig. 7 an example is drawn: in the first clock cycle, the
systolic array input signal has a 3 value. In the next clock cycle, the
first PE has received value 3 as a seed. One clock cycle after, the
first PE has received value 124 and has sent value 3 to the second
PE. In the next clock cycle, the first PE has received value 255 and
has sent value 124, while the second PE has received value 3. This
process is repeated until all PEs have received corresponding
seeds. The systolic array has been chosen because it is an efficient
way to propagate information among a set of PEs.
4.2.2. Selection module
The internal structure of the selection module is shown left in

Fig. 8. Binary tournament selection, one of the most common
selection methods used in GAs, is implemented. Binary tourna-
ment selects two fittest individuals from the neighborhood. This
operator receives as inputs north, south, east and west individuals
and their fitness function value. This operation is implemented
using comparators connected in cascade; see left in Fig. 8.



Fig. 8. Left: tournament selection operator. Right: crossover operator.

Fig. 9. Crossover module's behavior. Parents genetic information is inherited to the offspring.

M. Letras et al. / Neurocomputing 175 (2016) 899–910906
4.2.3. Crossover operation's module
In order to simplify the crossover operation, its design is divi-

ded in two phases. If, the behavior of the crossover module is
observed, the operator could be implemented using only or and
and logical gates. The procedure employed is illustrated in Fig. 9.
There are two strings for chromosome parents and one that
represents the crossover operator. This crossover string indicates
the exchange position of the genetic material. In Fig. 9 example:
“001100” is the string representing the crossover operation. Zeros
in the crossover string indicates that the new chromosome
remains same as its parents, ones in the crossover string indicates
chromosome's sections are interchaged between parents. Design-
ing in this way the crossover operator, it is simplified and
recombination is performed by only using and and or gates as it is
shown at the right in Fig. 8. The overall function of this module
consist in reading 2 random numbers from the PRNG module and
filling with 1 all positions within the interval of these random
numbers.
4.3. Mutation operation's module

Mutation is performed by chromosome's bit flipping according
to a mutation probability. At an architectural level, it is necessary
to generate a random mutation probability per bit which is a
demanding task. Therefore, a n random number generator for log
(n) bits was implemented, where n is the chromosome size; thus a
n*log (n) length binary string is calculated as a mutation prob-
ability vector. Mutation probability per chromosome's gene is
calculated by Pmutation ¼ 1

2log ðnÞ; if a zero is found, corresponding gene
position within the chromosome is flipped.
4.4. Control mechanism

Fig. 10 illustrates the control mechanism proposed in this study.
A five state Finite State Machine (FSM) is defined aiming at a fully
parallel architecture. In S0, a Pseudo-Random Number (PRN) act-
ing as a seed is propagated throughout PEs using systolic array
ports as shown in Fig. 6. The FSM stays in this state until all PEs
have a different seed. In S1, each PE generates a new individual in
one clock cycle and stores its chromosome in the register bank of
actual individuals. The FSM machine remains in this state n clock
cycles, where n corresponds to the number of individuals of the
corresponding population's segmented tile. Once the initial
population is generated, the FSM move to state S2, in this state, the
genetic operations module is executed. The number of clock cycles
spent by the processor array in one generation can be calculated as
follows:

Tgeneration ¼ nindividuals � ncyclesfitness

where nindividuals corresponds to the number of individuals in
the corresponding population's segmented tile, ncyclesfitness is the
number of clock cycles used to calculate the fitness function.
Timing to calculate selection, crossover and mutation is not con-
sidered because these modules were designed using combina-
tional logic. However, it is important to know how many clock
cycles are required in a generation because it could be relatively
easy to calculate in how much time the whole processor array
would converge to a problem's solution. Once a generation is
evaluated, the FSM advances to S3; in this state the stop condition
is verified. If the cGA has assessed a predefined number of gen-
erations, the FSM advances to the next state; if this limit has not
been reached, the FSM returns to S2. In the final state S4, the



Fig. 10. Finite state machine used as control mechanism of each PE.

Table 1
MMDP lookup table.

Number of ones Sub function value

0 1.00000
1 0.00000
2 0.36038
3 0.64057
4 0.36038
5 0.00000
6 1.00000

Table 2
ISO PEAK fitness function.

-
x

00 01 10 11

Iso1 m 0 0 m�1
Iso2 0 0 0 m

M. Letras et al. / Neurocomputing 175 (2016) 899–910 907
architecture has to send out the best individual from individuals
evaluated by every PE. The number of cycles necessary at this state
is equal to n, where n corresponds to the number of PE in a row of
the toroidal grid.
5. Results analysis

The proposed processor array for cellular GAs is simulated and
synthesized in a Zynq XC7Z020 Xilinx FPGA with �1 grade speed
using VHDL as programming language [19]. Xilinx ISE is used for
design and synthesis process. The hardware architecture is simu-
lated at RTL in Xilinx ISIM simulator. Standard benchmark pro-
blems in the evolutionary computation arena are used as bench-
mark problems. Three combinatorial problems are implemented:
ISO PEAK, MAX ONE and MMDP, in order to evaluate architectural
performance in terms of latency and resources usage required by
the proposed processing framework. Because the assessed pro-
blems are combinatorial, only once clock cycle is required to cal-
culate individual’s fitness value. The main objective of this
empirical assessment is to demonstrate that using the proposed
segmentation strategy allows to balance hardware resources usage
and the number of clock cycles required by the cGA to converge to
a problem’s solution. It is worth to remember that, the canonical
structure of a cellular GA is not modified by the proposed partition
strategy and that individuals maintain their toroidal connections
during evolution. Benchmark fitness functions are defined in the
next subsection.

5.1. Benchmark problems

Three benchmark problems were implemented in order to
evaluate the proposed processor array that implements a canoni-
cal cGA. In this research, combinatorial problems were assessed
because their fitness calculation requires one clock cycle for
execution. In this way, the overall performance of the processor
array can be assessed as a framework for implementing cGAs
independently from the objective function but having the possi-
bility of interchangeable modules to tackle other optimization
problems.

5.1.1. Massively Multimodal Deceptive Problem (MMDP)
MMDP is a problem composed by q sub-problems. The fitness

value of each sub-problem reflects the number of ones (unitation)
each sub-problem has. A very simple lookup table with assigned
values is used, see Table 1. The number of local and global optima
would depend on the size of the problem. In this research, a size of
q¼6 sub-problems has been used. Therefore the fitness function
will sum up individual fitness per sub-problem (x) and a value of
q¼6 will be obtained when the global optimum is reached. The
fitness function is given by:

FMMDPð x!Þ¼
Xq

i ¼ 1

fitnessxi

where fitnessxi is calculated using Table 1.
In Table 1, values indicate that each sub-problem has a

deceptive point in the middle and two global maxima at the
extremes. This problem presents a large number of local optima in
comparison to the number of global ones which is 2q, where q is
the number of sub-problems.

5.1.2. MAX ONE
This problem consists of maximizing the number of 1 s in a

chromosome. The maximum fitness function value is k, where k is
the length of the binary string. A problem size with k¼64 has been
defined for experimental purposes.

5.1.3. ISO-PEAK
ISO-PEAK is a non-separable problem which means its vari-

ables affect each other at a genetic level modifying solutions' fit-
ness scores. In this study, each individual is encoded in a binary
vector with length n,where n¼ 2�m (a chromosome is divided in
two groups). For experimental purposes n¼64 bits thus m¼32.
This fitness function is defined in Table 2 based on the following
equation:

functionISOPEAK ¼ Iso2 x1; x2ð Þþ
Xm

i ¼ 2

Iso1ðx2i�1; x2iÞ

5.2. Experimental results

In order to evaluate the proposed processor array, previously
reported approaches are included in Table 3. However, a direct
comparison between the proposed approach and other archi-
tectures' proposals is not feasible; not only different devices were
used for implementation but also different limits to configure
algorithmic parameters were considered in terms of population
size, chromosomes length, selection criteria, crossover and muta-
tion operators, stop conditions, etc.

Table 3 draws a summary of closely related works as a refer-
ence for the proposed hardware architecture. One of the main
objectives in these studies is to accelerate algorithmic convergence
to the solution. All of them obtained good results when compared
to software implementations but few compared their performance
results with other hardware implementations. In [16], an array of



Table 3
Hardware architectures related work.

Work Max. pop size Max. ind.
length (bit)

Selection Crossover
operator

Device
employed

Frequency of
operation (MHz)

Time for 106 gen-
erations (s)

Registers LUTS Slices BRAM

[11] 65,535 16 RW 1-Point Virtex II Pro 50 – – – – –

[12] 256 8 Tournament 2-Point – 300 – – – – –

[13] – – Tournament 2 Point Altera APEX
20 k

30 – – – – –

[14] – 16 RW 2 Point Spartan 3 12.5 – – – – –

[15] 65,535 16 RW Different
Crossover

Virtex 4 85 – 462 10,153 5489 –

[15] 65,535 16 RW Different
Crossover

Virtex 6 399 – 6498 222 5616 –

[16] 128 150 Tournament 1-Point Virtex 6 179 3.10 2020 2605 913 12
[16] 128 150 Tournament 1-Point Virtex 6 152 1.38 7485 9306 3727 48
[16] 128 150 Tournament 1-Point Virtex 6 122 0.78 27,591 34,885 13,316 192
[17] 192 �1024 Tournament 1-Point Virtex 6 179 3.10 35,848 36,266 15,782 49
[17] 192 � 1024 Tournament 1-Point Virtex 6 152 1.38 47,092 51,664 21,949 61
[17] 200 � 1024 Tournament 1-Point Virtex 6 122 0.78 62,807 72,653 31,262 77
[18] 256 – Tournament 2-Point Virtex 5 280 – 1642 5506

Table 4
Cellular GA results on an Intel i3 GPP and an ARM processor. Population size: 64
individuals, chromosome size: 64 bits.

Problem Time for 106

generations
with i3 pro-
cessor (s)

Time for 106

generations
with i3 pro-
cessor (min)

Time for 106

generations
with ARM pro-
cessor (s)

Time for 106

generations
with ARM pro-
cessor (min)

MAX-ONE 263.574 4.392 1288.519 21.475
ISO-PEAK 241.510 4.025 1255.401 20.923
MMDP 344.388 5.739 1924.538 32.075

M. Letras et al. / Neurocomputing 175 (2016) 899–910908
PEs in a toroidal mesh is used to implement a distributed GA.
Three different array sizes were implemented: 2�2, 4�4, 8�8
PEs aimed at solving the Travel Salesman problem (TSP). An
extension to this work is presented in [17], where the Spectrum
Allocation Problem is tackled. Approaches presented in [16–18] are
parallel GAs hardware architectures that define toroidal connec-
tions among PEs; therefore these are considered as reference for
the proposed cellular GA based architecture.

In this study, for each fitness function, three different processor
arrays'configurations were synthesized for 64 individuals as the
population size in all cases: (1) an array of 4�4 PEs with a par-
tition's grid of 2�2 individuals, (2) an array of 2�2 PEs with a
partition's grid of 4�4 individuals, and (3) an array of 8�8 PEs
with a partition's grid of 1�1 individual. Every individual has a
maximum length of 64 bits, except individuals for the MMDP
where a chromosome length of 66-bit is required. Having an array
of PEs of 1�1 is not considered in this research, because this
configuration corresponds to a sequential GA with panmictic
population, and therefore the evolutionary cycle cannot be paral-
lelized. This architecture was designed as a sub-module for a
system on top. Then, the wrapper for this architecture must be
implemented according to the needs of a top level system.
Necessary inputs are seeds, clock and reset signals. For experi-
mental purposes, a 64-bit seed port could be used but in order to
avoid excessive use of input blocks, only a 1-bit signal is used thus
the seed is feed serially. To output the cellular GA result, only one
output of an individual's length is necessary. Once the cellular GA
reaches a maximum number of generations, the systolic array
starts to take out individuals, thus each row in the mesh is con-
nected to a FIFO to store all the individuals and then take them out
serially.

For comparison purposes, the proposed cGA architecture is also
evaluated in software using a PC with an Intel i3-3217u at
1.80 GHz processor with 8 GB of RAM memory and in alternate
hardware platform using and Embedded Processor Dual Core ARM
Cortex A-9 with 1 GHz CPU frequency and 512 MB RAM memory
on a Zynq 7020 SoC. In both cases, ANSI C is used for compilation.
Soft version of the cellular GA emulates parallelism at an algo-
rithmic level but implements a sequential version for execution
preserving original toroidal connection among individuals with in
cGA's population. Processing time results are presented in Table 4
clearly showing the advantage of designing a parallel architecture
for cellular GAs.

Tables 5, 6 and 7 show performance metrics to evaluate each
benchmark problem. Resources usage or area information includes
the number of Flip Flop registers, Look up Tables and slices used
for each testing case. Operational frequency and number of clock
cycles per generations are used to calculate the overall time it
takes for the architecture to execute a certain number of genera-
tions. It is worth to remember that clock utilization of each pro-
cessor array configuration could be different according to each
testing problem. Each problem defines a different data path and
clock resources reported here are after synthesis results.

The processor array that implements 8�8 PEs is the fastest
one, however it also consumes the largest area and hardware
resources and specifically for the used device the proposed
architecture surpasses its size, see Table 8 for Zynq 7020 available
resources.. On the other hand, the architecture implementing a
4�4 PEs array is slower than having a processor array of 64 PEs
with 1 individual evolving per PE, but it optimizes space in area
and hardware resources usage. Finally, the architecture that only
uses 4 PEs in a 2�2 processor array is slower than the previous
cases; but it is the most compact because only uses 4 PEs to iterate
through the grid’s partitions. In all cases, the algorithmic structure
of a cellular GA is preserved and therefore the algorithmic per-
formance is the same for the three assessed configurations. The
main difference relies on how hardware resources are used and
how this affects the overall performance in terms of the number of
clock cycles.

An initial comparison among the proposed processor array
against an i3 processor and an ARM processor reveals that in some
cases a speed improvement of 3 orders of magnitude is achieved.
This occurs because the i3 processor is a General Purpose Pro-
cessor and several functions are sequentially executed while in the
proposed architecture a high level of parallelism is performed. A
similar situation is presented for the ARM processor; the hardware
architecture achieved in some cases 4 orders of magnitude
speedup, this is because to the limited capacity of the embedded
processor. These results provide a stronger experimental support
for the proposed cGA based hardware architecture showing



Table 5
Clock cycles and area required by the ISO PEAK problem.

Processor array Registers LUTs Slices LUT FF pairs Clock cycles per generation Frequency of operation (Mhz) Time for 106 generations (s)

2�2 24,716 15,717 23,244 7458 17 46.240 0.36764
4�4 55,664 33,400 36,970 13,704 5 46.240 0.10813
8�8 177,536 103,945 78,014 21,467 2 46.240 0.04420

Table 6
Clock Cycles and area required by the MMDP problem.

Processor array Registers LUTs Slices LUT FF pairs Clock cycles per generation Frequency of operation (MHz) Time for 106 generations (s)

2�2 25,428 14,998 23,981 8106 17 45.284 0.33150
4�4 56,628 28,897 38,203 15,570 5 47.522 0.10521
8�8 182,748 86,184 80,186 28,840 2 47.436 0.04216

Table 7
Clock cycles and area required by the MAX ONE problem.

Processor array Registers LUTs Slices LUT FF pairs Clock cycles per generation Frequency of operation (MHz) Time for 106 generations (s)

2�2 24,716 22,276 23,392 7442 17 26.208 0.64865
4�4 55,664 52,501 36,986 13,579 5 26.362 0.18966
8�8 177,536 181,842 78,078 21,072 2 26.359 0.07587

Table 8
Zynq 7020 total of resources available.

Z-7020

Programmable logic Artix 7
No. of slices 85,000
No. of flip flops 106,400
No. of 6 input LUTs 53,200
No. of 36 Kb block RAMs 140
No. of DSP48 slices 220

M. Letras et al. / Neurocomputing 175 (2016) 899–910 909
significant advantages of having a dedicated hardware architecture
framework for implementing cellular GAs versus software and
therefore sequential approaches.

Although it is not possible to carry out a direct comparison to
other proposed approaches either at an algorithmic level or at an
implementation platform level, the closest related works that are
reported in [16, 17]. The architecture’s design presented in [16]
reports a lower consumption of hardware resources, however the
proposed architecture does not require using BRAMs blocks. In
contrast, comparing the proposed architecture with the archi-
tectural design reported in [17], better resources usage is achieved
in this research while maintaining the advantage of not requiring
BRAM blocks. On the other hand, the proposed architecture
reports lower operational frequencies but it requires a lower
number of clock cycles per generation. A possible reason is that
the processor array proposed in this article integrates a PRNG in
every PE while their design uses one PRNG which is shared among
PEs; therefore more time is needed to propagate random numbers
which are required during GAs evolution.
6. Conclusions and future work

In this paper, a novel processor array for the implementation of
fine-grained or cellular Genetic Algorithms has been developed.
The main contribution of this research is the segmentation strat-
egy to partition a decentralized population among an array of
processor elements. This strategy provides flexibility for different
application domains and their requirements. For example, the
processor array could be configured as a compact relatively slower
or as a faster and resource demanding optimization engine, the
final decision depends on the requirements of the embedded
system. Together with this architectural design, an algorithmic
characteristic is preserved which differentiates cellular GAs from
other parallel genetic algorithmic approaches: toroidal connection
among individuals is maintained and therefore balancing the
exploration–exploitation trade-off from a structural perspective is
preserved. This is achieved by using logical addressing to emulate
a physical wired architecture. For future work, it is possible to
improve the architectural design in order to reduce the occupied
area and to increase the operational frequency using advanced
pipelining techniques. Moreover, specific selection criteria of cel-
lular GAs can be considered within the proposed design in order to
modify the selective pressure applied during the search. Moreover,
achieving dynamic configuration of several algorithmic para-
meters would imply a flexible control of the exploration–exploi-
tation trade-off. From a topology perspective dimension is another
structural characteristic that could be explored to further improve
diversity during the search.
Acknowledgments

Martin Letras is supported by the Mexican National Council for
Science and Technology (CONACyT), scholarship number 298024.
References

[1] John H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, The
MIT Press, 1992, ISBN: 9780262581110.

[2] Yanrong Hu, Simon X. Yang, A knowledge based genetic algorithm for path
planning of a mobile robot, in: Proceedings of IEEE International Conference
on Robotics and Automation, ICRA'04, vol. 5, no., 26 April–1 May 2004,
pp. 4350–4355, doi: 10.1109/ROBOT.2004.1302402.

[3] B.C.H. Turton, T. Arslan, An architecture for enhancing image processing via
parallel genetic algorithms and data compression, in: Proceedings of the First
International Conference on Genetic Algorithms in Engineering Systems:

http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref1
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref1


M. Letras et al. / Neurocomputing 175 (2016) 899–910910
Innovations and Applications, GALESIA. (Conf. Publ. No. 414), 12–14 September
1995, pp. 337–342, doi: 10.1049/cp:19951072.

[4] Sara Hashemi, Soheila Kiani, Navid Noroozi, Mohsen Ebrahimi Moghaddam,
An image contrast enhancement method based on genetic algorithm, Pattern
Recognit. Lett. 31 (13) (2010) 1816–1824, http://dx.doi.org/10.1016/j.
patrec.2009.12.006 1 October.

[5] Xu Jiangning, T. Arslan, Wang Qing, Wan Dejun, An EHW architecture for real-
time GPS attitude determination based on parallel genetic algorithm, in:
Proceedings of NASA/DoD Conference on Evolvable Hardware, pp.133–141,
2002, doi: 10.1109/EH.2002.1029877.

[6] Xu Jiangning, T. Arslan, Wan Dejun, Wang Qing, GPS attitude determination
using a genetic algorithm, in: Proceedings of the 2002 Congress on Evolu-
tionary Computation, CEC'02, 12–17 May 2002, pp. 998–1002, doi: 10.1109/
CEC.2002.1007061.

[7] E.F. Stefatos, T. Arslan, High-performance adaptive GPS attitude determination
VLSI architecture, in: IEEE Workshop on Signal Processing Systems, SIPS 2004,
13–15 October 2004, pp. 233–238 doi: 10.1109/SIPS.2004.1363055.

[8] J.R. Evans, T. Arslan, The implementation of an evolvable hardware system for
real time image registration on a system-on-chip platform, in: Proceedings
of NASA/DoD Conference on Evolvable Hardware, pp. 142–146, 2002, doi:
10.1109/EH.2002.1029878.

[9] E.F. Stefatos, T. Arslan, An efficient fault-tolerant VLSI architecture using par-
allel evolvable hardware technology, in: Proceedings of 2004 NASA/DoD
Conference on Evolvable Hardware, 26–26 June 2004, pp. 97–103, doi:
10.1109/EH.2004.1310816.

[10] E. Alba, B. Dorronsoro, Cellular genetic algorithms. Computational Science &
Engineering, Springer, 2008, ISBN: 978-0-387-77610-1.

[11] P.R. Fernando, S. Katkoori, D. Keymeulen, R. Zebulum, A. Stoica, Customizable
FPGA IP core implementation of a general-purpose genetic algorithm engine,
IEEE Trans. Evol. Comput. 14 (1) (2010) 133–149, http://dx.doi.org/10.1109/
TEVC.2009.2025032.

[12] Z. Zhu, D.J. Mulvaney, V.A. Chouliaras, Hardware implementation of a novel
genetic algorithm, Neurocomputing 71 (1–3) (2007) 95–106, http://dx.doi.org/
10.1016/j.neucom.2006.11.031, ISSN: 0925-2312.

[13] Chen Pei-Yin, Chen Ren-Der, Chang Yu-Pin, Shieh Leang-san, H.A. Malki,
Hardware implementation for a genetic algorithm, IEEE Trans. Instrum. Meas.
57 (4) (2008) 699–705, http://dx.doi.org/10.1109/TIM.2007.913807.

[14] Nedjah Nadia, Mourelle Luiza de Macedo, An efficient problem-independent
hardware implementation of genetic algorithms, Neurocomput 71 (1–3)
(2007) 88–94, http://dx.doi.org/10.1016/j.neucom.2006.11.032.

[15] R. Faraji, H.R. Naji, An efficient crossover architecture for hardware parallel
implementation of genetic algorithm, Neurocomputing 128 (2014) 316–327.

[16] P.V. Dos Santos, J.C. Alves, J.C. Ferreira, A Scalable Array for Cellular Genetic
Algorithms: TSP as Case Study, ReConFig, 2012, pp. 1–6.

[17] P.V. Dos Santos, J.C. Alves, J.C. Ferreira, A framework for hardware cellular
genetic algorithms: an application to spectrum allocation in cognitive radio,
in: Proceedings of 23rd International Conference on Field Programmable Logic
and Applications (FPL), 2013, pp. 1–4.

[18] Y. Jewajinda, P. Chongstitvatana, A parallel genetic algorithm for adaptive
hardware and its application to ECG signal classification, Neural Comput. Appl.
22 (7–8) (2013) 1609–1626.

[19] All Programmable Technologies from Xilinx Incorporation. 〈http://www.xilinx.
com〉 (last visited: October, 2014).

[20] P.D. Hortensius, R.D. McLeod, Werner Pries, D.M. Miller, H.C Card, Cellular
automata-based pseudorandom number generators for built-in self-test, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 8 (8) (1989) 842–859, http:
//dx.doi.org/10.1109/43.31545.

[21] Y. Jewajinda, P. Chongstitvatana, FPGA implementation of a cellular compact
genetic algorithm, in: Proceedings of IEEE NASA/ESA Conference on Adaptive
Hardware and Systems A,HS'08, 2008. pp. 385–390.

[22] Y. Jewajinda, P. Chongstitvatana, Cellular compact genetic algorithm for
evolvable hardware, in: Proceedings of IEEE 5th International Conference
on Electrical Engineering/Electronics, Computer, Telecommunications and
Information Technology, ECTI-CON 2008, 2008, vol. 1, pp. 1–4.

[23] Y. Jewajinda, An adaptive hardware classifier in FPGA based-on a cellular
compact genetic algorithm and block- based neural network, in: Proceedings
of IEEE International Symposium onCommunications and Information Tech-
nologies, ISCIT 2008, 2008 pp. 658–663.
[24] Y. Jewajinda, P. Chongstitvatana, FPGA-based online-learning using parallel
genetic algorithm and neural network for ECG signal classification, in: Pro-
ceedings of 2010 IEEE International Conference on Electrical Engineering/
Electronics Computer Telecommunications and Information Technology (ECTI-
CON), pp. 1050–1054.

[25] Z. Luo, H. Liu, Cellular genetic algorithms and local search for 3-SAT problem
on graphic hardware, in: Proceedings of IEEE Congress on Evolutionary
Computation, CEC 2006, 2006, pp. 2988–2992.

[26] N. Soca, J.L. Blengio, M. Pedemonte, P. Ezzatti, PUGACE, a cellular evolutionary
algorithm framework on GPUs, in: Proceedings of 2010 IEEE Congress
on Evolutionary Computation (CEC), pp. 1–8.

[27] P. Vidal, E. Alba, A multi-GPU implementation of a cellular genetic algorithm,
in: Proceedings of IEEE Congress on Evolutionary Computation (CEC),
2010, pp. 1–7.

[28] P. Vidal, E. Alba, Cellular genetic algorithm on graphic processing units, in:
Proceedings of Nature Inspired Cooperative Strategies for Optimization, NICSO
2010, Springer, Berlin, Heidelberg, 2010, pp. 223–232.
Martin Letras received the B.Sc. degree in Computer
Science from the Autonomous University of Puebla,
Mexico, in 2013. Currently, he is a currently working
towards his M.Sc. degree at the Computer Science
Department from the National Institute for Astro-
physics, Optics and Electronics, Mexico. His research
interests are algorithmic acceleration via hardware
architectures and embedded systems design.
Alicia Morales Reyes was admitted to the Ph.D. degree
in the College of Science and Engineering at the Uni-
versity of Edinburgh in 2011, UK. She received the M.Sc.
degree in Computer Science (INAOE) in 2006 and the B.
Eng. degree in Electrical and Electronics Engineering
(UNAM) in 2002, Mexico. She is an associate researcher
at the Computer Science Department in INAOE. Among
her research interests are the improvement of evolu-
tionary algorithmic techniques and the design of
hardware architectures inspired on biological princi-
ples for algorithmic acceleration while tackling pro-
blems in different application areas such as optimiza-

tion, machine learning, signals and imaging processing.
Rene Cumplido received the B.Eng. from the Instituto
Tecnologico de Queretaro, Mexico, in 1995. He received
the M.Sc. degree from CINVESTAV Guadalajara, Mexico,
in 1997 and the Ph.D. degree from Loughborough Uni-
verity, UK in 2001. Since 2002 he is a professor at the
Computer Science Department at INAOE in Puebla,
Mexico. His research interests include the use of FPGA
technologies, custom architectures and reconfigurable
computing applications. He is co-founder and Chair of
the ReConFig international conference and founder
editor-in-chief of the International Journal of Reconfi-
gurable Computing. He also serves as associate editor of

several international journals.

http://dx.doi.org/10.1016/j.patrec.2009.12.006
http://dx.doi.org/10.1016/j.patrec.2009.12.006
http://dx.doi.org/10.1016/j.patrec.2009.12.006
http://dx.doi.org/10.1016/j.patrec.2009.12.006
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref3
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref3
http://dx.doi.org/10.1109/TEVC.2009.2025032
http://dx.doi.org/10.1109/TEVC.2009.2025032
http://dx.doi.org/10.1109/TEVC.2009.2025032
http://dx.doi.org/10.1109/TEVC.2009.2025032
http://dx.doi.org/10.1016/j.neucom.2006.11.031
http://dx.doi.org/10.1016/j.neucom.2006.11.031
http://dx.doi.org/10.1016/j.neucom.2006.11.031
http://dx.doi.org/10.1016/j.neucom.2006.11.031
http://dx.doi.org/10.1109/TIM.2007.913807
http://dx.doi.org/10.1109/TIM.2007.913807
http://dx.doi.org/10.1109/TIM.2007.913807
http://dx.doi.org/10.1016/j.neucom.2006.11.032
http://dx.doi.org/10.1016/j.neucom.2006.11.032
http://dx.doi.org/10.1016/j.neucom.2006.11.032
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref8
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref9
http://refhub.elsevier.com/S0925-2312(15)01593-3/sbref9
http://www.xilinx.com
http://www.xilinx.com
http://dx.doi.org/10.1109/43.31545
http://dx.doi.org/10.1109/43.31545
http://dx.doi.org/10.1109/43.31545
http://dx.doi.org/10.1109/43.31545

	A scalable and customizable processor array for implementing cellular genetic algorithms
	Introduction
	Related work
	Cellular Genetic Algorithm
	Processor array for cellular GAs
	Segmentation strategy
	Processor Element
	Pseudo random number generator
	Selection module
	Crossover operation's module

	Mutation operation's module
	Control mechanism

	Results analysis
	Benchmark problems
	Massively Multimodal Deceptive Problem (MMDP)
	MAX ONE
	ISO-PEAK

	Experimental results

	Conclusions and future work
	Acknowledgments
	References




