
Microprocessors and Microsystems 39 (2015) 576–588
Contents lists available at ScienceDirect

Microprocessors and Microsystems

journal homepage: www.elsevier .com/locate /micpro
Processor arrays generation for matrix algorithms used in embedded
platforms implemented on FPGAs
http://dx.doi.org/10.1016/j.micpro.2014.12.003
0141-9331/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jrperez@tamps.cinvestav.mx (R. Pérez-Andrade), ctorres@

tamps.cinvestav.mx (C. Torres-Huitzil), rcumplido@ccc.inaoep.mx (R. Cumplido).
Roberto Pérez-Andrade a,⇑, César Torres-Huitzil a, René Cumplido b

a Information Technology Laboratory, Advanced Studies Center of the National Polytechnic Institute, CINVESTAV, Ciudad Victoria, Mexico
b Department of Computer Science, National Institute for Astrophysics, Optics, and Electronics, INAOE, Santa Maria Tonantzintla, Puebla, Mexico

a r t i c l e i n f o
Article history:
Received 1 July 2014
Accepted 23 December 2014
Available online 10 February 2015

Keywords:
Processor arrays
Polytope
Embedded platforms
FPGAs
a b s t r a c t

Matrix algorithms are an important part of many digital signal processing applications as they are core
kernels that are usually required to be applied many times while computing different tasks. Hardware
assisted implementations using FPGAs provide a good compromise between performance, cost and
power consumption, specially when high level synthesis techniques are employed for deriving co-processors.
In this paper a high level synthesis approach to generate embedded processor arrays for matrix
algorithms based on the polytope model is presented. The proposed approach provides a solution for
efficient data memory accesses and data transferring for feeding the processor array, as well as support
for solving problems independently of their size and limited only by the FPGA available resources. The
proposed approach has been validated by generating processor arrays for three different matrix algo-
rithms used in digital signal processing applications; more precisely matrix–matrix multiplication,
Cholesky and LU decomposition algorithms. These algorithms were targeted for a Spartan-6 device and
compared against their sequential implementations targeted for a MicroBlaze processor in order to
provide a general view of the gain achieved by the processor arrays when the arrays and sequential
processors are implemented in the same technology. Results show that the implemented arrays
outperforms hardware and software implementations considering an embedded platforms scenario with
a Spartan-6 device.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Traditionally, the intensive computational performance
required in several applications were met only by technology
advances like smaller transistor area, higher clock rates and other
improvements. However, problems like power dissipation and
thermal constraints have emerged as dominant design issues; forc-
ing computer designers away from relying on increasing frequency
to improve performance. Thus, using multiple processing units for
performing parallel computations and completing a larger volume
of work in shorter time periods has became the current trend in
order to improve performance in several domains, like digital sig-
nal processing [1]. Nowadays, the main trend for achieving greater
performance and increasing the computational efficiency is by
exploiting different forms of parallelism such as instruction level
parallelism (ILP), data level parallelism (DLP) or loop level paral-
lelism (LLP).
Among these forms of parallelism, the LLP approach is widely
used in the scientific computing and digital signal processing com-
munities, since roughly at least an 80% of the execution time of
sequential programs is typically spent in computing nested loops,
which represent the 20% of program codes [2]. Besides, several
numeric kernels used in digital signal processing applications can
be computed in forms of nested loops, representing niches of
opportunities for being implemented in hardware platforms
exploiting the LLP. These numeric kernels are required in order
to build ‘‘complex’’ algorithms on electronic systems. Algorithms
such as matrix multiplication, matrix decomposition, convolution
and system equations solvers are used as base for building more
complex systems. For example, matrix multiplication is required
in some Fast Fourier Transform (FFT) algorithm implementations
[3]; whereas matrix decompositions, such as Cholesky, LU or QR,
are used in MIMO (Multiple Input Multiple Output) systems [4],
facial feature extraction [5], classification and target tracking in
wireless sensor networks [6], orthogonal matching pursuit for sig-
nal reconstruction in compressed sensing theory [7], and least-
square estimation (LSE) and multiple-parameter linear regression
(MLR) [8].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2014.12.003&domain=pdf
http://dx.doi.org/10.1016/j.micpro.2014.12.003
mailto:jrperez@tamps.cinvestav.mx
mailto:ctorres@ tamps.cinvestav.mx
mailto:ctorres@ tamps.cinvestav.mx
mailto:rcumplido@ccc.inaoep.mx
http://dx.doi.org/10.1016/j.micpro.2014.12.003
http://www.sciencedirect.com/science/journal/01419331
http://www.elsevier.com/locate/micpro

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 577
Traditionally, the parallelism of the aforementioned numeric
kernels has been exploited by using digital signal processors
(DSPs) which are optimized for performing in parallel the most
common used operations in signal processing applications like
multiplication–accumulation (MAC) operation, and in recent years
highly specialized coprocessor units based on field programmable
gate arrays (FPGAs) platforms have been used for exploiting the
LLP by taking advantage of spatial computing paradigm [9].
However, a considerable effort and time are required to develop
such hardware implementations leaving to computer designers
the responsibility of crafting these highly specialized application-
specific architectures. Hence, hardware assisted approaches for
automatically generating dedicated hardware architectures, are
beneficial for implementing loop-based algorithms and extracting
their parallelism.

High-level synthesis (HLS) methods allow the automatic gen-
eration of hardware circuits from behavioral descriptions, favoring
a faster exploration and evaluation of possible hardware architec-
tures compared to traditional hardware design flows. Generally,
HLS methods try to extract automatically the parallelism from an
algorithmic representation, and at the same time, derive parallel
hardware structures from this algorithmic input. The target
hardware circuit derived by HLS methods consist of a structural
composition of data-path, control and memory elements. The
fundamental tasks in HLS methods are decomposed into hardware
modeling, scheduling, resource allocation and binding, and control
generation [10]. Although several HLS methods can be found in the
literature, each of them uses different hardware models deriving
different kinds of hardware architectures. Models like the con-
trol-data flow graphs (CDFG) [11], the hierarchical task graphs
(HTGs) [12], the Kahn process networks [13] and the polytope
model [14] have been employed by the HLS community.
Although some these HLS approaches use as algorithmic represen-
tation loop-based algorithms they do not offer any parallelization,
since they generate highly-pipelined mono-processors in order to
achieve a higher data throughput. However, the polytope model
[10] is able to expose the loop level parallelism of sequential
loop-based programs by providing an abstraction to represent loop
computations of an input specification as integer points inside of a
polyhedron. As a result, the polytope model could be used for the
synthesis of hardware architectures exploiting the LLP in digital
signal processing algorithms in the form of highly-pipelined
mono-processors [15] or processor arrays [16,17]. Processor arrays
are regular, locally connected and massively parallel architectures
with simple processing elements (PEs), whose structure is well
suited for their implementation into FPGAs.

In this paper, a HLS approach for generating processor arrays for
matrix based algorithms using the polytope model is presented.
The proposed approach provides a complete system, integrating
the processor array data-path (PEs architecture and processor
array interconnection), the control structure for generating the
activation and control signals, and the memory interface for insert-
ing/extracting data to/from the processor array which could be
used in FPGAs or in VLSI designs. The rest of the paper is organized
as follows: Section 2 presents a general overview of related works
concerning the processor array generation within the polytope
model context and a brief discussion about these works. A descrip-
tion of the processor array generation using the polytope model is
presented in Section 3. Section 4 describes the proposed architec-
tural designs focusing on the controller generation and the mem-
ory system for inserting/extracting data to/from the processor
array. Resource utilization, acceleration and throughput results
compared against a soft-processor implementation for three
algorithms are presented in Section 5, while the conclusions are
presented in Section 6.
2. Related work

Although several HLS methods have been proposed in the lit-
erature, only few of them are focused on the generation of parallel
architectures by using the polytope model. In this section a review
of these HLS methods is presented. One of these works about HLS
within the polytope scope is the MMAlpha programming environ-
ment [17], which transforms an input specification in form of a sys-
tem of uniform recurrence equations (SURE) into VHDL code
describing a processor array, and to a C code for simulation purpose.
MMAlpha has been targeted for solving linear equation systems,
string matching, computing scores for hidden Markov model, finite
impulse response (FIR) filter and matrix–matrix multiplication
(MatMul). One characteristic that these algorithms share is that
their loop bounds form rectangular shapes. In fact, cases where
the design methodologyfollowed by MMAlpha is used for generat-
ing processor arrays (full-size or partitioned) for algorithms whose
loop bounds form non-rectangular shapes (e.g. back substitution,
Cholesky, QR and LU decompositions algorithms) have been not
shown. Moreover, although all processor arrays generated in a
full-size fashion are size-dependent, processor arrays synthesized
by MMAlpha using partitioning transformation are unable to solve
several problem size instances, i.e. if the problem size for which the
processor array was derived changes, a new processor array with its
respective controller should be generated. Within the context of
MMAlpha environmental tool, Plesco in [18] presents a hand-made
solution for interfacing an external memory with a processor array
of 4 � 4 PEs generated by MMAlpha tool by using the MatMul of
complex numbers of 32-bit word size. This hand-made solution is
only a specific implementation without any generalization for other
cases of study. Also, within the MMAlpha framework and using the
MatMul algorithm, Derrien in [19] deals with I/O aspects involved
in the processor array generation by proposing a methodology to
derive a set of conflict free I/O data pipelines along the processor
array boundaries.

Another tool for automatic processor array generation is PARO
[16], which is able to map computational intensive nested loop
programs into parallel architectures that are translated into
VHDL code. Similarly to MMAlpha, PARO uses a special input
specification in form of SURE called dynamic piecewise regular
algorithms (DRPAs), which are a generalization of the SUREs. The
PARO processor array synthesis consists of three steps: synthesis
of the processor elements, generation of the control structure
and derivation of the interconnection topology [20]. The hardware
synthesis generates a register transfer level (RTL) description
which is later translated and optimized into VHDL code. Also,
PARO is able to automatically generate VHDL test-benches in order
to perform the verification of the processor array. The controllers
generated by PARO use combined global and local control facilities.
Such controllers are in charge of orchestrating data transfer and
computations for processor arrays, and they are based on the use
of counters, decoders, address generators, and glue logic for inter-
facing the processor array to other components integrated in
system-on-a-chip (SoC) environments. However, the data I/O is
only proposed to be done either by functional simulation, by direct
memory access (DMA), or by software running on a host processor
[21]. Moreover, cases of study presented during the development
of PARO tool include MatMul algorithm [22], FIR filter [23], discrete
cosine transform (DCT), and images filters like edge detection,
bilateral [24] and gaussian filters [16]. MatMul, FIR and edge detec-
tion algorithms are cases of study that show how PARO could be
used for generating partitioned arrays [16]. As the same case of
MMAlpha, algorithms targeted in PARO tool have the rectangular
loop bound shape characteristic. Although during the development
of PARO, the mathematical theory for deriving processor arrays

578 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
from algorithms with non-rectangular loop bound shapes has been
developed, cases of study where partitioning transformations are
applied to algorithms whose loop bounds are not rectangular (like
QR, Cholesky an LU decomposition algorithms) have been not
shown. Moreover, processor arrays derived by PARO are size
dependent due to the assumption of fixed tile sizes [24], and they
do not use complex hardware operations used in matrix decompo-
sitional algorithm.

Another framework for mapping perfectly nested loops into
processor arrays implemented in FPGAs is presented by Uday
et al. in [25]. In this framework, two global controllers associated
with different dimensional times are used for the control signal
generation, and each one of these controllers streams the activa-
tion signals from a particular corner of the processor array with
certain delay. Partitioning is supported by using multidimensional
scheduler in a local parallel global serial approach, but it lacks of
information about any memory support (like FIFO elements) for
the used partitioning approach. The authors show only the
MatMul algorithm implemented as a processor array, but informa-
tion about an external memory module in charge of providing data
is not mentioned.

An automatic tool for the generation of processor arrays is the
PICO-NPA (Program-In Chip-Out and Non-Programmable
Accelerator), which is a commercial system for synthesizing hard-
ware co-processors from perfectly nested loop C programs [26].
The project was developed in the HP Palo Alto research laboratory
and now it is being commercialized by Synopsys with the name of
PICO Express [27]. This tool generates synthesizable HDL code that
defines several RTL algorithmic specifications and HDL test-bench
codes for each RTL specification. PICO is able to exploit four
different levels of parallelism: loop, instruction, inter-task and
intra-task. Basically, the PICO target architecture is built on three
hierarchical levels. The first one consists of simple processing ele-
ments containing arithmetical units. The second level consists of a
set of processing elements (PEs) locally interconnected called pro-
cessing array (PA), which incorporates local memories for reducing
the bandwidth of external memory accesses. The third is made of a
set of PAs connected by FIFO memories called pipeline of process-
ing arrays (PPA). A controller is in charge of orchestrating the
operations of all PAs, while an interface is used to communicate
with a host computer. Data transfers from CPU to the PPA are real-
ized by specialized hardware units. It should be noted that a PA is
similar to the processor arrays in the sense that a it is composed by
simple processing elements interconnected between them in a reg-
ular and local fashion. Unfortunately, since PICO is a proprietary
technology, several details are omitted.

One recent HLS work for deriving sequential hardware with a
high parallelism level is proposed in [28] by Alias et al. This
methodology relies on FloPoCo an open-source tool for FPGA float-
ing point arithmetic-core generation [29]. As input specification it
takes a C program and the amount of desired pipeline stages, pro-
ducing VHDL code as result. The input C program is changed by
using some transformation within the polytope context like the
loop blocking transformation. Alias et al. show that, from this
sequential implementation, obtaining a parallel version by repli-
cating the sequential processor is possible. The control generated
by their semi-automatic methodology is composed by a single
finite state machine (FSM) that captures the whole loop nest
execution sequence. Also, this control generates external memory
addresses for where the input/output data is stored.

Although tools like PARO and MMAlpha produce partitioned
processor array in different ways, they lack of parametric support.
If the problem size for which they were targeted changes, theacti-
vation sequence changes too, and consequently a new processor
array must be synthesized in order to generate a new activation
sequence. Besides, the cases of study used in the aforementioned
works have been focused on algorithms whose loop bounds form
rectangular shapes, leaving behind decompositional matrix algo-
rithms like QR, LU and Cholesky, which could be used in embedded
platforms. It is important to emphasize that albeit PARO provides
mathematical support for any kind of loop bound shapes, it does
not show any case of study of processor arrays implementation
with non-rectangular loop bounds. Additionally, there are few
attempts for deriving memory interfaces for processor arrays con-
structed by using the polytope model, and most of them are limit-
ed to specific algorithms like in [18] without any generalization for
the other cases of study. In these reviewed works, it is assumed
that data are fed and read to/from the processor array as needed
and no details are given about the external memory interface.

Table 1 shows a detailed comparison among the three most
similar works related to this work. This table specifies the kind of
algorithm that each tool has been targeted, the kind of allocation
technique supported by the tool and the three main characteristics
of this work compared to other ones: the support for non-
rectangular loop bound shape, problem size independency and
external memory support. Mainly, the allocation techniques con-
sist of four different approaches. The projection approach results
on full-size processor arrays dependent of the problem size,
whereas co-partitioning, local parallel-global serial (LPGS) and
local serial-global parallel (LSGP) approaches derive processor
arrays which virtualize the full-size array into a smaller array with
a fixed number of processors.
3. Processor array generation on the polytope model

The polytope model provides an abstraction to represent com-
putations in a sequential loop program or in a more general repre-
sentation like a piecewise linear algorithm (PRA), which is a
specific form of the SUREs. A PRA is a set of N quantified equations
and each equation Si[I] is defined for all I 2 I i according to:

xi½Pi I
!� ¼ F ið. . . ; xj½Q j I

!�~dji; . . .�Þ if CI
ið I
!Þ ð1Þ

where xi, xj are affinely indexed variables. The indexing functions of
the variables are defined by the constant indexing identity matrices
Pi, Qj and by the i-th constant integer dependence vector dji of the

corresponding dimension. CiIð I
!Þ is called iteration dependent condi-

tion of an equation. F i denotes arbitrary functions and the dots
denote similar arguments. Ii is an integral subset I # Zn called itera-
tion space of the PRA. The vector I represents an iteration point I 2 I i.
Some variables in the PRA represent the data input and output from
an arbitrary external source in form of I/O variables.

A general design flow followed for the generation of processor
arrays within the polytope model is shown in Fig. 1a. First, the ori-
ginal program, or source polytope is represented as a PRA (Fig. 1b).
From the source polytope, information like data dependences (in
form of dependence vectors dji) among the variables, latency of
operations in hardware, and the type of variable present in the
PRA is extracted and gathered into a reduced dependence graph
(RDG). Together, the iteration space I and the RDG are employed

to define a scheduler (~k) and an allocation (U) functions. Basically,
the purpose of the scheduler is to assign a computation date for
each task of the PRA; whereas the allocation assigns the tasks to
all the PEs such as no two tasks with the same computation date
are assigned to be executed on the same PE. In the context of this
work, the linear scheduling proposed by Darte et al. in [30] is used,
since it derives asymptotically functions equivalent to the best
scheduler; that is the difference between the total execution time
of the best linear scheduler and a scheduler which assign compu-
tation times as soon as data are available is bounded by a constant
independent of the problem size. On the other hand, the allocation

Table 1
Comparison of the proposed approach against other works.

PARO [16] MMAlpha [17] Uday [25] This work

Algorithms supported
Matrix–matrix based U U U U

FIR and convolution U U U

Image filtering U

Matrix decompositions U

Allocation technique
Projection U U U

LPGS U U U

LSGP U U

Co-partitioning U

Non-rectangular U

Problem size independency U

External memory support U

(a) (b)

(c)

Fig. 1. (a) Processor array design flow followed in this research. (b) Matrix–matrix multiplication PRA. (c) Processor array derived by the design flow.

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 579
functions used in this work are obtained from a user proposed pro-
jection vector~u, according to [16]. By using the projection vector, it
is possible to derive full-size processor arrays which are later par-
titioned. Along with the scheduler and the allocation function, a
time interval between two successive computations performed
by the same PE, called iteration interval, is calculated from these
functions. Together, the scheduler and allocation functions are
used to perform a space–time mapping over the source polytope
in order to obtain the target polytope. The target polytope contains
the same iteration points of the source polytope, but in a new coor-
dinate system in which a dimension is strictly temporal and the
others are strictly spatial, i.e. the space–time mapping divides the
source polytope I into two subspaces T and P which define a time
and a processor space, respectively.

Applying the space–time transformation full-size problem
dependent processor arrays unsuitable of being implemented for
large iteration spaces can be derived. Partitioning helps to derive
processor arrays independent of the problem size by using a fixed
number of processors and preserving the interconnection topology
among PEs. Depending on the interpretation of the partitioning
transformation several approaches could be obtained. The LPGS
partitioning approach refers to compute in parallel the iteration
points covered by a tile and execute the remaining tiles sequential-
ly. On the other hand, the LSGP approach refers to execute the
iteration points inside of the congruent tiles sequentially, but com-
puting the rest of tiles in parallel fashion. In this work, the proces-
sor arrays using the LPGS approach are derived by using strip
mining technique. Strip mining consists of dividing the dimension
of the processor space into strips, resulting in processor spaces
divided by congruent tiles. Each strip divides one dimension of
the processor space by a constant stride of size SSpk, and it adds
new dimensions for scanning them without adding these indexes
to the PRA [31]. The stride size SSp0 defines the size of a one-di-
mensional processor array, whereas SSp0 and SSp1 define the size
of a two-dimensional array, i.e. T 2 Z and P 2 Z2, respectively.
Once these transformations (space–time mapping and partition-
ing) have been applied, the controller [16,17], the processor array
topology [20,24], the PE data-path [16,17] and the memory

580 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
controller [18,32] are synthesized (Fig. 1c). The controller indicates
when a PE inside the processor array must be activated at a given
time, and which operation must be performed inside of the PE. The
interconnection topology specifies how data travels through the
array, while the PE data-path performs the computations required
by the algorithm. Since the processor space is partitioned, some
FIFOs elements are added at the processor array borders in order
to store intermediate data produced by the array when the proces-
sor space is being scanned by the tile indexes, avoiding external
memory accesses. Finally the memory system feeds the processor
array with data coming from an external memory, and at the same
time, it extracts the data results produced by the array storing
them into an external memory. In the following section, the
generation of the processor array following the design flow shown
in Fig. 1a. is explained.

4. Architectural design

The proposed architectural design consist of three major blocks:
the processor array data-path, the controller, and the memory
interface. It is important to emphasize that for deriving the proces-
sor array data-path of the proposed architecture well-known
mathematical expressions are used [16,17]. However, for sake of
completeness, a brief overview of the derivation of PE data-path
and the interconnection topology of the PEs is presented in
Section 4.1. Sections 4.2 and 4.3 are advocated to describe the
proposed controller and memory interface.

4.1. Data-path

By using the dependence vectors, scheduler, allocation, and
RDG it is possible to determine if a local connection among
processing elements exists, the number of delay elements
(or registers) that must be placed between each connection as well
as the internal PE data-path. Basically, the interconnection of the
PEs is obtained by using the allocation function, and the data
dependences different of zero. Intuitively, for each data depen-
dence vector ~dji–0 in the PRA, a connection from the indexed
variable xj to xi is inferred, i.e. the number of dependence vectors
different from zero provides the number of PE input/output ports.
Each interconnection sji 2 Z corresponds with a dependence
vector dji in the PRA. If sji is different from zero, it indicates that
a connection should be placed between the indexed variables j
and i, otherwise a PE internal feedback should be placed.

The value of sji is calculated as follows:

Sji ¼ U~dji

On the other hand, the number of registers required between
each interconnection sji is determined by using the scheduler func-
tion and data dependence vector ~dji. Similarly to the interconnec-
tion, a delay equal to rji is set between the indexed variables xj
and xi according to:

Sji ¼~k~dji

Finally, the derivation of the PEs data-path is accomplished by

binding the RDG nodes to hardware elements according to CIð~IÞ,
resulting on different types of PEs inside of the processor array.
For example, after space–time transformation, only some PEs will
perform external I/O memory communication while other PEs will
perform a subset of the PRA operations. Thus, the data-path for
each processor type is synthesized from the RDG, since each one
of its nodes denotes a different kind of functionality (input, output,
propagation, and operational). The operational nodes are directly
bound to hardware functional units like adders, multipliers,and
dividers. Some multiplexers are added in case of there are several
nodes corresponding to the same indexed variable. The RDG nodes
labeled as input or output denote I/O ports of the processor array.
These ports are in charge of receiving all data from an external
source and of sending data results to an external source. It is
important to differentiate these processor array I/O ports, which
communicate the processor array with the memory interface, from
the PE I/O ports which are used for interconnect the PEs.

4.2. Controller

The processor array controller is based on a centralized and dis-
tributed modules (Fig. 2). In this approach, the most costly hard-
ware and repetitive operations are placed in the central modules
in order to reduce possible overhead introduced if such operations
were placed in a distributed way; whereas simple operations are
placed into the distributed modules. In this sense, the centralized
control module generates the scanning order of the tile and time
indexes after applying strip mining; whereas the distributed mod-
ules propagates such indexes as well as the control signals through
the processor array; and if it is required, these signals are modified
by the distributed modules.

The centralized part is composed by two modules called
sequence generator and activation-signal injector; whereas the dis-
tributed part is made of several control cells forming a control array
whose interconnection topology is identical to the PEs in the pro-
cessor array. The idea behind the controller is having an special
unit in charge of scanning the divided processor space P, and gen-
erating the time index derived from strip mining and space–time
mapping, respectively. Later these indexes are decoded in order
to know which PE is the first to be activated at the beginning of
each tile, and then propagating an activation signal through the
control array as well as some other information required by the
control cells (like the problem size and current tile iteration). A
detailed description of this controller can be found in one previous
work [31]. However, for sake of completeness, the next subsection
briefly summarize the three controller modules.

The Sequence Generator is a set of specialized counters able to
generate the scanning order of the tile and time indexes obtained
after applying strip mining P. This module is composed by a set
counter-like submodules connected in a cascade fashion. Each
counter-like submodule is able to count between different ranges
of values according to the limits calculated by a combinational
Max/Min submodule. This submodule calculates the maximum
and minimum values at execution time. This kind of run-time eval-
uation, required for supporting a set of problem sizes, is one of the
parameters required by the expressions mapped to the Max/Min
submodules. Inside of each counter-like submodule there is an
internal counter which enables the counting of the counter-like
module at a rate equal to the iteration interval obtained from the
scheduler and allocation functions, i.e. each counter is not neces-
sarily incremented by a unitary step. For each non-processor index
(i.e. time and tile indexes) presented in the partitioned target poly-
tope, a pair of a Max/Min and counter-like sub-module is required.
The advantage of using combinational logic in the Max/Min sub-
modules is that if the bounds of the partitioned processor space
were changed, only by changing the Max/Min expression, the
sequence generator is able to generate the new tile and time index-
es. Moreover, by adding h-pair of counter-like and Max/Min sub-
modules the functionality of h non-processor indexes can be
achieved. Fig. 3 shows the interconnection of counter-like submod-
ules with their respective Max/Min sub-modules when h = 3. The
combinational submodules Max/Min are grey-shaded. Note that
the Hold signal from the inner counter-like submodule is connect-
ed to a counter which establishes the iteration interval P. Some
two-state finite state machines (FSMs) are in charge of generating
the Load and Hold signals of the counter-like submodules, and the

Fig. 2. Processor array controller block diagram.

Fig. 3. Processor array controller block diagram.

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 581
transitions made by these FSM is done accordingly to the iteration
interval P.

The Activation-Signal Injector is a combinational module in
charge of selecting which PE, in the border of the processor array,
must be activated at the first time instant when a new tile is being
scanned. Also, it injects an index bus composed by the indexes gen-
erated by the sequence generator and by the problem size. The rea-
son of injecting this bus is that all PEs should know what tile
iteration is being executed at given time and what is the size of
the problem that is being solved. This information provides to
the processor array a problem size independency, making it able
to compute several problem sizes, without regenerating the
processor array. Thus, this module is composed by a Max and a
priority decoder combinational sub-modules.

The Control Array is composed by a set of control cells, which
includes combinational logic that checks the correct mapping of
the processor space and some module P-counters for generating
the activation pattern. The set of control cells is in charge of
activating a subset of PEs inside of the processor array at certain
time while the tiles are being scanned. Such activation occurs by
circulating the activation signal and the index bus injected by the
activation-signal injector module. The data circulation is per-
formed by knowing two specific characteristics of a PRA after the
space–time transformation: the activation pattern of the PEs and
the correct PE mapping of an iteration point~I from the processor space
P. The activation pattern provides an idea of how many clock
cycles the incoming activation signal must be kept activated inside
of control cell; whereas the correct mapping ensures that a PE
maps a valid processor space index point (specially in the case of
non-rectangular iteration spaces). Both characteristics are evaluat-
ed at execution time by the activation patter generator and bound-
aries detector units, respectively. Such run-time evaluation is
helpful for generating the control signals for a set of problem sizes
without the need of re-generating the controller. Thus, the activa-
tion pattern and the boundaries detector units includes combina-
tional logic in charge of performing their respective task at
execution time. Fig. 4 shows the control cell internal architecture.
Coarse lines indicate the input index bus injected from the activa-
tion-signal injector, and the activation signal coming from the con-
trol cell neighbors. The activation pattern generator controls the
enable signal of the corresponding PE, and it stops a FSM.
Similarly to the FSMs required by the sequence generator, the state
transitions of this machine are done according to the iteration
interval P, thereby internal modulo counters are included for each
control cell. The boundaries detector unit and some AND gates are
in charge of deciding if the activation signal must be sent to any of
neighboring cells. Moreover, the control cells have a set of registers
for storing the indexes and the activation signal generated by the
set of AND gates. These registers are enabled by following at the
same rate as the iteration interval and respecting the scheduler.
4.3. Memory interface

The memory system consists of address generator units (AGUs),
memory banks and registers working in serial-input/parallel-out-
put (SIPO) and parallel-input/serial-output (PISO) fashion. The
selection of these components, their interconnection, and their

Fig. 4. Generalization of the control cell architecture.

582 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
internal architecture varies depending on the I/O variables and its
iteration dependent condition after space–time. These variables
can be grouped in two different possibilities: border and broadcast

mapping. A border mapping occurs when the index vector~I of CIð~IÞ
is transformed into processor space, and one dimension of the vec-

tor~I in the I/O variable is mapped to the time space. On the other

hand, a broadcast mapping occurs when the index vector~I of CIð~IÞ
is transformed into time space, and all dimensions of vector~I in the
I/O variable are mapped to the processor space. From these two
mapping possibilities, there are other two cases depending if the
PRA variable represents an input or output, resulting in a total of
four mapping possibilities. These I/O variables can be interpreted
as a representation of external memory, with a specification of
which PE will require a datum at certain time instant according
to the space–time mapping. Essentially, after the mapping and
depending on the variable type, four different architectural cases
could be derived. These four cases assemble a memory system
for inserting/extracting data to/from the processor array. These
cases are: input border mapping (Fig. 5a), output border mapping
(Fig. 5b), input broadcast mapping (Fig. 5c), and output broadcast
mapping (Fig. 5d).

The processor array memory system satisfies the constraint that
all data are required and produced by the processor array during
each clock cycle respecting the algorithm data dependences. This
constraint can be interpreted as the worst case scenario when
the processor array is derived, i.e. when a clock cycle is equal to
the iteration interval (P = 1). Also, the use of dual-port memories
for each memory bank and the possibility to extract two data per
memory port in a processor clock cycle are assumed. This last
assumption requires to double the external memory clock frequen-
cy (Clkmem) with respect to the processor array clock frequency
(Clkpa), i.e. Clkmem = 2 � Clkpa. The combination of both assump-
tions leads to have a data extraction rate of four data per memory
bank in a processor clock cycle. In addition, these assumptions try
to provide as multiple communication channels as the processor
array requires. For instance, in the case of the border mappings
(either for input or output variables) the number of communica-
tion channels is given by one of the processor array size para-
meters, i.e. SSp0 or SSp1; whereas in the broadcast mapping, the
number o channels changes in a quadratic way as the processor
array size is altered. Fortunately, all the communication channels
are not used at the same time when the broadcast mapping is
derived, and the original number of channels (SSp0 � SSp1) could
be decreased, since a fraction of these potentialcommunications
are required in parallel at a same time instant. Finally, due to the
four mapping cases, derived from the I/O variables and its iteration
dependent condition, there are also four different architectural
modules. Fig. 6 shows the internal architecture of these four cases.
In these figures, for sake of simplicity, two AGUs are grouped into
the TAGM sub-modules.

It should be noted that in the output border case, data produced
by the processor array is recollected at the processor borders
despite of they are not necessarily produced by the border PEs in
the processor array. This last situation occurs when the problem
size does not fit exactly in the partitioned array. In such case, data
are produced by inner PEs, and these data must be sent to the pro-
cessor array border. The sending of output data originated inside
the array is accomplished by placing a layer of registers data array
composed by a set of registers following the interconnection struc-
ture of the processor array. Another situation that should be noted
is that in the input broadcast cases a block of data (equals to the
number of PEs) is required each time a tile is being scanned.
Such data block must be sent in advance to each PE where each
datum of the data block is required. The forwarding requires send-
ing all data contained in the block from one processor border, and
sending these data simultaneously. Each time that a sub-block (a
part of the data blocks) passes through a pipeline stage, one datum
of the sub-block is taken by a PE while the remaining data are sent
to the next pipeline stage. This approach calls for a high quantity of
registers for storing the pipelined data at each pipelining stage. In
fact, the set of such registers could be abstracted as an array of
registers where the number of registers is decreasing as data get
further from the border. This array is called broadcast data array,

(c)

(a)

(d)

(b)

Fig. 5. Architectural cases according to the variable type and the mapping possibilities.

(a) (b)

(c) (d)

Fig. 6. Interconnection example of the (a) input border case, (b) output border case, (c) input broadcast case and (d) output broadcast case.

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 583
and an example of such array is shown in Fig. 7 for a processor
array of 8 � 8 PEs. In this figure grey boxes represent the set of
registers and the numbers above the lines indicate the amount of
data that it is being pipelined. In Fig. 7, it is assumed that data
travels horizontally, but this idea could apply in the case of data
are propagated vertically. Besides, this same array is required in
the case of output broadcast.
4.4. Integrated system

Fig. 8 shows the block diagram integrating the processor array
data-path, the controller, and the memory system showing in dif-
ferent colors the two clock domains. In this integrated system, the
tile and time indexes are generated by the sequence generator,
later these indexes are decoded by the activation-signal injector

Fig. 7. Broadcast data array for an 8 � 8 processor array. From the SIPO side to the
other border, the data bus is being decreased.

584 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
and by the AGUs in order to generate the processor array activation
sequence and the input memory addresses, respectively. Data
extracted from memory are inserted inside the processor array
by the SIPO elements and at the same time the activation signal
is injected to the processor array. All intermediate data produced
by the array is stored in FIFOs and it is reused without accessing
external memory (like a scratch memory). Once results are being
produced by the processor array they are recollected by PISO reg-
isters and they are stored in an output memory. It is important to
emphasize that the integrated system is able to support different
scheduler functions by changing the mathematical expressions
mapped to combinational logic in:

� The Max/Min sub-modules located in the sequence generator
(control scheme).
� The Max sub-modules placed in the activation-signal injector

(control scheme).
� The boundaries detector and the activation pattern generator

sub-modules in the control cells (control scheme).
� The AGU sub-modules required by each architectural case

(external memory).
Fig. 8. Complete processor array block diagram, integrating the control, dat
Moreover, if the projection vector is also changed, by the correct
selection of the memory architectural cases it is possible to support
different space–time transformations.
5. Results

5.1. Experimental setup

The proposed HLS approach has been tested generating proces-
sor arrays for three different algorithms: MatMul algorithm, and
Cholesky and LU decomposition algorithms. The MatMul algorithm
is high external data demanding, whereas the Cholesky and LU
algorithms have non-rectangular loop bounds. The space–time
mapping for MatMul was derived by using the scheduler function
~k = [1 1 1], and the projection vector ~u = [1 0 0]t; the mapping for

Cholesky was obtained from the scheduler~k = [1 1 1], and the pro-
jection ~u = [0 0 1]t; and the space–time mapping for LU was

obtained from ~k = [1 1 1], and ~u = [0 0 1]t. The iteration interval
for these arrays is equal to the most time expensive operation pre-
sented in the algorithm. In the case of MatMul, multiplication and
addition require one clock cycle, thus one iteration interval is equal
to one clock cycle, whereas in the Cholesky and LU cases, the itera-
tion interval is equal to 21 clock cycles due to the division latency.
Each one of these implementations has a data and control word of
32-bit and 11-bit respectively. According to [31], with a control
word of 11-bit, problem sizes of N � N, where 1 < N < 372, are pos-
sible to be solved. Finally, the memory banks required in the mem-
ory system are assumed to be off-chip memories.

The MatMul, Cholesky and LU processor arrays have been
placed and routed with Xilinx ISE 13.1, and targeted for a
Spartan-6 XC6SLXCSG324C FPGA device included in the Digilent
Atlys Development Board. This board includes a 128 MByte DDR2
memory with a 16-bit data bus, which was used for storing the
input and output matrixes. Also, for comparison purpose,
aMicroBlaze soft-processor has been used implementing the same
algorithms but in a sequential fashion. The MicroBlaze implemen-
tation includes a 64-KB of local memory without cache, and the
AXI Bus for peripheral interconnections. Mainly, the soft-processor
was used for measuring the loop-kernel execution time including
the external memory accesses. The optimization compiling flag
was placed in -O3 in order to obtain the maximum compilation
effort.
a-path, internal memories (FIFO), and external input/output memories.

0 20 40 60 80 100 120 140 160 180
100ns

1us

10us

100us

1ms

10ms

100ms

1s

10s

Problem Size N

E
xe

cu
tio

n
T

im
e

MicroBlaze MatMul 97 MHz
02x02 PEs MatMul 45 MHz
04x04 PEs MatMul 44 MHz

Fig. 9. Comparison of MatMul execution times for two processor arrays and the
MicroBlaze implementation.

Table 2
PAR results for a MicroBlaze implementation and four processor arrays targeted for a XC6SLX45 FPGA device.

FPGA resources MatMul MatMul Cholesky LU MicroBlaze processor

Name Available 2 � 2 PEs 4 � 4 PEs 2 � 2 PEs 2 � 2 PEs

Slice Regs 54,576 1702 5770 3207 3345 3703
Slice LUTs 27,288 2312 7607 8523 7993 3782
Block RAM 116 116 116 60 60 42
DSP48E1 58 16 42 26 24 3
Max freq (MHz) 45.68 44.62 52.45 51.72 97.75
Power (W) 0.398 0.756 0.334 0.216 0.973

Table 3
Average speed-up and energy consumption per LUT of the four processor arrays.

Metric name MatMul 2 � 2 PEs MatMul 4 � 4 PEs Cholesky 2 � 2 PEs LU 2 � 2 PEs MicroBlaze processor

Avg. speed-up 6.05 10.2 5.34 5.18 1
Avg. improvement 24.2 6.5 6.9 11.04 1
mW/LUT 0.172 0.099 0.039 0.027 0.257

0 20 40 60 80 100 120 140 160 180
100ns

1us

10us

100us

1ms

10ms

100ms

1s

Problem Size N

E
xe

cu
tio

n
T

im
e

MicroBlaze Cholesky 97 MHz
02x02 PEs Cholesky 52 MHz

Fig. 10. Comparison of Cholesky execution times for a processor array and the
MicroBlaze implementation.

0 20 40 60 80 100 120 140 160 180
100ns

1us

10us

100us

1ms

10ms

100ms

1s

10s

Problem Size N

E
xe

cu
tio

n
T

im
e

MicroBlaze LU 97 MHz
02x02 PEs LU 51 MHz

Fig. 11. Comparison of LU execution times for a processor array and the MicroBlaze
implementation.

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 585
5.2. Implementation results

Table 2 summarizes the place and route (PAR) results for three
processor arrays and the MicroBlaze implementation. The FIFO ele-
ments required by the processor array are implemented using
BRAMs, and the square root and division operations required by
the Cholesky and LU decomposition are implemented using the
Xilinx’s IP cores. Also, Table 2 shows the operational frequency
and the dynamic power consumption estimated by the Xilinx’s
XPower Analyzer using the maximum operational frequencies
obtained after PAR, setting the FPGA supply parameters as
VCCINT = 1.2, and VCCAUX = 2.5 Volts. Note that the operational
frequency of the 4 � 4 array decreases 1% compared against the
2 � 2 array implementation despite the amount of PEs has been
quadrupled. Although theoretically with an 11-bit control word
the processor arrays are able to solve problem sizes no larger than
342 � 342, there is a memory limitation according to the target
device characteristics. In the case of the selected XC6SLX45 FPGA
device, the number of BRAMs does not allow to solve problem size
bigger than 250 � 250 for the MatMul processor array case, and
180 � 180 for the Cholesky and LU arrays. In the MatMul case, all

0 20 40 60 80 100 120 140 160 180
.001

0.1

1

10

Problem Size N

T
hr

ou
gh

pu
t [

M
B

/s
] /

 W

MicroBlaze Cholesky 97 MHz
02x02 PEs Cholesky 52 MHz

Fig. 13. Cholesky throughput per power unit for a processor array and the
MicroBlaze implementation.

586 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
the BRAMs are used for storing intermediate data in FIFO mem-
ories. On the other hand, since the IP cores used in the Cholesky
and LU arrays require BRAMs for implementing the division func-
tionality not all BRAMs could be used for storing data. Moreover,
the four processor array implementations consume least power
compared to the MicroBlaze processor, since their power opera-
tional frequencies are almost 2� slower than in the soft-processor.
However, such operational frequency disadvantage is overcome
with the fact that the processor arrays have at least 4� more pro-
cessing elements than the MicroBlaze implementation, and that
the processor arrays do not stall their computations in order to
access to the external memory; thus a speed-up compared to the
soft-processor is achieved.

Table 3 shows the energy consumed by each LUT according to
the PAR results shown in Table 2, the average speed-up and the
average improvement compared against the MicroBlaze. The
improvement is calculated by multiplying the speed-up, the usage
of LUTs and the power consumed of each array compared against
the MicroBlaze soft-processor. In order to calculate the speed-up
some considerations were made. Recall that the memory system
tries to provide as many communication channels as the processor
array requires. In the case of the MatMul and LU processor arrays
three and six 32-bit communication channels are required for the
2 � 2 and 4 � 4 PEs respectively. In contrast, two 32-bit communi-
cation channels are required for the 2 � 2 Cholesky processor
array. Since the MicroBlaze experimental platform has only one
16-bit communication channel, the speed-up results assume the
use of the same one-half communication channel. In this sense,
although the operational frequency of the processor arrays is
almost 2� slower than the MicroBlaze frequency, an acceleration
for the four arrays is achieved. Mainly this is a consequence of that
the MicroBlaze processor dedicates more time for performing
external memory accesses than the processor arrays. Recall that
the processor arrays include a memory system which is in charge
of the external memory accesses while the processor array is work-
ing, thus the memory system does not stall the processor array
computations.

Besides, note that the processor array implementations con-
sume fewer power per LUT compared against the MicroBlaze pro-
cessor; therefore the processor arrays perform their operations in a
more power-efficient way than the soft-processor. With the power
per LUT metric (mW/LUT), a more realistic measurement of the
power required for performing computation and comparison
against a sequential processor implemented in the same technology
0 20 40 60 80 100 120 140 160 180
.001

0.1

1

10

100

Problem Size N

T
hr

ou
gh

pu
t [

M
B

/s
] /

 W

MicroBlaze MatMul 97 MHz
02x02 PEs MatMul 45 MHz
04x04 PEs MatMul 44 MHz

Fig. 12. MatMul throughput per power unit for two processor arrays and the
MicroBlaze implementation.
can be achieved. In addition, if the speed-up, and usage of LUTs and
the total power consumed by each implementation is considered a
minimum improvement of 6.5� could be achieved.

Figs. 9–11 show the time required for solving different problem
sizes for the MatMul, Cholesky and LU algorithms implemented in
processor arrays compared against a MicroBlaze implementation.
In these graphics, the y-axis represents the execution time in
logarithmic scale, while the x-axis represents the problem size N
from 1 � 1 to 180 � 180. Note that the execution time achieved
by each implementation is less than the time required for their cor-
responding sequential implementation (MicroBlaze), despite that
the MatMul, Cholesky and LU processor arrays have slower clock
frequencies. For instance, in the case of the MatMul processor array
the execution time achieved for the processor arrays is minor than
the time required for their corresponding sequential implementa-
tions. Note that the execution time achieved by each implementa-
tion is less than the time required for their corresponding
sequential implementation, despite that the processor arrays have
slower clock frequencies. Specially, in the case of implementation
4 � 4 MatMul processor array an order of magnitude difference
with respect of its sequential implementation is achieved when
0 20 40 60 80 100 120 140 160 180
.001

0.1

1

10

Problem Size N

T
hr

ou
gh

pu
t [

M
B

/s
] /

 W

MicroBlaze LU 97 MHz
02x02 PEs LU 51 MHz

Fig. 14. LU throughput per power unit for a processor array and the MicroBlaze
implementation.

R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588 587
N = 80. In the cases of Cholesky and LU implementations, when
N = 180 a speed-up of 5x is achieved.

With the purpose of providing an idea of the execution times
compared to a personal computer, a quick comparison against
the sequential implementations coded in C, and targeted for a
computer with an Intel Xeon at 2.4 GHz, 12 GB in RAM (DDR3)
was performed. In summary, the execution time comparison
shows an acceleration of 1.1� and 4.2� for the 2 � 2 and 4 � 4
MatMul processor arrays, respectively; whereas for the 2 � 2
Cholesky and LU arrays no execution time improvement is
achieved.

Finally, Figs. 12–14 show the throughput per power unit
achieved by the processor arrays implementations and their
corresponding MicroBlaze implementation. The y-axis represents
the [MB/s]/W in logarithmic scale, while the x-axis represents
the problem size N from 1 � 1 to 180 � 180. In these figures, note
that the throughput achieved by the four arrays is similar since the
amount of bytes delivered per second is limited by the 16-bit
communication channel available in the Atlys Board. Despite this
limitation, when N = 180 the 4 � 4 MatMul processor array imple-
mentation has an improvement of 2.2� on the throughput per
power unit compared against the other two processor array imple-
mentations. However, it should be noted that the 4 � 4 MatMul
implementation has four times more PEs than the 2 � 2 MatMul,
Cholesky and LU arrays (due to the 4 � 4 array has more commu-
nication channels). Nevertheless, the throughputs achieved by the
MatMul, Cholesky and LU processor arrays are larger than the
throughput of their corresponding sequential implementation. In
fact, in the Cholesky and LU cases, the throughput achieved when
N = 180 is one order of magnitude greater than the MicroBlaze
implementations.
6. Conclusions

In this paper a HLS approach for generating embedded proces-
sor arrays based on the polytope model has been presented. Due
to mathematical expressions obtained after space–time transfor-
mation are mapped to combinational logic, the proposed approach
is able to support different schedulers, allocators and iteration
intervals. Moreover, the derived processor arrays are able to solve
a set of problem size without the need of generating several arrays
for each problem size.

The proposed approach has been validated by generating three
different processor arrays for three different cases of study. Unlike
previous works, the processor arrays derived by the proposed solu-
tion provide support for solving a set of several problem size
depending on the memory available in the FPGA, and on the con-
trol word width. These processor arrays could be used as generic
co-processors for embedded environments due to they are inde-
pendent of the problem size to be solved. Also, the proposed
approach provides a solution for efficient data memory accesses
and data transferring for feeding the processor array.
Implementation results show that the generated processor arrays
achieve an acceleration with respect of a MicroBlaze processor
despite their low operational frequency. These low frequencies
allow the processor arrays consume fewer power compared again-
st the MicroBlaze processor. Therefore, the processor arrays use
efficiently the FPGA computational resources (LUTs), providing an
acceleration with a few power consumption compared against
the MicroBlaze implementation.
Acknowledgments

First author thanks the National Council for Science and
Technology from Mexico (CONACyT) for financial support through
the scholarship 3792, and to Dr. Manuel E. Guzman and Dr. Jose
Juan Garcia for their discussions and comments about this
research.

References

[1] Mojtaba Mehrara, Thomas Jablin, Dan Upton, David August, Kim Hazelwood,
Scott Mahlke, Multicore compilation strategies and challenges, IEEE Signal
Process. Mag. 26 (6) (2009) 55–63.

[2] Dinesh C. Suresh, Satya R. Mohanty, Walid A. Najjar, Laxmi N. Bhuyan, Frank
Vahid, Loop level analysis of security and network applications, in:
Proceedings of the 6th Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW), Anaheim, CA, USA, February, 2003,
pp. 44–50.

[3] John G. Proakis, Dimitris K. Manolakis, Digital Signal Processing: Principles,
Alogrithms and Applications, fourth ed., Prentice-Hall, 2006.

[4] Peng Liu, Pengeheng Zhu Yan Du, Wei Zhang, A new efficient MIMO detection
algorithm based on Cholesky decomposition, in: Proceedings of the 6th
International Conference on Advanced Communication Technology (ICACT),
Phoenix Park, Korea, February, 2004, pp. 264–268.

[5] Yunhui He, Real-time nonlinear facial feature extraction using Cholesky
decomposition and QR decomposition for face recognition, in: Proceedings of
the International Conference on Electronic Computer Technology (ICECT),
Macau, China, February, 2009, pp. 306–310.

[6] Zille Huma Kamal, Ajay Gupta, Leszek Lilien, Ashfaq Khokhar, An efficient MAP
classifier for sensornets, in: Proceedings of the 13th IEEE International
Conference on High Performance Computing (HiPC), Lecture Notes in
Computer Science (LNCS), vol. 4297, Bangalore, India, December 2008, pp
287–293.

[7] Depeng Yang, Gregory D. Peterson, Husheng Li, Junqing Sun, An FPGA
implementation for solving least square problem, in: Proceedings of 17th
IEEE Symposium on Field Programmable Custom Computing Machines, Napa,
CA, USA, April 2009, pp. 303–306.

[8] Hsiao-Chun Wu, Shih Yu Chang, Tho Le-Ngoc, Efficient rank-adaptive least-
square estimation and multiple-parameter linear regression using novel
dyadically recursive hermitian matrix inversion, in: Proceedings of the
International Wireless Communications and Mobile Computing (IWCMC),
Crete Island, Greece, August, 2008 pp. 1064–1069.

[9] Mihai Budiu, Girish Venkataramani, Tiberiu Chelcea, Seth Copen Goldstein,
Spatial computation, in: Proceedings of the 11th International Conference on
Architectural Support for Programming Languages and Operating Systems
(ASPLOS), Boston, MA, USA, October 2004, pp. 14–26.

[10] Rajesh Gupta, Forrest Brewer, High-Level Synthesis: A Retrospective, High-
Level Synthesis: From Algorithm to Digital Circuit, Springer Publishing
Company, 2008, pp. 13–28 (Chapter 2).

[11] Alex Orailoglu, Daniel D. Gajski, Flow graph representation, in: Proceedings of
the 23rd ACM/IEEE Design Automation Conference (DAC), Las Vegas, NV, USA,
June 1986, pp. 503–509.

[12] Sumit Gupta, Rajesh K. Gupta, Nikil D. Dutt, Alexandru Nicolau, SPARK: A
Parallelizing Approach to the High-Level Synthesis of Digital Circuits, Kluwer
Academic Publishers, 2004.

[13] Shail Aditya, Vinod Kathail, Algorithmic Synthesis Using PICO: An Integrated
Framework for Application Engine Synthesis and Verification from High Level
C Algorithms, High-Level Synthesis: From Algorithm to Digital Circuit,
Springer Publishing Company, 2008, pp. 53–74 (Chapter 4).

[14] Christian Lengauer, Loop parallelization in the polytope model, in: Proceedings
of the 4th International Conference on Concurrency Theory (CONCUR), Lecture
Notes in Computer Science (LNCS), vol. 715, Hildesheim, Germany, August
2008, pp. 398–416.

[15] Harald Devos, Kristof Beyls, Mark Christiaens, Jan V. Campenhout, Erik H.
D’Hollander, Dirk Stroobandt, Finding and applying loop transformations for
generating optimized FPGA implementations, in: Transactions on High-
Performance Embedded Architectures and Compilers I, Lecture Notes in
Computer Science (LNCS), vol. 1, 2007, pp. 159–178.

[16] Frank Hannig, Holger Ruckdeschel, Hritam Dutta, Jürgen Teich, PARO:
synthesis of hardware accelerators for multi-dimensional dataflow-intensive
applications, in: Proceedings of the 4th International Workshop on Applied
Reconfigurable Computing (ARC), Lecture Notes in Computer Science (LNCS),
vol. 4943, London, UK, March 2008, pp. 287–293.

[17] Steven Derrien, Sanjay Rajopadhye, Patrice Quinton, Tanguy Risset, High-level
synthesis of loops using the polyhedral model, in: The MMAlpha Software,
High-Level Synthesis: From Algorithm to Digital Circuit, Springer Publishing
Company, 2008, pp. 215–230 (Chapter 12).

[18] Alexandru Plesco, Program Transformations and Memory Architecture
Optimizations for High-Level Synthesis of Hardware Accelerators, PhD
Thesis, École Normale Supérieure de Lyon, September 2010.

[19] Steven Derrien, Platforms, Methodologies and Tools for Designing
Reconfigurable Hardware Architectures, PhD Thesis, L’Université de Rennes
1, December 2011.

[20] Frank Hannig, Scheduling Techniques for High-Throughput Loop Accelerators,
PhD Thesis, University of Erlangen-Nuremberg, Germany, August 2009.

[21] Hritam Dutta, J. Zhai, Frank Hannig, Jürgen Teich, Impact of loop tiling on the
controller logic of acceleration engines, in: Proceedings of the 20th IEEE
International Conference on Application-Specific Systems, Architectures and
Processors, Boston, MA, USA, July 2009, pp. 161–168.

http://refhub.elsevier.com/S0141-9331(14)00176-8/h0005
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0005
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0005
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0015
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0015
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0015
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0060
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0060
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0060
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0060

588 R. Pérez-Andrade et al. / Microprocessors and Microsystems 39 (2015) 576–588
[22] Hritam Dutta, Mapping of Hierarchically Partitioned Regular Algorithms onto
Processor Arrays, Master Thesis, University of Erlangen-Nuremberg, October
2004.

[23] Holger Ruckdeschel, Hritam Dutta, Frank Hannig, Jürgen Teich, Automatic FIR
filter generation for FPGAs, in: Proceedings of the 5th International Conference
on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), Samos, Greece, July 2005, pp. 51–61.

[24] Hritam Dutta, Synthesis and Exploration of Loop Accelerators for Systems-on-
a-Chip, PhD Thesis, University of Erlangen-Nuremberg, Germany, 2011.

[25] Uday Bondhugula, J. Ramanujam, Ponnuswamy Sadayappan, Automatic
mapping of nested loops to FPGAs, in: Proceedings of the 12th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP), San Jose, CA, USA, March 2007, pp. 101–111.

[26] Robert Schreiber, Shail Aditya, Scott Mahlke, Vinod Kathail, B. Ramakrishna
Rau, Darren Cronquist, Mukund Sivaraman, Pico-NPA: high-level synthesis of
nonprogrammable hardware accelerators, J. VLSI Sig. Proc. 31 (2) (2002) 127–
142.

[27] Pico technology. <http://www.synopsys.com/Systems/BlockDesign/HLS/
Pages/SynphonyCCompiler.aspx> (Last seen in May, 2014).

[28] Christophe Alias, Bogdan Pasca, Alexandru Plesco, FPGA-specific synthesis of
loop-nests with pipelined computational cores, Microprocess. Microsyst. 36
(8) (2012) 606–619.

[29] Florent de Dinechin, Bogdan Pasca, Designing custom arithmetic data paths
with FloPoCo, IEEE Des. Test Comput. 28 (4) (2011) 18–27.

[30] Alain Darte, Leonid Khachiyan, Yves Robert, Linear scheduling is nearly
optimal, Parallel Process. Lett. 1 (2) (1991) 73–81.

[31] Roberto Perez-Andrade, Cesar Torres-Huitzil, Rene Cumplido, Juan M. Campos,
On a hybrid and general control scheme for algorithms represented as a
polytope, in: Proceedings of the 25th IEEE International Symposium on Parallel
and Distributed Processing (IPDPSW), Anchorage, AK, USA, March 2011, pp.
330–333.

[32] Roberto Perez-Andrade, Cesar Torres-Huitzil, Rene Cumplido, Juan M. Campos,
On an external memory scheme for processor arrays, IEICE Electron. Express
10 (14) (2013) 20130324.

Roberto Perez holds the BSc degree in Computer
Engineering and the MSc in Computer Science. In 2014
he received the PhD degree in Computer Science from
Center of Research and Advanced Studies of the
National Polytechnic Institute (CINVESTAV), of Mexico.
His areas of interest includes the design of hardware
architectures and embedded systems using configurable
computing platforms for their validation as well as
high-level synthesis techniques involved during the
hardware architecture design process.
Cesar Torres is a full time researcher in computer sci-
ence at the Information Technology Laboratory at the
Center of Research and Advanced Studies of the
National Polytechnic Institute (CINVESTAV), of Mexico.
He holds the BSc degree in Electronics and received the
MSc degree in Electronics. In 2003 he received the PhD
degree in Computer Science from the National Institute
for Astrophysics, Optics, and Electronics of Mexico. His
research interests include computational vision, recon-
figurable computing, FPGAs and their computational
applications, bio-inspired systems, and embedded
computer systems.
Rene Cumplido holds a PhD in electrical engineering
from Loughborough University, UK (2001). Since 2002,
he is member of the Reconfigurable and High
Performance Computing Group at INAOE, Mexico. His
research interests are Reconfigurable Computing, FPGA
Technologies, and Custom Architectures. He has pub-
lished more than 90 scientific papers in international
conferences and journals. He is co-founder and general
chair of the International Conference on Reconfigurable
Computing and FPGAs, ReConFig. He is the founder
editor-in-chief of the International Journal of
Reconfigurable Computing, and associate editor of sev-

eral international journals on the fields of computer and electrical engineering.

http://refhub.elsevier.com/S0141-9331(14)00176-8/h0130
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0130
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0130
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0130
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyCCompiler.aspx
http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyCCompiler.aspx
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0140
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0140
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0140
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0145
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0145
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0150
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0150
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0160
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0160
http://refhub.elsevier.com/S0141-9331(14)00176-8/h0160

	Processor arrays generation for matrix algorithms used in embedded platforms implemented on FPGAs
	1 Introduction
	2 Related work
	3 Processor array generation on the polytope model
	4 Architectural design
	4.1 Data-path
	4.2 Controller
	4.3 Memory interface
	4.4 Integrated system

	5 Results
	5.1 Experimental setup
	5.2 Implementation results

	6 Conclusions
	Acknowledgments
	References

