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ABSTRACT
Cellular or fine grained Genetic Algorithms (GAs) are a mas-
sively parallel algorithmic approach to GAs. Decentralizing
their population allows alternative ways to explore and to
exploit the solutions landscape. Individuals interact locally
through nearby neighbours while the entire population is
globally exploring the search space throughout a predefined
population’s topology. Having a decentralized population
requires the definition of other algorithmic configuration pa-
rameters; such as shape and number of individuals within
the local neighbourhood, population’s topology shape and
dimension, local instead of global selection criteria, among
others. In this article, attention is paid to the population’s
topology dimension in cGAs. Several benchmark problems
are assessed for 1, 2, and 3 dimensions while combining a
local selection criterion that significantly affect overall se-
lective pressure. On the other hand, currently available
high performance processing platforms such as Field Pro-
grammable Gate Arrays (FPGAs) and Graphics Process-
ing Units (GPUs) offer massively parallel fabrics. There-
fore, having a strong empirical base to understand structural
properties in cellular GAs would allow to combine physical
properties of these platforms when designing hardware ar-
chitectures to tackle difficult optimization problems where
timing constraints are mandatory.

General Terms
Cellular Genetic Algorithms, Topology’s Dimension, Selec-
tive Pressure.

1. INTRODUCTION
A general taxonomy for parallel Genetic Algorithms (PGAs)

classifies them in coarse or distributed and fined or cellular
GAs [5]. Dealing with coarse or fine grained populations or
sub-populations also helps defining suitable processing plat-
forms. Among the most used massively parallel processing
platforms are Field Reconfigurable Gate Arrays (FPGAs)
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and Graphics Processing Units (GPUs). Both provide pro-
cessing resources that can be interconnected in such a way
that massively parallel algorithmic techniques could repli-
cate their internal processing structure. In this regard, fine
grained or cellular GAs (cGAs) are particularly appropri-
ate to adapt to these fabrics while taking advantage of their
implicit massive parallelism when the population is decen-
tralized. Moreover, additional structural characteristics in
cellular GAs affect the searching process and in particular
these parameters can directly modify the induced selective
pressure [2, 7]. This article presents an empirical analysis
of a specific structural characteristic in cellular GAs, the
topology’s dimension. It includes an extended experimental
benchmarking and an initial overview of the implication of
changing dimension on the fly during the search.

This study is carried out at an algorithmic level with the
purpose of leaving a strong empirical base to exploit struc-
tural characteristics in cGAs when designing hardware ar-
chitectures using FPGAs or parallel programming models
when using GPUs as processing platforms. Several authors
have proposed different approaches to design hardware ar-
chitectures to implement GAs in order to accelerate their
searching process. Most of these proposals are based on
centralized or panmictic GAs.

In [9] a GA based hardware architecture is proposed with
variable configuration parameters for population size and se-
lection criteria, it also offers interchangeable objective func-
tion module. Connecting several FPGA devices is optional
in case computing resources are not enough. This architec-
tural design does not exploit implicit parallelism in GAs.
Zhu et. al. proposed an architecture that only evolves
one individual at a time reducing memory storage; although
resources usage is significantly reduced, also GAs search-
ing capabilities are affected [20]. In [6], a centralized GA
based IP core (Intellectual Property core) module is pro-
posed. Having an independent module implementing a GA
allows its integration within embedded systems that requires
an optimization module for specific problem domains. Hav-
ing problem independent GA based optimization engines is
investigated in [15], where authors proposed to use Neural
Networks (NN) as fitness function evaluators, every time
a different problem is tackled the design needs to be re-
synthesized. On the other hand, several studies have been
made targeting cellular GAs in order to take advantage of
their implicit parallelism at an algorithmic level from an
architectural perspective. Dos Santos et. al. proposed a
toroidal array of Processor Elements (PEs) which deal with
small sub-populations each; however, toroidal connection is

895



lost among individuals and therefore the canonical algorith-
mic structure of a cellular GA is significantly modified [8,
19].
Cellular GAs are massively parallel GAs which ideally can

evolve one generation in few clock cycles. Normally, they im-
ply simpler PEs which deal with one individual each. Having
decentralized populations requires defining a structure to al-
locate individuals and from a structural perspective to limit
the interaction of individuals. Therefore, structural char-
acteristics like topology’s shape and size, neighbourhood’s
shape and size and topology’s dimension are defined. These
structural properties not only affect the processing structure
of the search but also the search itself. Several authors have
studied structural properties in cGAs [2]. In [3], a study
on the relationship between topology and neighbourhood in
cGAs is carried out. Authors show the influence of these
structural parameters in the searching process, specifically
in the applied selective pressure. Alba et. al. also proposed
to dynamically change the population’s shape in order to af-
fect the selective pressure, algorithmic performance metrics
were improved [1].
Comparing the effect of local selection versus topology

modification as well as studying the internal dynamic change
of the topology configuration has been approached [13, 12].
Both studies show how effective is to modify structural con-
figuration in cGAs in order to improve their performance. A
double structural level criterion to affect the search locally
and globally is presented [14]. Although adaptive criteria
to modify structural parameters are proposed, their compu-
tational cost is high and applying constant changes result
in very similar performances. Previously, an initial study
on dimension was presented in [11]; however, few test prob-
lems were evaluated and therefore the empirical assessment
was limited. In this article, authors continue studying cGAs
structural properties, specifically dimension, in order to im-
prove their algorithmic performance and to have a robust
experimental base over a widen benchmark.
This article is organized as follows, in Section 2 cGAs

structural properties are described as well as their effect in
the searching process. Section 3 presents this study’s ex-
perimental framework as well as algorithmic performance
metrics and applied statistical tests. In Section 4, results
obtained over several difficult optimization problems are pre-
sented and analysed. Finally, Section 5 draws conclusions
and future research directions.

2. ALGORITHMIC STRUCTURE
Cellular GAs are massively parallel GAs with decentral-

ized populations that are normally placed on a toroidal grid-
like structure where each crossing point holds an individual
or solution. Having a structure requires defining other pa-
rameters, such as the shape and size of the population’s
topology and the local neighbourhood, as well as their di-
mension. This study focuses on the effect topology’s di-
mension has over the searching process. In Figure 1, cGAs
topologies for 1, 2, and 3 dimensions are shown. Local neigh-
bourhoods are also visible in every configuration, these are
composed by individuals located to East and West in 1-D ar-
rays; to North, East, South and West of every individual in
a 2-D array and in a 3-D grid, individuals at front and back
of the central one are also within the local neighbourhood.
In Algorithm 1, steps for a canonical cGAs on a 2-D topol-

ogy are described. A population is randomly initialized con-

Figure 1: Different dimensions arrays in cGAs

sidering one individual per crossing point. According to the
targeted problem the fitness function is evaluated for ev-
ery individual. Evolution starts for all individuals with a
selection process. Common selection methods are tourna-
ment and roulette-wheel which are also normally applied in
cGAs. However, other selection techniques have been pro-
posed specifically for cGAs; in this study a method called
anisotropic selection is applied [16, 17]. Current individu-
als are assumed as one of the parents, and a second one is
selected from the neighbourhood. Once both parents are se-
lected, genetic operators are applied, recombination followed
by mutation. These operators are defined according to indi-
viduals representation. In this study single point crossover
is applied with probability equals to 1.0 and mutation is ap-
plied with probability 1

n
where n is the chromosomes length

which varies according to each benchmark problem.
Because cGAs carry out exploitation locally and explo-

ration globally throughout population’s topology; replace-
ment or updating criterion normally exchange central indi-
viduals only if one of the evolved children is better or more
fitted than its parent. Neighbourhoods are overlapped, thus
updating criterion can be synchronous or asynchronous; in
this study synchronous updating is always applied. One gen-
eration corresponds to an execution of this operations set. A
number of generations is executed until the stop condition is
fulfilled either after a certain number of generations or eval-
uations (number of fitness function evaluations) or when an
error threshold is reached.

2.1 Local selection
Anisotropic selection consist in applying different selec-

tion probabilities to individuals within the local neighbour-
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Algorithm 1 Canonical cGA

1: procedure cGA
2: random(x) ◃ Initialize population
3: f = calulateF it(x) ◃ Calculate individuals fitness
4: for i← 1, generations do
5: for j ← 1, population do
6: x0, f0 ◃ Current individual
7: (xn, xe, xs, xw)← getNeigh(x0)
8: (fn, fe, fs, fw)← getF it(xn, xe, xs, xw)
9: (x′)← localSel(xn, xe, xs, xw)
10: (x1, x2)← recombine(x0, x

′)
11: (x′

1, x
′
2)← mutate(x1, x2)

12: (f ′
1, f

′
2)← calculateF it(x′

1, x
′
2)

13: (f ′
0)← selBest(f0, f

′
1, f

′
2)

14: (xtemp(i, j), ftemp(i, j))←
15: replace(x′

0, f
′
0, [ifBetter])

16: end for
17: x = xtemp, f = ftemp ◃ Synchronous updating
18: if f̄ <= threshold then
19: stop
20: else
21: next
22: end if
23: end for
24: end procedure

hood according to their position. Figure 2 shows population
topologies for 1, 2, and 3 dimensions. For example, in a 2-D
topology, higher probabilities could be assigned to individ-
uals located to the North and the South and lower ones to
the East and the West of the central individual. Similarly,
in a 3-D grid, neighbours located at North, South and front
of the central individual could have higher or lower proba-
bility for selection, opposite to individuals located at East,
West and back of the current individual. In a 1-D array,
neighbours are located to left and right of the central indi-
vidual, thus probabilities can be higher or lower depending
on their direction. In all cases larger Manhattan distances
from central individuals can be implemented affecting se-
lective pressure accordingly. In anisotropic selection, an α
parameter is required in order to assign selection probabili-
ties for individuals within the neighbourhood. For example,
in a 2-D array, selection probability for individuals located
at North and South of central one is PNS = (1 + α)× Puni,
where Puni is the uniform probability for all neighbours; and
PEW = (1+α)×Puni is the selection probability for individ-
uals located at East and West positions of central individual.
Similar equations are applied to 1 and 3 dimensions while
modifying uniform probability accordingly.
A concept known as take over times allows to draw applied

selective pressure on specific topologies when applying a lo-
cal selection method. Take over time refers to the number
of generations the fittest individual of an initial population
needs to conquer all positions within the grid. Figure 3
shows take over times for 1, 2, and 3 dimensions consider-
ing local neighbourhoods configurations in Figure 2. Curves
in Figure 3 are calculated over a 100 experimental samples
per case with very similar population size distributed on
different dimensional grids. Weaker selective pressure is ap-
plied through a 1-D array while strongest selective pressure
is applied on a 3-D grid. A 2-D array’s selective pressure is
in the middle of both cases. For α = 0.1 (strong selective

Figure 2: Local anisotropic selection

pressure), it takes approximately 210, 25 and 15 genera-
tions in a 1, 2, and 3 dimension array respectively for the
best individual of an initial population to conquer the grid.
In contrast, for α = 0.9 (weaker selective pressure), it takes
approximately 325, 60 and 25 generations in a 1, 2, and 3 di-
mension array to conquer the grid. These ranges in terms of
number of generations show how exploitative or explorative
a cGA would be from a structural perspective. This study
focuses on dimension both of topologies and of neighbour-
hoods. Anisotropic selection implies structural properties
when defining internal selection probabilities by individuals’
location within neighbourhoods. Assessing a combination of
both structures would provide a better understanding of the
internal working in a cGA.

2.2 Constant dimensional change
In this study, an empirical comparison among dimensions

and their effect in the algorithmic performance of cGAs is
carried out. Moreover, an additional empirical set-up is also
included. It consists in applying a constant change among 1,
2, and 3 dimensions. A constant population size is used and
solutions are re-allocated when dimension is changed. All
experimental samples start evolving on a 1-D array and after
a certain number of generations, individuals are re-arranged
following a 2-D square array; after another number of gener-
ations, solutions are mapped to a 3-D cubical array closing a
cycle of constant dimension change. Different sizes of gener-
ations blocks are assessed. A short block of 15 generations,
a medium block of 30 generations and a large block of 60
generations for most problems are specified. For the Mini-
mum Tardy Task Problem (MTTP) blocks of 5, 10, and 15
generations are defined and for the System of Linear Equa-
tions (SLE) problem blocks of 20, 40 and 80 generations are
set.

The mechanism to re-allocate individuals within a differ-
ent grid dimension is straight forward. It consists in taking
a number of individuals of a 1-D array and filling every row
of a 2-D square grid until all individuals are allocated. Once
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Figure 3: Take over times for 1, 2, and 3 dimensions

in a 2-D square topology, tiles of individuals are moved to a
3-D cubical topology until the whole population is migrated.
Considerations about population size are needed, normally
few individuals positions remain available when dimension is
modified and therefore some extra-criterion to generate new
or to replicate current individuals is required. In the experi-
mental set-up, population size fits 1, 2, and 3 dimensions in
order to avoid new or to replicate previous solutions. The
experimental framework is detailed in the the next section.

3. EXPERIMENTAL FRAMEWORK
In order to assess the effect dimension has in cGAs algo-

rithmic performance several test problems have been tack-
led. Experimental constraints are provided in this section
as well as results validation using statistical tests.

3.1 Benchmark problems
Several optimization problems considered difficult for GAs

have been tackled. In total, nine problems from combina-
torial and continuous domains are evaluated. Continuous
domain problems (Rastrigin, Langerman, Griewank and a
System of Linear Equations) have been discretized. Authors
acknowledge GAs’ drawbacks when dealing with continuous
problems in their discrete domain. However one of the aims
in this study is to assess GAs’ ability to solve difficult opti-
mization problems when binary representation of solutions
is used; this kind of representation would be mostly used
when designing hardware architectures in order to avoid us-
ing specialized processing units within the device. On the
other hand, a group of five combinatorial problems are also
tackled: Error Code Correction design problem (ECC) prob-
lem, Frequency Modulation Sound (FMS) problem, Mas-
sively Multi-modal Deceptive Problem (MMDP), Minimum
Tardy Task Problem (MTTP) and P-Peaks problem. Objec-
tive functions of these problems are presented in Table 1 as
well as significant configuration details are included for each
problem, if more details are needed, readers are referred to
provided references.

3.2 Experimental constraints
The following experimental contrainst are common to all

cGAs configurations for their empirical assessment.

• Solutions representation: binary

• Population size: 729 individuals

• Topology shape: square

• Topology dimension: 1-D, 2-D, 3-D

• Selection: anisotropic, α = 0.1||0.9

• Recombination: single point, Pc = 1.0

• Mutation: bit flip, Pm = 1
n

where n is chromosome’s
length

• Local replacement (within neigbhourhoods): only if
better

• Global replacement (whole grid): synchronous

• Convergence condition: error threshold or maximum
of 1500 generations (2000 generations for SLE)

Individuals are represented as binary strings in both con-
tinuous and combinatorial problems. A population size of
729 individuals is implemented. This number of individuals
allow for having a 1-D array of 729 solutions, a 2-D square ar-
ray of 27×27 and a 3-D square array of 9×9×9. Anisotropic
selection (see Subsection 2.1) is configured for border val-
ues where α = 0.1 implies strong exploitation and α = 0.9
means promoting exploration of solutions. Genetic opera-
tions, recombination and mutation, are single point and bit
flip with specific probabilities to affect solutions. Recom-
bination is always carried out with probability (Pc = 1.0).
Because of cGAs massive parallelism, solutions replacement
require local and global criteria. Locally, current individu-
als are replaced only if any of their offspring is a better so-
lution. Globally synchronous replacement is implemented,
this means that individuals in one generation evolve into the
next generation.

Algorithmic performance is measured in terms of efficiency
and efficacy. Efficiency consists of the number of generations
cGAs require to converge to a problem’s solution together
with the solutions quality which in this case is given by spe-
cific problems’ error threshold. On the other hand, efficacy is
given by the number of success experimental samples out of
the total number of experiments carried out. A total of 100
experimental samples per case per problem are performed.

3.3 Statistical analysis
Results are statistically supported by an initial normality

test performed on each set of experimental results regarding
the convergence time. First, normality is determined by the
Kolmorov-Smirnov test or the lilliefors test, both at 5% of
significance. Lilliefors test is suitable when a fully-specified
null distribution is unknown, contrary to the Kolmorov-
Smirnov test. Once the normality of results has been es-
tablished, an Analysis of Variance (ANOVA) is applied to
results with normal distribution whereas Kruskal-Wallis is
applied in any other case. In the next section, experimental
results and their analysis are drawn.

A total of 100 experimental samples per algorithmic case
per problem are carried out. In order to assess algorithmic
efficacy for statistical significance, every experiment is con-
sidered as a Bernoulli trial which output is to converge or
not to a problem’s solution according to a stopping condition
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Table 1: Benchmark problems

Problem Fitness function Properties

Rastrigin fn. [4] f (x⃗) = 10q +
∑q

i=1

(
x2 − cos (2πxi)

) q = 15, fT ≤ 0.0005, multi-modal,

non epistatic, regular

Griewank fn. [4] f (x⃗) = 1 +
∑q

i=1

x2
i

4000
−

∏
cos

(
xi√
i

) q = 15, fT ≤ 0.0001

Multi-modal, epistatic, regular

Langerman fn. [4] f (x⃗) = −
∑q

i=1 cie
− 1

π

∑D
j=1(xj−a2

ij)cos
(
π
∑D

j=1 (xj − aij)
2
) q = 15, fT ≥ −1.4990

Multi-modal, epistatic, non-regular

FMS [2] f (t) = a1 · sin(w1 · t · θ + a2 · sin (w2 · t · θ + a3 · sin (w3 · t · θ)))
q = 6, fT ≤ 0.0005

Multi-modal, epistatic, non-regular

SLE[2] Ax = b
q = 10, fT ≤ 0.04

Epistatic

ECC[2]
f (n,M, d) = 1∑M

i=1

∑M
j=1,i̸=j

1
d2

ij

M = 24, n = 12, fT ≤ 0.0674

Multi-modal, epistatic, non-regular

MMDP[2] fMDDP (q) =
∑k

i=1 fitnessqi
q = 25, k sub-problems, fT ≥ 0.99

Multi-modal, combinatorial

MTTP[10, 2] fMTTP (x⃗) =
∑q

i=1 weightxi

q = 100, fT ≤ 0.0051

NP-combinatorial, epistatic

P-Peaks fP−Peaks(x⃗) =
1
Q
maxP

i=1 (Q−Hamming (x⃗, Pi))
P = 100, f̄T = 1.0, non-manually

Problem [2] tunable, multi-modal, non-regular

[18]. In a series of Bernoulli trials, successful experimen-
tal samples follow a binomial distribution with a maximum
likelihood estimator calculated as the number of successful
experiments divided by the total of experimental samples.

4. EXPERIMENTAL RESULTS
The main objective in this study is to compare cGAs algo-

rithmic performances when populations evolve on 1, 2, and
3 topology dimensions. Difficult optimization problems are
tackled in both continuous and combinatorial domains. Lo-
cally, anisotropic selection is applied (see Subsection 2.1).
Two border values for anisotropic selection are assessed:
α = 0.1 and α = 0.9. Having a small α value implies that
strong selective pressure is induced locally; while a large α
value means selective pressure is weak, therefore exploration
is promoted within neighborhoods.
In Tables 2 and 3, efficiency in terms of convergence time

(number of generations) and efficacy in terms of percent-
ages of successful experimental samples are drawn. In both
tables, implicit selective pressure strength induced by differ-
ent dimensions in all test problems is clearly observed. A
1-D array promotes exploration and therefore takes a large
number of generations to find solutions, in contrast to a
3-D cubical array where strong selective pressure modifies
the search and successful experiments converge faster. At a
local level through anisotropic selection, induced selective
pressure also influences convergence times. However, for
discretized continuous problems (Rastrigin, Griewank and
Langerman functions, and SLE and FMS problems) a weak
selection pressure induced by a 1-D linear array overcomes
the locally induced selective pressure either strong or weak
(α = 0.1 or α = 0.9); results do not show significant dif-
ference between convergence times and percentages of suc-
cessful experiments are low. In contrast, for combinatorial

problems (ECC, MMDP, MTTP and P-Peaks problems),
significant difference is observed when weak or strong local
selective pressure is induced.

In terms of efficacy, Table 2 shows statistically higher per-
centages of successful experiments for Rastrigin, Griewank,
SLE and FMS problems when evolving on a 2-D topology
with strong induced local selective pressure (α = 0.1). In
these cases, using a 3-D cubical array negatively affects cGAs
algorithmic efficacy. On the other hand, combinatorial prob-
lems: ECC, MMDP, MTTP and P-Peaks problems achieve
100% efficacy; in this regard using a 3-D array positively
affects convergence times with a significant reduction in the
number of generations required to converge. A 3-D array
improves both convergence time and efficacy when tackling
the Langerman problem; this problem has a difficult land-
scape not only for its multi-modality and solutions epistasis
but also for its non-regular search space. Similar results are
achieved when anisotropic local selection induces weak se-
lective pressure (α = 0.9), see Table 3. However, efficacy
is significantly improved for Rastrigin and Griewank prob-
lems when cGAs are evolving on a 2-D square topology; for
Langerman, SLE and FMS problems, efficacy percentages
are very similar when using a 3-D cubical grid. Combina-
torial problems present highest efficacy while lower conver-
gence times are achieved when cGAs run on a 3-D topol-
ogy. For these problems applying a strong local (anisotropic
α = 0.1) and global (3-D topology) selective pressure re-
sults in shortest convergence times without affecting cGAs
efficacy.

Modifying the induced selective pressure by changing struc-
tural cGAs properties like topology’s shape and dimension
adds certain flexibility to their searching capacity. Modify-
ing topology’s shape has been studied before by Alba et. al.
in [1] with successful results. This study also presents, in
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Table 2: Convergence time1 and hit rate2 for test problems in 1-D, 2-D and 3-D cGAs, anisotropic α = 0.1

Problem 1-D 2-D 3-D 1-2-3-D 1-2-3-D Statistical 3

Small gens block Large gens block Test

Rastrigin
1387.6± 74.06 262.11± 25.49 175.15± 15.87 224.73± 26.80 286.76± 26.52 (+)

27%, 4.43 63%, 4.82 13%, 3.36 66%, 4.73 25%, 4.33

Griewank
1255.3± 146.67 318.81± 29.64 225.68± 21.90 240.30± 27.56 293.17± 22.89 (+)

41%, 4.91 76%, 4.27 16%, 3.66 67%, 4.70 26%, 4.38

Langerman
−−±−− 550.12± 224.48 336.35± 157.20 245.80± 59.86 431.90± 266.22 (+)

−−%, 39%, 4.87 59%, 4.91 65%, 4.76 67%, 4.70

SLE
−−±−− 631.53± 161.31 378.76± 192.54 391.00± 157.87 516.64± 342.55 (+)

−−%, 32%, 4.66 26%, 4.38 69%, 4.62 75%, 4.33

FMS
1371.0± 77.5 296.93± 69.15 269.13± 133.53 250.10± 86.71 364.71± 165.33 (+)

4%, 1.95 95%, 2.17 65%, 4.76 50%, 5.0 62%, 4.85

ECC
455.3± 88.42 207.78± 29.41 163.27± 29.45 190.44± 37.79 229.28± 44.16 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

MMDP
519.19± 48.45 134.77± 5.46 106.9± 23.57 105.86± 6.29 144.41± 4.73 (+)

100%, 0.0 100%, 0.0 100%, 0.0 99%, 0.99 100%, 0.0

MTTP
723.93± 74.97 268.50± 19.18 189.5± 9.35 196.23± 13.08 239.42± 19.54 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

P-Peaks
171.48± 4.35 116.19± 2.96 95.21± 2.92 96.6± 3.56 105.48± 3.19 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

1 average number of generations and standard deviation are included.
2 standard deviation for the success search rate is included next to the percentage.
3 ANOVA/K-W based statistical difference: (+) is proved between 3-D or 1-2-3-D small block and 1-D, 2-D or 1-2-3-D
large block / (+) statistical difference is proved between 1-2-3-D small block and 1-D, 2-D, 3-D or 1-2-3-D large block /
(•) is not proved.

addition to directly compare cGAs performance on different
topology’s dimensions, an experimental base to constantly
change grid’s dimension. Three size blocks of generations
are assessed, see Subsection 2.2. In Tables 2 and 3, results
for dimension’s change every small and large generations
block sizes are shown; in terms of efficiency, statistical dif-
ference is proved between using a small or a large generations
block when changing among 1, 2, and 3 dimensions in most
cases except for SLE problem when weak selection pressure
is locally applied (α = 0.9). Another significant observation
from the statistical analysis is that there is no significant dif-
ference in efficiency when applying a constant change among
dimensions when using a small generations block and evolv-
ing on a 3-D topology for strong selective pressure (α = 0.1)
in most problems. In contrast, when weak selective pressure
(α = 0.9) is locally induced only three benchmark problems
(Rastrigin, FMS and ECC) show this behavior. In general,
it is observed that significant statistical difference exist be-
tween evolving on a 3-D topology or changing constantly
among dimensions considering a small generations block and
evolving on a 1-D, 2-D and constantly change among dimen-
sions considering a large generations block.
Promoting locally solutions exploitation (α = 0.1) shows

in general no significant improvement in efficacy. It is worth
mentioned, results for SLE problem where the number of
successful experimental samples increases from 26% to 75%;

authors acknowledge GAs limitations when tackling this prob-
lem but recognize their ability of improvement when taking
advantage of cGAs structural properties. Similarly occurs
when exploration is promoted locally (α = 0.9) not only for
SLE but for Langerman problem too, in both cases not only
efficacy is significantly improved but also efficiency.

Overall, best efficiency results are concentrated when a
3-D topology or a constant change of dimensions with a
small generations block are used. However, best efficacy
is not always achieved by these two configuration cases ex-
cept for combinatorial problems (ECC, MMDP, MTTP and
P-Peaks) where 100% efficacy is always achieved. These
results widen cGAs empirical base to show how their algo-
rithmic ability is significantly modified and in several cases
improved when taking advantage of their structural proper-
ties. From an architectural design perspective, demonstrat-
ing that in all combinatorial problems, cGAs achieve bet-
ter convergence times on a 3-D topology and on constantly
changing topology dimensions show at an algorithmic level
a strong basis to implement cGAs on FPGAs or GPUs while
taking advantage of their massively parallel fabrics.

5. CONCLUSIONS
This article presented an empirical study on the effect

dimension has in algorithmic cGAs performance when it is
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Table 3: Convergence time1 and hit rate2 for test problems in 1-D, 2-D and 3-D cGAs, anisotropic α = 0.9

Problem 1-D 2-D 3-D 1-2-3-D 1-2-3-D Statistical 3

Small gens block Large gens block Test

Rastrigin
1391.2± 93.46 471.59± 63.45 249.87± 17.99 220.45± 24.53 288.27± 27.42 (+)

29%, 4.53 83%, 3.75 58%, 4.93 60%, 4.89 23%, 4.20

Griewank
1351.8± 94.93 551.43± 80.23 298.61± 38.13 266.23± 28.45 295.10± 25.47 (+)

8%, 2.71 87%, 3.36 52%, 4.99 66%, 4.73 35%, 4.76

Langerman
−−±−− 924.85± 230.19 507.35± 182.92 278.12± 85.83 396.82± 156.26 (+)

−−%, 35%, 4.76 34%, 4.73 68%, 4.66 54%, 4.98

SLE
−−±−− 1310.4± 316.56 1299.5± 350.50 455.26± 171.91 573.75± 156.91 (+)

−−%, 31%, 4.62 30%, 4.58 62%, 4.85 64%, 4.8

FMS
−−±−− 720.93± 217.27 344.05± 120.74 273.50± 120.56 463.28± 125.54 (+)

−−%, 62%, 4.85 57%, 4.95 50%, 5.0 62%, 4.85

ECC
600.98± 101.73 323.21± 37.90 214.88± 33.16 198.14± 41.04 265.25± 40.03 (+)

99%, 0.99 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

MMDP
757.87± 55.01 225.88± 14.6 126.59± 6.68 117.4± 5.9 165.16± 5.6 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

MTTP
1040.6± 104.49 445.03± 36.75 244.45± 18.92 215.32± 14.64 287.14± 22.39 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

P-Peaks
205.7± 6.23 155.51± 3.75 109.73± 2.66 101.05± 2.73 117.64± 2.96 (+)

100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0 100%, 0.0

1 average number of generations and standard deviation are included.
2 standard deviation for the success search rate is included next to the percentage.
3 ANOVA/K-W based statistical difference: (+) is proved between 3-D or 1-2-3-D small block and 1-D, 2-D or 1-2-3-D
large block / (+) statistical difference is proved between 1-2-3-D small block and 1-D, 2-D, 3-D or 1-2-3-D large block /
(+) statistical difference is proved between 1-2-3-D small and large blocks and 1-D, 2-D, 3-D / (•) is not proved.

modified. Structural properties in cGAs directly affects the
induced selective pressure at a local level via the selection
criterion and at a global level via the topology’s dimension.
Several benchmark problems considered difficult for GAs

were tackled and results showed better results when a 3-D
topology or a constant change among dimensions every cer-
tain number of generations (1-2-3-D small generations block)
is used. Overall, efficiency when inducing a locally strong se-
lective pressure results in no statistical significant difference
between these topologies configuration; behavior that is not
repeated when weak selective pressure is applied locally. In
terms of efficacy for combinatorial problems highest success
search rate is achieved by different topology dimensions and
after a constant dimension’s change. For continuous domain,
efficacy improvement is noticed for two difficult problems
(Langerman and SLE) in which efficacy is improved when
dimension is constantly changed.
Having a strong experimental base regarding cGAs struc-

tural properties and their searching ability makes them a
suitable algorithmic optimization technique for acceleration
from a processing perspective. Specifically, FPGAs have
been targeted as a platform to accelerate GAs but to the
best of the Authors knowledge, there is not research re-
ported yet to approach cellular GAs structural properties
as an alternative for acceleration. Another platform that
offers massive parallelism are GPUs; as a future direction of

this research both platforms will be targeted as processing
platforms.
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