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Internet. However, these techniques are computationally expensive and not much atten-
tion has been paid to reduce their cost by means of available parallel computational plat-
forms. This article presents two computational models for the Subtractive Pixel Adjacency
Model (SPAM) which has shown the best detection rates among several assessed ste-

Key WOTdS:. ganalysis techniques. A hardware architecture tailored for reconfigurable fabrics is pre-
Steganalysis .. . . . .

SPAM sented achieving high performance and fulfilling hard real-time constraints. On the other
FPGA hand, a parallel computational model for the CUDA architecture is also proposed. This
CUDA model presents high performance during the first stage but it faces a bottleneck during
GPU the second stage of the SPAM process. Both computational models are analyzed in detail

in terms of their algorithmic structure and performance results. To the best of Authors’
knowledge these are the first design proposals to accelerate the SPAM model calculation.
© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The increasing transmission of personal data, mainly through the Internet, has motivated the creation of new methods to
protect information. Several algorithmic techniques have been developed to tackle main data protection problems. For
example, cryptographic techniques have been developed to encode information against unauthorized access and stegano-
graphic methods aim at protecting sensible data without perceptible modifications, trying to be unnoticed to the third
eye [1]. However, protecting data via covered communications are also used in terrorism and pornography [2,3], therefore
it has been also necessary to develop inverse algorithmic techniques known as steganalytic methods which help to discover
covered data in order to detect hidden information.

Steganalysis is classified in specific and universal. Specific steganalysis requires knowledge of the targeted steganographic
method, thus limiting its application arena. On the other hand, universal steganalysis recognizes if an image has been
modified by any steganographic technique [4]. To achieve its goal, universal steganalysis uses feature extraction techniques
to train a classifier in order to distinguish distortions caused by steganographic methods. Depending on feature extraction
domain, universal steganalysis is classified in spatial and transform.
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Designing steganalysis methods has focused on improving detection rates. However, computational cost of steganalytic
techniques is high and optimizing processing times is nowadays necessary due to the massive amounts of data transferred
through large networks. In order to improve the processing ratio, some authors have proposed steganalytic hardware imple-
mentations. For image data, Sun et al. [5] developed an FPGA-based architecture for the RS algorithm, a specific steganalysis
method proposed by Fridrich et al. [6] which recognizes LSB (Least Significant Bit). The proposed architecture uses a three
stage pipeline and was synthesized in a Xilinx Virtex Il FPGA (now obsolete). In 2013, Gutierrez-Fernandez et al. introduced
an FPGA-based architecture for transform domain universal steganalysis in JPEG images [7]. This architecture is based on
JPEG’s compatibility algorithm proposed by Fridrich et al. [8]. Authors proposed a pipeline scheme implemented in VHDL
and synthesized in a Xilinx Virtex 6 FPGA. However, to the best of the authors’ knowledge, hardware architectures for uni-
versal steganalysis on the spatial domain have not been reported.

Spatial features usually focus on modeling pixels neighborhoods. Such as the rich model proposed in 2012 by Fridrich
et al. [9], where different pixel dependency sub-models are used as features. Using different types of sub-models facilitates
detection of different embedding artifacts; however, dimensionality increases substantially. An ensemble is used for
classification.

In 2010, Guan et al. proposed a method called Neighborhood Information of Pixels (NIP), in which, differences between
pixels within the neighborhood and the central pixel are calculated and subsequently codified using rotation invariant [10].
The result is processed as a histogram removing empty values. In 2011, Arivazhagan et al. used 4 x 4 segments where pixels
differences are calculated according to nine paths within the neighborhood [11]. Results between —4 and 4 are placed within
a co-occurrence matrix and are used as characteristics vectors.

In 2010, Pevny et al. proposed a universal method where differences between neighboring pixels are modeled by first and
second order Markov Chains [12]. This method was designed primarily for spatial based steganography, however, it demon-
strated a good performance when detecting transform domain steganography. Because of its ability in both domains, this
method is considered in this investigation from a hardware perspective to speed-up its process.

Among several universal steganalytic methods, the Subtractive Pixel Adjacency Model (SPAM) has shown a good perfor-
mance for detecting stego-images watermarked with the most popular steganographic methods, both in the spatial domain
and in the transform domain. The model is also scalable to color images, and its algorithmic design makes it a good candidate
from a hardware architectural perspective. Moreover, many steganalytic methods share common processing tasks carried
out in SPAM (pixel differences and transition probabilities). Therefore, the proposed computational models are flexible
and can be adapted, as steganalytic processing cores, to other spatial domain techniques.

In this paper, two parallel computational models are investigated, an FPGA-based hardware architecture and a CUDA based
algorithmic model is proposed for the first order SPAM model. A complete analysis of performance results in both implemen-
tation platforms is presented. In the next section, the SPAM model is detailed and analyzed from an architectural perspective.
Section 3 presents both parallel computational models: an FPGA based architecture’s design and a GPU programming model.
Results are analyzed for each proposed approach in the same section. Final remarks are presented in Section 4.

2. Subtractive pixel adjacency model

The Subtractive Pixel Adjacency Model (SPAM) is a spatial domain method for features extraction in images with possible
stego-data. This model has shown the best detection rate among other state of the art techniques. Moreover, operations
required to obtain feature vectors are arithmetically simple which makes this model suitable for optimization from a hard-
ware perspective. In [12], it is stated that correlation between neighboring pixels in a natural image can be used to detect
some irregularities caused by stego-data. However, the resulting model would not be practical due to its dimension. To
reduce model’s dimension, it has been proposed using pixels differences versus pixel co-occurrences or neighborhood his-
tograms. Thus, obtaining the difference model of several stego-images demonstrated that most significant information lay in
small differences. Therefore, differences range is reduced together with its dimensionality.

The algorithm is mainly divided in three stages, see Fig. 1. First, the model calculates differences between pixels in eight
directions (7, /,—,\, |,./,+—,\) in the spatial domain. For example, the horizontal differences are calculated by
Aij = lij —Iij;1 and B;j = I;; — I;;_1, where I is an (m,n) image, and i € [1...m], j € [1...n]. Second, to model pixel dependen-
cies along the eight directions, a Markov chain is used between pairs of differences (first order chain) or triplets (second
order chain). For dimensionality reduction of the transition probability matrix, only differences within a limited range are
considered. Thus, the transition probability matrix is calculated just for pairs within [-T,T]. In [12], authors propose
T = 4 for first order and T = 3 for second order, because of their relevance in steganalysis.

Difference Markov

Filter Pl chan Py Features

Fig. 1. SPAM main stages.
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Thus, for horizontal first order Markov chain calculation:

PAy) = P(Ajijs1)=xlAdij=y)

PB(xy) = P(Bij)=x|B(ij+1)-y)

where x,y € [T, T]. Once the eight transition probability matrices have been calculated, the average of the four horizontal
and vertical and the average of the four diagonal matrices are used as features on a binary support vector machine (SVM)
classifier. In the next section, the proposed parallel computational models are described in detail.

3. Parallel computational models

Calculating the Subtractive Pixel Adjacency Model (SPAM) involves computationally exhaustive tasks. In order to calcu-
late both feature vectors, difference matrices in several directions are obtained for every image pixel. A total of eight differ-
ence matrices are calculated from which eight frequency vectors and eight frequency matrices are derived and then averaged
to obtain the final feature vectors. The operations involved are arithmetically simple only addition and subtraction are
required during the most exhaustive algorithmic part.

In this article, two parallel computational models are introduced in order to efficiently obtain the SPAM model. On the
one hand, an application oriented hardware architecture has been designed taking advantage of the available physical
resources in reconfigurable fabrics. This allows a tailored SPAM architecture delivering optimized performance. On the other
hand, a CUDA computational parallel model implemented on a GPU platform is also presented. Using GPUs to solve general
purpose computational tasks has been recently opened to the wider research community, allowing expensive computational
problems to be parallelized and thus being solved with improved performance.

3.1. FPGA hardware architecture

The proposed architecture consists of 3 stages: differential filtering, transition probabilities calculation and features cal-
culation. In Fig. 2 the overall block diagram is presented. In the first stage, differential filtering, the input image is stored in a
32-bit memory in such a way that at every iteration four pixels are obtained j, j+ 1, j+ 2 andj + 3 from rowsiandi + 1, see
Fig. 3, an address generator determines processing memory allocations. These four bits are processed by differential filters
calculating pixels differences according to every direction shown in Fig. 4. In Fig. 5, difference calculations for A and D direc-
tions (East and South) are shown. Pixels in the same row are subtracted for A direction while for D direction pixels from dif-
ferent rows are subtracted.

Results from differential filtering are converted into addresses and are accumulated in a register file P with length 2T + 1,
containing the number of occurrences of difference values between —T and T. A file register F with length (2T + 1)* contains
also the number of occurrences per pair of values within the threshold. Once all image differences are calculated the second
processing stage begins.

PA/ |
ADDF N |
Difference RA Address » Register Frequency ; Divider TP
| —> ' =N _ Ly, Features
Filter A Generator A > File Calculator A Generator I Features I Vector
Address ENA Calculator ——)
| Generator | ENA | AB.CD I
|ADD1 * *ADDZ | | I
| Black R1 ADDP/ I PH/
Memory - ADDF FH |
R2 _) N, X N
| Difference RH Address #1 Register Frequency Divider 1 1: Features
) > : rd
Filter H Generator H > File Calculator H Generator I Features | Vector
> ENA Calculator ——)
| | ENA | E,F.GH I
I — — — —— Differential Filter Stage —— — — — J — Transition Probability Stage — J . Feature Stage _1

Fig. 2. SPAM block diagram.
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Fig. 3. Pixels acquisition.

During the transition probability stage, stored values are read sequentially from register files P and F, which are then
divided to finally obtain pixels transition probabilities within the threshold. In Fig. 6, two examples are presented for calcu-
lating P and F occurrences on A direction (East) for values with T = -4 and T = 3.

To start the final stage (features extraction), divider’s latency is considered (18 cycles). Two features are processed every
clock cycle corresponding to directions probabilities A, B, C and D and E, F, G and H respectively. Fig. 7 shows one of the mod-
ules implemented for features calculation.

3.1.1. Performance results

In Table 1, results obtained with characterization data on a Xilinx FPGA device Virtex-6 XC6VSX315T are presented. The
proposed architecture is implemented using System Generator Version 3.0 running on Matlab Version R2011a and synthesis
results are obtained with Xilinx ISE Design Suite 13.2. To the best of our knowledge no other hardware architecture design
for the SPAM model has been reported in the literature. In [5], an FPGA parallel implementation for the RS algorithm achieves
high throughputs and thus is able to deal with large amounts of data. However, the RS algorithm is not as robust as the SPAM
model for detecting stego-images.

The SPAM architecture herein presented deals with input image sizes of 512 by 512 pixels, it processes 4 pixels blocks at a
time, achieving an operational frequency of 87.035 MHz. Thus the proposed FPGA hardware architecture is able to process

1328.069 frames per second (fps) due to a latency of 2'® clock cycles. In terms of hardware resources, the complete archi-
tecture requires less than half fully used LUT-FF and less than 10% of registers available on the Virtex-6 device.

3.2. CUDA parallel approach

The CUDA algorithmic approach for the SPAM model takes advantage of several characteristics such as the SIMT (Single
Instruction Multiple Thread) execution model [13]. Fig. 8 shows an overall view of the processing data flow. An input image
is read and loaded into global memory, a square grid configuration using an optimum number of threads for parallelization is
defined. Because there is no reuse of input values in the calculation of difference matrices, one image pixel per thread is
evaluated. In contrast of having multiplication and accumulation operations which are common to many computationally
expensive tasks; the SPAM model requires subtraction only at an initial stage, thus using a higher memory level, such as
shared memory, in the CUDA architecture makes no difference in the final performance. The difference matrices calculation
is performed at a maximum parallelization level, having a proper block-grid configuration, threads are executed following
the optimum warp size of 32 threads ad hoc to the FERMI Nvidia architecture [14].

A characteristic of the SPAM model is the repetition of values when differences are calculated for opposite directions, for
example, the difference calculated in the right direction of any given image pixel is equal to the difference calculated in the
left direction at the same image position. Similar behavior is repeated for other directions (up/down, left-up/right-
down,right-up/left-down). This has a significant impact on the overall parallel model because only half the calculations
are needed to obtain the full set of frequency vectors and matrices.

A_>C+E/G\
B{-D*F/H\

Fig. 4. Differences directions.
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Fig. 5. Differential filtering for A and D directions.

In order to calculate frequency vectors, which means identifying the number of differences within the pre-defined range
(—T,T), a binary matrix for differences within the range is obtained. For optimal reduction to calculate every vector and
matrix coefficient, an implemented function of the Thrust CUDA’s library is used [15]. Thrust is a library based on the
Standard Template Library (STL) which allows implementing high performance parallel applications through a high level
interface for full interaction with the CUDA architecture.

The parallel process in the GPU is as follows: an input image is loaded from the host (CPU) and is allocated in memory at
the GPU. Once in global memory, the difference matrix in every direction is calculated in parallel taking full advantage of the
optimal configuration per warp in the CUDA FERMI architecture.

Differences for A direction (East) are the same than for B direction (West), see Fig. 4. This also occurs for differences cal-
culated in opposite directions: C (North) and D (South), E (North-East) and F (South-West), G (South-East) and H (North-
West). Therefore, frequency vector and matrices are calculated once for only four directions out of eight. Occurrences values
corresponding to opposite directions have different positions in the P vector and F matrices. For P, values appear rotated
while for F, values are not only rotated but reversed in such a way that rows for A direction (East) correspond to columns
for B direction (West) of every pixel.

For every coefficient in each difference matrix, a binary vector is obtained indicating whether a value is within the thresh-
old with 1 or not with 0. This binary vector is of the same size as the input image. Thrust CUDA library function count opti-
mally reduces vector arrays to determine occurrences values per coefficient within the threshold (-T,T).

Because every thread is dealing with one pixel at a time, and due to the nature of operations, subtractions mainly, there is
not performance improvement if the process is taken one memory level up, to shared memory [16]. This is because there are
not iterative operations per pixel in the SPAM model and racing conditions would occur when trying to write occurrences
values from different threads to the same memory location, possibly resulting in almost sequential processing. Thus, it
was decided to calculate occurrence binary vectors and reduce them using an optimized tool like the Thrust CUDA library.
For every P and F vector and matrix coefficients, the Thrust function count is used. It affects the GPU performance because of
the number of coefficients that need to be calculated but it provides an acceptable performance on different GPU platforms.

3.2.1. Performance results

SPAM’s CUDA parallel computational model is assessed for efficiency on two different GPU platforms: GTS-450 (Intel core
i7 2.93 GHz) and GTX-480 (Intel(R) Celeron(R) M processor 1.50 GHz). In Table 2 technical details for the used GPU modules
are provided. Throughput among used graphics modules is expected to vary significantly due to their very different process-
ing power. The number of CUDA cores available on each targeted device is as follows: GTS 450 and GTX 480 have 192 and
480 cores respectively. The CUDA architecture is organized in streaming multiprocessors (SM) of 32 or 48 (GTS 450) CUDA
cores; each SM executes groups of 32 threads called warps. Thus, GTS 450 and GTX 480 Nvidia modules execute 4 and 15
warps respectively.

Table 3 shows processing time results per graphics module. Transfer time for the input image from the host (CPU) to the
device (GPU) is reported showing a fastest transfer for the GTX-480 in comparison to the GTS-450. However, a fair compar-
ison is not possible because each module operates on different CPU platforms. No image pre-processing is performed in the
CPU, thus CPU overhead is disregarded from the main processing load. CUDA Toolkit 4.2 is used with both GPU modules.

Two main stages are considered in the CUDA computational model. Calculating difference matrices is performed fully in
the GPU. The processing time in the GTS-450 and the GTX-480 is 0.299602(ms) and 0.113648(ms) respectively. After, the
transition probabilities stage is performed using the Thrust library in the GPU with a host to device pointer; results are
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Fig. 6. Transition probabilities calculation using register files.
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Fig. 7. Features calculation.

passed to the final stage, features stage, in the CPU. The processing time for this combined stage increases significantly to
95.39872(ms) in the GTS-450 and 65.08325(ms) in the GTX-480. This occurs because of the number of coefficients when
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Table 1
FPGA architecture results.
Device Slice registers Slice LUTs LUT-FF Bonded I0Bs Operational frequency (MHz) Frames per sec.
Virtex 6 38,023 (9%) 88,355 (44%) 37,885 (42%) 117 (19%) 87.035 1328.069
GPU CPU
fc 777777777777777777777777777777777777777777777777777777 > \
! Thrust count ;
; |
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Processing is repeated for every matrix coefficient
Fig. 8. CUDA SPAM model.
Table 2
GPU modules.
Platform SM Cuda cores Global memory MB GPU clk rate MHz Processing power GFLOPS
GeForce GTS-450 [17] 4 192 1024 1057 601.34
GeForce GTX-480 [18] 15 480 1536 1400 1344.96
Table 3
GPU performance results.
GTS-450 (ms) GTX-480 (ms) GTS-450 (fps) GTX-480 (fps)
CPU-GPU 0.4684 0.3661 2134.7086 2730.9272
Difference stage 0.2996 0.1136 3337.7614 8799.0989
Transition probability and features stages (GPU-CPU) 95.398 65.0832 10.4823 15.3649

calculating the reduction for P and f vector and matrices. Although, each independent coefficient is efficiently calculated,
there are approximately 90 coefficients to calculate per direction in the SPAM model. This significantly increases the overall
processing time.

4. Conclusions

The SPAM model is a robust technique for stego-images detection. It is a spatial domain method that has shown the best
detection rates among other state of the art techniques. Its algorithmic structure is suitable from an implementation per-
spective aiming to achieve high performance and thus fulfilling hard real-time constraints. Two approaches are presented
in this article: a hardware architecture targeting reconfigurable fabrics and a parallel computational model targeting GPU
platforms. Experimental results show that the FPGA architecture achieves high performance while maintains an acceptable
usage of hardware resources of less than 50% of the total available. On the other hand, the proposed CUDA parallel compu-
tational model has shown limited performance due to the calculation of more than 90 coefficients per direction which is car-
ried out by the Thrust’s library. There is a significant bottleneck when simplifying occurrences vectors which cannot be
accelerated by using higher memory levels in the CUDA architecture. However, during the first stage to calculate differences
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matrices, the GPU processes three and eight times more frames than the FPGA. This means that applying specialized paral-
lelization techniques to the second stage would imply a significant improvement of the SPAM performance in the GPU.
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