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Among the systems involved with data and knowledge that give answers, solutions, or diagnoses, based

on available information; those based on feature selection are very important since they allow us to solve

important tasks into pattern recognition and decision making areas. Feature selection consists in finding a

minimum subset of attributes that preserves the ability to discern between objects from different classes.

Testor theory is a convenient way to solve this problem since a testor is defined as a subset of attributes that

can discern between objects from different classes; and an irreducible testor is a minimal subset with this

property. However, the computation of these minimal subsets is a problem whose space complexity grows

exponentially regarding the number of attributes. Therefore, in the literature, several hardware implementa-

tions of algorithms for computing testors, which take advantage of the inherent parallelism in the evaluation

of testor candidates, have been proposed. In this paper, a new fast hardware software platform for comput-

ing irreducible testors is introduced. Our proposal follows a pruning strategy that, in most cases, reduces

the search space more than any other alternative reported in the literature. The experimental results show

the runtime reduction achieved by the proposed platform in contrast to other state-of-the-art hardware and

software implementations.

© 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Feature selection for supervised classification consists in iden-

tifying those attributes that provide relevant information for the

classification process. This procedure does not only reduce the

computational cost of the classification process by eliminating

superfluous information, but in some cases it could even provide

better classification accuracy. Testor theory can be used for feature

selection as shown in (Martínez-Trinidad & Guzmán-Arenas, 2001;

Ruiz-Shulcloper, 2008). A testor is defined as a subset of attributes

that can discern objects from different classes. An irreducible testor

is a subset of attributes such that every attribute is indispensable

for satisfying the testor condition. Finding all irreducible testors has

been proven to be an NP-hard problem (Skowron & Rauszer, 1992).

Feature selection is also a key aspect in expert and intelli-

gent systems. Martínez, León, and García (2007) used testor the-
∗ Corresponding author. Tel.: +52 222 2663100x8225; fax: +52 222 2663152.

E-mail addresses: vladimir.rdguez@gmail.com (V. Rodríguez-Diez),

fmartine@ccc.inaoep.mx (J.F. Martínez-Trinidad), ariel@inaoep.mx (J.A. Carrasco-

Ochoa), mlazo@inaoep.mx (M. Lazo-Cortés), cferegrino@inaoep.mx

(C. Feregrino-Uribe), rcumplido@inaoep.mx (R. Cumplido).

t

T

h

a

n

o

d

http://dx.doi.org/10.1016/j.eswa.2015.07.037

0957-4174/© 2015 Elsevier Ltd. All rights reserved.
ry to propose a new case-based approach for developing intelli-

ent teaching-learning systems. Irreducible testors are computed in

Medina, Martínez, García, Chávez, & García, 2007) to select problem

ttributes for an intelligent tutoring system which has the capacity of

dapting its interaction to the user’s specific needs. Recently, Torres

t al. (2014) used testors for determining risk factors associated with

ransfusion related to acute lung injuries. Another approach to fea-

ure selection based on rough set reducts has been found to have

close relationship with irreducible testors (Lazo-Cortés, Martínez-

rinidad, Carrasco-Ochoa, & Sánchez-Díaz, 2015). Therefore, expert

ystems can be benefited from rough set methods, especially for fea-

ure selection by means of reducts, as shown by Yahia, Mahmod, Su-

aiman, and Ahmad (2000).

Recently, there is an increasing popularity of architectures based

n Field Programmable Gate-Array (FPGA) for solving complex com-

utational problems. Several hardware software platforms based on

his technology have been reported (Compton & Hauck, 2002; Pocek,

essier, & DeHon, 2013). In these platforms, the software component

andles those tasks less suited for hardware implementation, and it is

lso responsible of configuring the FPGA, as well as handling commu-

ication with the hardware component. The hardware component,

n the other hand, performs those operations with a high parallelism

egree.
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Table 1

Basic matrix for the example.

x0 x1 x2 x3 x4

1 0 0 1 1

0 1 1 0 1

1 1 0 0 1

Table 2

Ordered basic matrix obtained from

the matrix of Table 1.

x0 x3 x4 x1 x2

1 1 1 0 0

0 0 1 1 1

1 0 1 1 0
In spite of advances in the theoretical aspects of computing

rreducible testors (Djukova, 2005; Kudryavtsev, 2006; Martínez-

rinidad & Guzmán-Arenas, 2001), there are no hardware implemen-

ations reported aside from (Cumplido, Carrasco, & Feregrino, 2006;

ojas, Cumplido, Carrasco-Ochoa, Feregrino, & Martínez-Trinidad,

007, 2012). In the first work, an FPGA-based brute force approach

or computing testors was proposed (Cumplido et al., 2006). This first

pproach did not take advantage of dataset characteristics to reduce

he number of candidates to be tested; thus all 2n combinations of n

ttributes have to be tested. Then, in (Rojas et al., 2007) a hardware

rchitecture of the BT algorithm (Ruiz-Shulcloper, Aguila-Feros, &

ravo-Martínez, 1985) for computing irreducible testors was imple-

ented. This algorithm uses a candidate pruning process for avoid-

ng many unnecessary candidate evaluation, reducing the number of

erifications of the irreducible testor condition. These two previous

orks computed a set of testors on the FPGA device whilst irreducible

ondition was evaluated afterwards by the software component in

he hosting PC. Thus Rojas, Cumplido, Carrasco-Ochoa, Feregrino, and

artínez-Trinidad (2012) proposed a hardware software platform for

omputing irreducible testors that implemented the BT algorithm, as

n Rojas et al. (2007), but it also included a new module that elimi-

ates most of the non irreducible testors before transferring them to a

ost software application for final filtering. One disadvantage of these

pproaches is the huge amount of data that must be transferred to the

C. Consequently, in Rodríguez et al. (2014) we proposed a modifica-

ion to this platform in order to compute irreducible testors in the

ardware component.

Several hardware accelerations have been recently reported for

eature selection in rough set theory. Authors of Grze, Kopczynski,

nd Stepaniuk (2013), Kopczynski, Grze, and Stepaniuk (2014) pre-

ented an FPGA based platform for computing a reduct. Tiwari,

othari, and Shah (2013) presented various algorithms for attribute

eduction using concepts of rough set theory and implemented the

uick Reduct algorithm in a hardware fashion. Then, Tiwari and

othari (2014) presented a thorough survey on hardware implemen-

ation of rough set algorithms. These hardware implementations aim

o compute a single reduct. Jensen, Tuson, and Shen (2014) addressed

he lack of guarantees for finding an attribute subset with minimal

ardinality, which is the main drawback of these approaches.

In this paper, we present an efficient hardware software platform

or computing irreducible testors based on the CT-EXT algorithm pro-

osed in (Sánchez-Díaz & Lazo-Cortés, 2007). The main contribution

f this work is the design and implementation of a hardware archi-

ecture that traverses the search space in a different order than that

resented in (Rodríguez et al., 2014; Rojas et al., 2007, 2012). This new

trategy evaluates less candidate subsets than previous architectures,

hich results in shorter runtime. In comparison to the software ver-

ions of CT-EXT (Sánchez-Díaz & Lazo-Cortés, 2007; Sánchez-Díaz,

iza-Davila, Lazo-Cortés, Mora-González, & Salinas-Luna, 2010), our

roposal evaluates a candidate every clock cycle, which leads to a

aster execution. The runtime gain of our new hardware software

latform is demonstrated throughout experiments over synthetic

atasets.

The rest of this paper is structured as follows. Section 2 introduces

he CT-EXT algorithm. Section 3 describes the proposed architecture.

valuation of the proposed platform and a discussion of the experi-

ental results are presented in Section 4. Finally, Section 5 shows our

onclusions and some directions for future work.

. CT-EXT algorithm

CT-EXT is one of the fastest algorithms for computing irreducible

estors reported in the state of the art (Piza-Davila, Sánchez-Díaz,

guirre-Salado, & Lazo-Cortes, 2015; Sánchez-Díaz & Lazo-Cortés,

007; Sánchez-Díaz et al., 2010). In order to describe this algorithm

e introduce some definitions and notations.
Let TM be a training matrix with k objects described through n

ttributes of any type R = {x1, . . . , xn} and grouped in r classes. Let

M be the binary pairwise comparison matrix, called dissimilarity

atrix (0=similar, 1=dissimilar), obtained by means of attribute by

ttribute comparisons of every pair of objects from TM belonging

o different classes. DM has m rows and n columns, where usually

> >k.

As it is known, DM commonly contains redundant rows, so algo-

ithms for computing irreducible testors frequently work on the sub-

atrix called basic matrix (BM); which is obtained from DM by elim-

nating redundant rows. For obtaining BM from DM, absorption laws

re applied. Rows in BM are called basic rows.

Let T be a subset of attributes, T is a testor of BM if the attributes in

do not form a zero row in BM. It means that every row in BM has at

east a 1 in those columns corresponding to attributes belonging to T.

e say that a testor T is an irreducible testor if all the proper subsets

f T are not testors.

We can interpret an irreducible testor as a subset of attributes be-

ng jointly sufficient and individually necessary to differentiate every

air of objects belonging to different classes.

During the search, CT-EXT follows the idea that an attribute con-

ributes to a subset T (candidate to be an irreducible testor) if after

dding this attribute to T, the attributes in T form less zero rows in

M than the amount of zero rows before adding the attribute. This

dea is used for pruning the search space.

The following proposition, introduced and proved in (Sánchez-

íaz & Lazo-Cortés, 2007), constitutes the basis for the CT-EXT algo-

ithm.

roposition 1. Given T ⊆ R and xj ∈ R such that xj �∈ T. If xj does

ot contribute to T, then T ∪ {xj} cannot be a subset of any irreducible

estor.

Algorithm 1 shows the pseudocode of CT-EXT, a detailed explana-

ion of this algorithm can be seen in (Sánchez-Díaz & Lazo-Cortés,

007). The function SortBM(BM) sorts the basic matrix as follows.

andomly select one of the rows of BM with the fewest number of

’s. The selected row goes first and all columns in which it has a 1 are

oved to the left.

The function Evaluate(BM, T) returns three values: testor, irre-

ucible and zero_rows. testor is TRUE if the set T is a testor of BM and

ALSE otherwise. irreducible is TRUE if the set T is an irreducible testor

nd FALSE otherwise. zero_rows is the amount of zero rows of T. The

unction LastOne(T) returns the position of the rightmost element in

he set T.

Let us consider the basic matrix of Table 1, with m = 3 (rows) and

= 5 (attributes). After the ordering step we obtain the matrix shown

n Table 2. Table 3 illustrates the application of the CT-EXT algorithm

ver this ordered basic matrix.
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Algorithm 1 CT-EXT algorithm.

1: Input: BM - basic matrix with m rows and n columns.
2: Output: TT - set of irreducible testors.
3: TT ← {}
4: j ← 0 � first attribute from BM to be analyzed
5: BM ← SortBM(BM)
6: while BM[0, j] �= 0 do
7: T ← {Xj} � current attribute subset
8: testor, irreducible, zero_rows ← Evaluate(BM, T)
9: if testor = TRUE then

10: if irreducible = TRUE then � T is an irreducible
testor

11: TT ← TT ∪ T
12: else
13: i ← j + 1
14: while i < n do
15: T ← T ∪ {Xi}
16: zero_rows_last ← zero_rows
17: testor, irreducible, zero_rows ← Evaluate(BM, T)
18: if zero_rows = zero_rows_last then
19: T ← T \ {Xi} � attribute Xi does not

contribute
20: else
21: if testor = TRUE then
22: if irreducible = TRUE then
23: TT ← TT ∪ T
24: T ← T \ {Xi}
25: zero_rows ← zero_rows_last

26: if i = n − 1 then
27: k ← LastOne(T )
28: if k = i then
29: T ← T \ {Xk}
30: k ← LastOne(T )

31: if k �= j then
32: T ← T \ {Xk}
33: testor, irreducible, zero_rows

← Evaluate(BM, T)
34: i ← k + 1
35: else
36: i ← i + 1

37: else
38: i ← i + 1

39: j ← j + 1

Fig. 1. Proposed hardware software platform.
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Table 3

CT-EXT algorithm example.

T Evaluate (BM, T) xj T ∪ {xj} Evaluate (BM, T ∪ {xj}) Comm

{} F, F, ∞ x0 {x0} F, F, 1 {x0} is

{x0} F, F, 1 x3 {x0, x3} F, F, 1 x3 doe

{x0} F, F, 1 x4 {x0, x4} T, F, 0 x4 con

{x0} F, F, 1 x1 {x0, x1} T, T, 0 x1 con

Add

{x0} F, F, 1 x2 {x0, x2} T, T, 0 x2 con

Elim

{x0} All attributes tested. Eliminate x0 and add a new one.

{} F, F, ∞ x3 {x3} F, F, 2 {x3} is

{x3} F, F, 2 x4 {x3, x4} T, F, 0 x4 con

{x3} F, F, 2 x1 {x3, x1} T, T, 0 x1 con

(TT

{x3} F, F, 2 x2 {x3, x2} F, F, 1 x2 con

{x3} All attributes tested. Eliminate x3 and add a new one.

{} F, F, ∞ x4 {x4} T, T, 0 {x4} is

Add

{} F, F, ∞ {x1} x1 has
. Proposed platform

Since the problem of computing all irreducible testors has expo-

ential complexity regarding the number of attributes; our proposed

latform, as well as any other existing algorithm, has exponential

omplexity. A common stage to all algorithms for computing irre-

ucible testors is the verification of each candidate combination over

he basic matrix. This is an intrinsic parallel operation that a hard-

are implementation could take advantage of. The time complexity

f evaluating a candidate for the testor condition is O(nm) and for the

rreducible condition is O(n2m); where n is the number of attributes

nd m is the number of rows in the basic matrix. In the proposed

ardware component, these conditions are simultaneously evaluated

n a single clock cycle. Moreover, the main novelty in this work relays

n the candidate generator module. This new module implements the

exicographical total order (Sánchez-Díaz & Lazo-Cortés, 2007) as in

he CT-EXT algorithm. This traversing order allows our proposal to

valuate less candidates than those evaluated by other hardware ar-

hitectures reported in the literature; reducing, in this way, the exe-

ution time.

The proposed platform is shown in Fig. 1. The platform comprises

host PC and an Atlys board populated with a FPGA Spartan-6 de-

ice (Digilent, 2013); which are connected through a USB cable. A

ustom developed software application, running in the PC, handles

ll the processes needed to create the bitstream file to configure the

PGA device. The custom architecture implemented in the FPGA car-

ies out all the calculations needed to generate the testors and sends

he results to the PC where the users can then analyze the results. A

etailed description of all the platform components are given below.

.1. Hardware architecture

In the hardware architecture, an attribute subset is handled as an

-tuple, using a positional representation for all the n attributes of

basic matrix BM. Given a subset T, its n-tuple representation has a

in the corresponding position j for each xj ∈ T and 0 otherwise. The
ents

not a testor. Add a new attribute.

s not contribute. Eliminate x3. Add a new attribute.

tributes, {x0, x4} is testor but is not irreducible. Eliminate x4. Add a new attribute.

tributes, {x0, x1} is an irreducible testor. It is saved (TT = {{x0, x1}}). Eliminate x1.

a new attribute.

tributes, {x0, x2} is an irreducible testor. It is saved (TT = {{x0, x1}, {x0, x2}}).

inate x2. Add a new attribute.

not a testor. Add a new attribute.

tributes, {x3, x4} is testor but is not irreducible. Eliminate x4. Add a new attribute.

tributes, {x3, x1} is an irreducible testor. It is saved

= {{x0, x1}, {x0, x2}, {x3, x1}}). Eliminate x1. Add a new attribute.

tributes but {x3, x2} is not a testor. Add a new attribute.

an irreducible testor. It is saved (TT = {{x0, x1}, {x0, x2}, {x3, x1}, {x4}}). Eliminate x4.

a new attribute.

a 0 in first row of BM, Algorithm finishes. TT = {{x0, x1}, {x0, x2}, {x3, x1}, {x4}}
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Fig. 2. CT-EXT architecture.
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Fig. 4. BM row.

Table 4

An example of irreducible testor.

Cand. {x0, x1} Decoder output

x0 x3 x4 x1 x2 x0 x3 x4 x1 x2

1 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 0 0 1 0

1 0 0 1 0 0 0 0 0 0

Candidate = 1 0 0 1 0
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rocess of deciding whether an n-tuple is a testor of BM involves com-

aring the candidate against each one of the BM’s rows. For software-

nly implementations, this is a big disadvantage, especially for large

atrices with many rows. The proposed hardware architecture ex-

loits the parallelism inherent in the CT-EXT algorithm and evalu-

tes whether a candidate is an irreducible testor, or not, in a single

lock cycle. The hardware implementation of CT-EXT is composed of

wo modules, the BM module and the candidate generator module, as

hown in Fig. 2.

The BM module stores the input matrix and includes all the logic

eeded to decide whether an n-tuple is a testor. The candidate gen-

rator module produces the candidates (n-tuples) to be evaluated by

he BM module. In order to calculate the next candidate according

o the CT-EXT algorithm, the architecture feedbacks the evaluation

esult of the previous candidate to the generator module; this drasti-

ally reduces the number of candidates tested and consequently the

umber of iterations needed by the algorithm.

The BM module is composed of M sub-modules named row i, as

hown in Fig. 3. Each row i module contains a row (n bits) of the BM

atrix and the logic needed to perform a testor evaluation. To decide

hether an n-tuple is a testor, a bitwise AND operation is performed

etween the value stored in each row i module and the current can-

idate, as shown in Fig. 4. If at least one bit of the AND operation is

RUE, then the output Testorof that particular row i sub-module will

e TRUE. The same operation is performed over the previous candi-

ate. If the output Testor is different from the output Contributes for

ny row i sub-module, it means that the current candidate reduces

he amount of zero rows regarding the previous candidate and then,

he output Contributes from the BM module becomes TRUE. If the out-

ut Testor of all row i sub-modules is TRUE, then the output Testor of

he BM module will be TRUE, which means that the candidate is a

estor of BM.

In order to verify the irreducible condition, an N to N Decoder

eceives as input the result of the AND operation between the
Fig. 3. BM m
urrent candidate and the corresponding BM row. The output from

he N to N Decoder repeats the input when there is only one bit set to

, and returns zero otherwise. For those rows with only one bit hav-

ng a 1 after ANDed with the candidate, the attribute in the position

f that bit is indispensable if the candidate is a testor. According to

efinition of irreducible testor, every attribute must be indispensable.

Taking as example the ordered basic matrix of Table 2. In Table 4

he irreducibility of {x0, x1} is evaluated while the same is done for

x0, x4} in Table 5. Left rows show the result of the AND operation

etween each row of BM and the candidate, while those rows in the

ight show the decoder output taking as input its corresponding left

ow. In the last row, the result of an OR operation over all above bits

s shown. According to our previous explanation, the candidate {x0,

1} is an irreducible testor given that the result of the OR operation is

qual to the candidate itself; while candidate {x0, x4} is not. This can

e corroborated in Table 3.
odule.
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Fig. 5. Candidate generator module.

Table 5

An example of not irreducible testor.

Cand. {x0, x4} Decoder output

x0 x3 x4 x1 x2 x0 x3 x4 x1 x2

1 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0

Candidate �= 0 0 1 0 0

Table 6

Candidate generator selector.

Priority Condition Registers update

1 J = Jmax (Jmax = max value of J) Curr_cand ← E2A Prev_cand ← E2A

J ← E2A

2 Contributes = 0 or testor = 1 Curr_cand ← E1A Prev_cand ← E1A

J ← E1A

3 Contributes = 1 or testor = 0 Curr_cand ← A Prev_cand ←
Curr_candJ ← A

Fig. 6. Submodule A.

Fig. 7. Submodule E1A.

Fig. 8. Submodule Rem_1.

Fig. 9. Submodule E2A.
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The candidate generator module (Fig. 5) uses the feedback from

the BM module to calculate the next candidate to be evaluated. The

candidate generator module consists of three registers for holding the

current candidate (Curr_cand), the previous candidate (Prev_cand)

and the last added attribute (J). These registers values are updated

by the modules EA1, EA2 and A.

Depending on the combination of the input values, the outputs

E1A, E2A or A are used for updating the records. Table 6 shows how

the records are updated according to the values of Testor, Contributes

and J inputs. This operation is computed by the module sel shown in

Fig. 5.

The submodule A, shown in Fig. 6, assigns 1 to the next attribute

at the right of the last bit with value 1 in the input candidate. The

outputs of the submodule A are the new candidate and J + 1.
The submodule E1A, shown in Fig. 7, comprises the Rem_1 (Fig. 8)

nd A submodules. The submodule Rem_1 deletes the last attribute

dded to the input candidate. This action is performed by a priority

ncoder which locates the last bit with value 1 in the input candidate.

em_1 outputs represent the previous candidate and the index of the

eleted bit. These outputs are connected to the corresponding inputs

f the submodule A, in order to add an attribute in the corresponding

osition. Finally, the outputs of E1A represent the new candidate to

e evaluated, the previous candidate and the index where the new

ttribute was added to the current candidate.

Finally, the submodule E2A removes the last two attributes from

he input candidate, and then adds the following corresponding at-

ribute. This operation is performed by means of two Rem_1 submod-

les and an A submodule, as shown in Fig. 9.

In order to check if the execution of the CT-EXT algorithm has fin-

shed, the result of an AND operation between the current candidate
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Fig. 10. Input file format.
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nd the first row of the basic matrix is compared to the null n-tuple

0, . . . , 0), as shown in the upper right corner of Fig. 5. If the result

f this comparison is TRUE, then the output done is activated because

ny further candidate will not satisfy the testor condition over the

rst row of BM (line 6 of Algorithm 1).

.2. The FPGA-based board

The Atlys board from Digilent (Digilent, 2013) was selected as the

rototyping board. This board is a development and prototyping plat-

orm based on a Xilinx Spartan-6 LX45 FPGA, speed grade −3. The

tlys board supports device programming and simplified user-data

ransfer at a maximum rate of 48 MB/s, over a single USB connection.

The communication between the host PC and the FPGA uses the

igilent Synchronous Parallel Interface (DSTM) protocol (Digilent,

010). Irreducible testors n-tuples, computed by the proposed archi-

ecture, are buffered within a FIFO in order to be split into bytes.

hese bytes are then buffered into a double clocked FIFO (Xilinx,

012) to be read from the PC. This last FIFO ensures the output in-

erface operation at 48 MHz, as required by the DSTM protocol.

.3. Software description

The software component allows the user to provide the basic ma-

rix in a plain text file following the format shown in Fig. 10. The

oftware component is responsible for programming the FPGA device

nd communicating with the board during irreducible testor compu-

ation.

First, the basic matrix is reorganized by setting one of the rows

ith the minimum amount of ones as the first row and swapping

olumns in such a way those with a 1 in the first row appear on the

eft.

Using the sorted basic matrix, a VHDL file is generated and the

ynthesis and optimization process is started. This way, the optimiza-

ion stage takes advantage of the basic matrix data to minimize the

PGA resource utilization. Then, the programming file for the FPGA

evice is generated.

On the running stage, the software component interacts with the

ardware architecture. First, the device is programmed with the bit-

le obtained from the previous stage. Then, the hardware architec-

ure starts computing irreducible testors. The software component

eeps pulling through a USB port for new irreducible testors in the

utput FIFO until the done signal is activated in the FPGA.

As a result of the sorting process, the order of attributes in the ba-

ic matrix is altered as can be seen comparing Tables 1 and 2. Conse-

uently, the irreducible testors calculated in the FPGA must be cod-

fied according to the order of columns in the original basic matrix.

his task is performed by the software component and then the re-

ults are written to the output file.

. Evaluation and discussion

In order to show the performance of the proposed platform, it

as compared against a software implementation of the CT-EXT al-

orithm (Sánchez-Díaz & Lazo-Cortés, 2007) and the BT hardware

latform previously reported in (Rodríguez et al., 2014);1 which is
1 The source code of the three implementations and the basic matrix genera-

or, as well as the matrices used for the experiments, can be downloaded from

ttp://ccc.inaoep.mx/˜ariel/CTHW/.

o

t

w

s

he most recent hardware implementation for computing irreducible

estors reported in the literature.

Either CT-EXT or BT hardware implementations are capable of

valuating a candidate per clock cycle. If both architectures are run-

ing at the same frequency, as it will be the case in our experiments,

here are two reasons for differences in running time. The first one is

he time taken for reorganization of basic matrix, which is a more

omplex process in BT, although it can be neglected as shown in

Rojas et al., 2012). The second and the most relevant, is the amount

f candidates to be evaluated.

Regarding to the software implementation, the CT-EXT hardware

latform has two disadvantages. Firstly, VHDL code is generated for

ach BM data and a process of synthesis must be executed previously

o executing the algorithm; while this is unnecessary in the software

ersion of CT-EXT. Secondly, the software will be running in a PC at a

requency of 3.10 GHz while FPGA architecture will run at 50 MHz.

These disadvantages make the hardware approach useful (faster)

nder two conditions. First, the number of candidates to be evalu-

ted is big enough to overcome the synthesis overhead. Second, the

imensions of the BM are big enough to provide a considerable speed

p of the candidate evaluation process. Although the hardware archi-

ecture could be designed for a fixed maximum matrix size and re-

eive the BM through the USB port, by doing this, the size of the prob-

em which can be solved would be significantly reduced. The synthe-

is process comprehend an optimization of the design, taking advan-

age of the BM data distribution for the reduction of the generated

ardware configuration. The number of operations for the evaluation

f a single candidate, in the software approach, is proportional to the

umber of rows and it is directly related to the number of columns

n the BM. Using this approach it is possible to achieve a significant

eduction in the processing time, even if operating at a much lower

lock frequency, by evaluating a candidate on each clock cycle.

With these points in mind and in order to show the usability of

he proposed platform, three kinds of basic matrices were randomly

enerated. Each type containing different percentage of 1’s:

1. Very-low density matrices: approximately 8%.

2. Low density matrices: approximately 33%.

3. Medium density matrices: approximately 45%.

Higher density matrices were discarded because they do not con-

titute a computationally expensive problem, as stated by Rojas et al.

2012). Here after, we will be referring to these three sets of matrices

y its approximate density of 1’s.

For our experiments, 30 basic matrices of different sizes were ran-

omly generated. A random number generator was used to gener-

te rows, which are filtered for the minimum and maximum number

f 1’s allowed. In this way the desired density was controlled. If ac-

epted, the row is verified as basic against the saved rows. Basic rows

re saved until the desired number of rows is reached.

For the hardware platforms, we measure the runtimes includ-

ng the time for the following stages: BM input parsing and VHDL

ode generation, synthesis process, and irreducible testor computa-

ion (with the hardware component running at 50 MHz). The number

f rows for each type of matrices is conditioned by the dimensions of

he biggest matrix that may be synthesized at the desired running

requency. All experiments are performed using an Intel(R) Core(TM)

5-2400 CPU @ 3.10 GHz for software executions and an Atlys board,

owered by a Spartan-6 LX45 FPGA device, for the hardware com-

onents. Figs. 11–13 show graphics of the runtime (in hours) for the

hree types of basic matrices.

The proposed CT-EXT hardware platform (CTH) results were

aken as reference for axis limits in Figs. 11–13. Slowest executions

f the CT-EXT software implementation (CTS) are not shown in order

o keep clarity in the figures. The hardware platform for BT (BTH)

as not able to meet the constrain of 50 MHz clock frequency for

ome matrices and running it at a lower frequency produces longer

http://ccc.inaoep.mx/~ariel/CTHW/
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Fig. 11. Total runtime for density 8%.

Fig. 12. Total runtime for density 33%.

Fig. 13. Total runtime for density 45%.

Fig. 14. Average execution time of CTH, CTS and BTH for various type of matrices.

Table 7

Processing time in seconds (broken down for each stage) for 400 × 40, 400 × 42 and

400 × 44 very-low density matrices.

Dimensions 400 × 40 400 × 42 400 × 44

Stage CTH BTH CTH BTH CTH BTH

Load and file generation 0.05 0.07 0.05 0.06 0.06 0.06

Synthesis process 253 656 401 564 452 612

Algorithm execution 300 1071 970 3826 2031 13,311

Total time 554 1727 1372 4390 2484 13,924

CTS total time 3238 7320 12,420

Table 8

Synthesis summary of resource utilization for BM with 8% density on an Spartan-6

LX45 FPGA device.

Dimensions 400 × 40 400 × 44

Algorithm BT CT-EXT BT CT-EXT

Slices 1398 (20%) 983 (14%) 1554 (22%) 1209 (17%)

6-input LUTs 4010 (14%) 2806 (10%) 4475 (16%) 3004 (11%)

Flip-Flops 832 (1%) 852 (1%) 876 (1%) 938 (1%)

Max clock freq 80.44 MHz 179.58 MHz 84.56 MHz 173.24 MHz

Table 9

Synthesis summary of resource utilization for BM with 33% density on an Spartan-

6 LX45 FPGA device.

Dimensions 225 × 50 225 × 55

Algorithm BT CT-EXT BT CT-EXT

Slices 1381 (20%) 1554 (22%) 1455 (21%) 1562 (22%)

6-input LUTs 3769 (13%) 4315 (15%) 4135 (15%) 5026 (18%)

Flip-Flops 949 (1%) 980 (1%) 1002 (1%) 1039 (1%)

Max clock freq 87.46 MHz 155.40 MHz 85.27 MHz 156.35 MHz
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w

p

a

f

d

d

p
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o

c

execution time; which fall out of the limits of the figures. We were

able to run the three platforms for 4 matrices of different types. Fig. 14

shows the average execution time of each platform for these 4 cases.

Rojas et al. (2012) stated that the time for computing irreducible

testors does not only depend on the size and density of the BM. This

assertion is illustrated by the matrices with 68 and 70 attributes re-

spectively, in Fig. 13. Although these two matrices have a similar den-

sity, the larger matrix requires a shorter execution time.

Table 7 shows the runtime for each stage of the data flow, for 400

× 40, 400 × 42 and 400 × 44 very-low density matrices. This table

shows that the synthesis time becomes less significative regarding

the total time when the problem size increases. From this table, it

can also be seen that the main difference between the BT and CT-EXT
ardware implementations is the runtime of the irreducible testor

omputation process. The main reason for this difference is the num-

er of candidates evaluated by each algorithm. This is an explanation

bout why the BT hardware implementation is slower than the soft-

are version of CT-EXT for the largest matrix in Table 7.

Tables 8 and 9 summarize the FPGA resource utilization on our

rototyping board. The maximum operation frequency from Tables 8

nd 9 shows that usually the CT-EXT implementation is potentially

aster than the modified BT implementation. Resource utilization is

irectly related to BM dimensions, its density and to a lesser extent to

ata organization.

As it was shown in the previous section, the proposed hardware

latform provides higher processing performance than the software

mplementation of the CT-EXT algorithm for the matrices used in

ur experimentation. This behavior is possible because the hardware

omponent of the proposed platform is capable of testing whether a
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andidate is a testor of a BM in a single clock cycle, independently of

he number of columns and rows, whereas the software implementa-

ion runtime will significantly increase for matrices with a large num-

er of rows.

Experiment results show that the proposed platform beats the

oftware implementation of the CT-EXT algorithm, with ratios of

round one order of magnitude. However, for large enough datasets

his improvement could be significantly higher, as can be inferred

rom Fig. 13.

. Conclusions

In this work, we present the design and implementation of a new

ardware software platform for computing all irreducible testors in

dataset. Unlike most of the existing hardware architectures for

eature selection, our proposal computes all the minimal subsets

f attributes that preserve the classification accuracy of the origi-

al dataset. The good performance of our hardware implementation,

ompared to the software approach, is feasible due to the high level

f parallelism implicit in the candidate evaluation process of the CT-

XT algorithm; which can be efficiently implemented on an FPGA.

his proposed architecture offers an alternative to previous hardware

mplementations; being faster in most of the cases, by evaluating less

andidates to be irreducible testors.

Experiments also showed that the proposed platform uses fewer

ardware resources and it is able to run at a higher clock frequency

han previous hardware implementations. This characteristic allows

rocessing larger matrices, since the maximum size of the problem

hat can be solved in a hardware architecture is conditioned by its re-

ource utilization. Our approach enables the application of testor the-

ry methods in larger classification and decision-making problems

han it was possible before.

Even though our platform can process larger basic matrices than

revious ones, its resource utilization determines the maximum size

f the basic matrix that can be solved (this is, indeed, the main limi-

ation of our proposal), for this reason, the search for new algorithms

hat could be efficiently implemented on an FPGA constitutes the

ain direction for future work. Improvements, such as testing two

r more candidates at the same time, are still unexplored and would

e evaluated in further studies.
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