
A programmable FPGA-based cryptoprocessor for
bilinear pairings over F2m

Eduardo Cuevas-Farfán
Computer Science Coordination
Instituto Nacional de Astrofisica,

Optica y Electronica
Puebla, México, 72840

Email: cuevas.farfan@inaoep.mx

Miguel Morales-Sandoval
Information Technology Lab

Research Center for Advanced Studies
of the National Polytechnic Institute,

Cd. Victoria, Mexico
Email: mmorales@tamps.cinvestav.mx

René Cumplido
Computer Science Coordination
Instituto Nacional de Astrofisica,

Optica y Electronica
Puebla, México, 72840

Email: rcumplido@inaoep.mx

Claudia Feregrino-Uribe
Computer Science Coordination
Instituto Nacional de Astrofisica,

Optica y Electronica
Puebla, México, 72840

Email: cferegrino@inaoep.mx

Ignacio Algredo-Badillo
University of Istmo

Tehuantepec, Oax. México. 70760
Email: algredobadillo@sandunga.unistmo.edu.mx

Abstract—Bilinear pairings over elliptic curves are an emerg-
ing research field in cryptography. First cryptographic protocols
based on bilinear pairings were proposed by the year 2000 and
currently they are not standardized yet. The computation of
bilinear pairings relies on arithmetic over finite fields. In the
literature, several works have focused in the design of custom
hardware architectures for efficient implementation of this arith-
metic, but in a non-standardized environment a flexible design
is prefered in order to support changes in the specifications.
This paper presents the design and implementation of a novel
programmable cryptoprocessor for computing bilinear pairings
over binary fields in FPGA, which is able to support different
algorithms and corresponding parameters as the elliptic curve,
the tower field and the distortion map. The results show that
high flexibility is achieved by the proposed cryptoprocessor at
a competitive timing and area usage, when it is compared to
custom designs for pairings defined over singular/supersingular
elliptic curves at a 128-bit security level.

I. INTRODUCTION

Bilinear pairings on elliptic curves first appeared as a
cryptanalysis technique against Elliptic Curve Cryptography
(ECC) [1], [2], for more details about ECC refer to [3], [4].
Since the year 2000, bilinear pairings have served as the basis
for developing constructive protocols like Three-Party Key Ex-
change, Pairing-Based Encryption, and Short Signatures [5]–
[7]. The publication of those protocols represented a milestone
on cryptography, triggering the research in this topic.

Being E(Fq) an elliptic curve defined over the finite field
Fq , a bilinear pairing is a function ê : E(Fq)×E(Fq)→ F∗

qk

that maps two points in the curve to an element in the extended
finite field F∗

qk . Several parameters like the elliptic curve,
the tower field and the distortion map must be defined in
order to satisfy the required conditions for bilinear pairings
to work [8]. The computation of ê requires some arithmetic
operations in Fq and Fqk . Efficient implementation of these

operations remains as an open research topic [9]. For hardware
implementation, efficiency represents a compromise among
four different aspects: processing time, area or resources
needed, power consumption and functional flexibility. Several
works have been published in the literature reporting hardware
implementations for computing bilinear pairings [10]–[16].

In [10] an implementation of the Optimal ate pairing
considering prime fields is presented, the pairing is computed
using a Residue Number System able to reduce the arithmetic
complexity. The work reported at [11] is an architecture able to
compute the Eta pairing over binary fields for a security level
of 128 bits. That architecture is based on a Karatsuba-Ofman
multiplier which uses a serial-parallel approach. Operations
scheduling was optimized mainly during Miller’s algorithm
stage. The authors of [12] proposed a custom architecture
for computing the eta pairing for a security level of 128
bits, this architecture is the fastest reported in the literature
to date. The architecture implements the field multiplication
through the Toeplitz matrix vector products. A thoroughly
optimization in the final exponentiation stage was performed.
In [13] authors presented two architectures for computing the
eta pairing, one for binary field and another for ternary fields.
The central module of both architectures is a fully-parallel
Karatsuba-Ofman multiplier. Both cases use a pipelined ap-
proach for improving the processing time, where the security
level reaches 109 bits. In [14] the author explores the viability
of implementing bilinear pairings over composite-extended
fields, analyzing the impact of using this kind of fields in the
security of the system, the area resources and the hardware
implementation performance. That work developed a compact
hardware architecture for ternary fields, at a security level
of 128 bits. The work in [15] proposes a coprocessor for
computing the final exponentiation stage in ternary fields. That

978-1-4673-6180-4/13/$31.00 ©2013 IEEE

design consists in an operator for multiplication, addition and
cubing, along with a programmable control. Finally, in [16] a
programmable architecture for the Tate, ate, and R-ate pairing
over prime fields is presented. The architecture centers its
programmability in configurable arithmetic units; each of them
is able to perform three operations in parallel and generates
its own schedule depending on the desired functionality.

The works [10], [11], [13] describe very specialized archi-
tectures, where only a couple of parameters are configurable.
Due to bilinear pairings are not yet standardized, a rigid design
could not be suitable for changing specifications in paring-
based protocols. Although [14] shows some more flexibility,
it is not intended to support different parameters. Despite [15]
is more flexible in its functionality, it only covers the final
exponentiation step. [16] is flexible enough to support different
algorithms but it only supports prime fields. Arithmetic over
binary fields is carry-free, therefore, it usually reports smaller
and faster implementations compared to prime fields. For the
best of the authors’ knowledge, a flexible implementation for
pairing computation over binary fields has not been reported.

This paper presents a programmable cryptoprocessor for
computing bilinear pairing on elliptic curves defined over
F2m . Different to other works, this cryptoprocessor is flexible
enough to support different parameters like the elliptic curve,
the tower field and the distortion map. The proposed cryp-
toprocessor is able to compute different versions of Miller’s
Algorithm as well as different versions of the final expo-
nentiation. Indeed, the only fixed parameters are the finite
field order and the irreducible polynomial, but they can be
easily modified by running a re-synthesis process without
architectural changes. Even when a standard is established, im-
plementation parameters which don’t affect the security level,
like the elliptic curve, the tower field and the distortion map are
managed easily by the proposed architecture. In this sense, the
presented cryptoprocessor is able to adapt to different protocol
specifications. Additionally, the proposed cryptoprocessor uses
a very compact instruction format, keeping programs smaller
than other control schemes. Implementation results show that
area and processing time are both competitive compared with
related works.

The paper is organised as follows: In section II a background
on arithmetic over finite fields is presented. In section III it
is explained the concept of bilinear pairings, focusing in the
Tate and eta pairing. In section IV the proposed programmable
cryptoprocessor architecture is presented, explaining the in-
struction format, internal modules and its programmability.
Implementation results are presented in section V. Finally,
section VI concludes this work and outlines future work.

II. FINITE FIELD ARITHMETIC

A finite field, represented by Fq where q = pm, is an
algebraic structure defined as a finite set of elements, two
basic operations for those elements, and a set of properties
to be satisfied. p is called the characteristic of the finite field
and m is called the field extension [17]. For cryptographic
applications p is typically 2, 3 or a prime number [18].

The number of elements on the set is determined by pm.
In polynomial basis, an element in Fq could be represented
as a polynomial of degree at most m − 1, where each
coefficient of the polynomial can take its value only from
the set {0, ..., p− 1}. Fq is defined by a m-grade irreducible
polynomial f(x). This irreducible polynomial is used to satisfy
the closure property by an operation called modular reduction.
Finite field arithmetic refers to the operations that can be
performed with elements in Fq . When p = 2, the finite
field is called binary field. Usually a binary field element is
implemented with a m-length bit vector. This paper assumes
the binary field case unless it is specified.

A. Arithmetic operations

Let F2m be the binary field generated by the irreducible
polynomial f(x). Consider A,B ∈ F2m each represented by a
polynomial and implemented as a bit vector of length m. An
addition operation, A⊕B, is defined as a polynomial addition
simply performed by a bitwise XOR among each coefficient
with no carry propagation. The result is a polynomial with
degree less than m which already belongs to F2m .

A multiplication operation, A⊗B, can be seen as a two steps
operation, see equation 1. First, a polynomial multiplication is
performed resulting a polynomial of degree 2m− 1. Second,
a modular reduction mod f(x) is performed in order to
A⊗B belongs to the F2m . Multiplication is a very expensive
operation, several works have been presented aiming to reduce
its computational cost. Algorithms like Karatsuba-Ofman and
Montogomery are two examples [18]. For some special types
of f(x) like trinomials or pentanomials, modular reduction
can be computed using only a couple of additions [18].

C=A⊗B mod f(x)

=

m−1∑
i=0

m−1∑
j=0

aibjx
i+j mod f(x) (1)

Squaring, •2, is a special case of the multiplication A⊗B,
when A = B that also requires modular reduction [18].

C=A2=A⊗A mod f(x)

=

m−1∑
i=0

aix
2i mod f(x) (2)

Square root,
√
• , is the inverse operation of squaring. Given

an element A, it consists in computing the unique element C,
such that A=C2 mod f(x) holds. Squaring can be seen as
a matrix multiplication A2 = MA, so square root is also
a matrix multiplication

√
A = M−1A. In both cases, M

depends exclusively on f(x). Being f(x) a trinomial or a
pentanomial, squaring and square root can be computed by
reordering the input operands and performing a couple of
additions [18].

An interesting identity for any two elements A,B ∈ F2m is
depicted in equation 3, which states that squaring is distribu-
tive over addition. It can be shown that this identity also holds

for squaring root.

A2 +B2=

m−1∑
i=0

(ai + bi)x
2i mod f(x) = (A+B)2 (3)

Multiplicative Inverse, (•)−1, of A is defined as the unique
element C, such that 1=A⊗C mod f(x) holds. There exist
several algorithms to compute this element, some of them are
based on the Euclidean algorithm for computing the GCD,
others use the Fermat’s Little Theorem. Multiplicative Inverse
is considered the most expensive operation in F2m [18].

B. Extended field arithmetic
As mentioned in the introduction, the result of a bilinear

pairing function is an element in an extended finite field
represented by Fqk . A field K2 containing a field K1 is called
extension field of K1, for example F2m is an extended field of
F2. An irreducible polynomial g(x) of degree k is necessary
to define Fqk over Fq [19]. A sequence of field extensions is
called tower field [19].

With a tower field, a basis can be constructed to represent
elements in Fqk with elements of Fq [19]. For example, using
the tower field defined in [8], the basis {1, u, v, uv} over Fq
is constructed for representing elements in Fq4 . Using this
basis, an element G ∈ Fq4 is defined as a polynomial G =
g0 + g1u+ g2v + g3uv where gn ∈ Fq .

The basis constructed from the tower field allows to perform
the arithmetic over Fqk as operations over Fq . Addition is
straightforward as a polynomial addition. A multiplication also
follows the polynomial multiplication rules, but when some
coefficients are either 0 or 1, then multiplication is simplified.

Using the tower field defined in [8] and equation 3, squaring
in Fq4 require 4 additions and 4 squaring over Fq:

G2=(g0 + g1 + g3)
2 + (g1 + g2)

2u+ (g2 + g3)
2v+g23uv (4)

Raising an element to the q-th power is an operation easily
computed using the tower field. For tower field defined in [8]
this computation requires only 5 additions over Fq:

Gq=(g0+g1+g2)+(g1+g2+g3)u+(g2+g3)v+g3uv (5)

III. BILINEAR PAIRINGS OVER ELLIPTIC CURVES

A. Elliptic curves
An elliptic curve is defined as a set of points (x, y) that

satisfies the Weierstrass equation over Fq:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (6)

The number of points in the curve is given by #E(Fq) =
q + 1 − t where |t| ≤ 2

√
q. When the field characteristic p

divides t, denoted by p|t, the curve is called supersingular,
other way it is called ordinary. E(Fq) and a rule for adding
two elements in E(Fq) construct an algebraic structure called
cyclic additive group. The identity element in this additive
group is named the point at infinity denoted by ∞ [20].

The scalar multiplication is the operation denoted as rP ,
where r ∈ N, and P ∈ E(Fq), and it is defined as:

rP = P + P + P + ...+ P︸ ︷︷ ︸
r

(7)

B. Bilinear pairings over elliptic curves

A bilinear pairing over elliptic curves is a function
ê:E(Fq)×E(Fq)→ F∗

qk that takes two elements from E(Fq),
and maps them to an element in a subset of the extended
finite field F∗

qk = Fqk−{0}. Bilinear pairings must satisfy the
following conditions ∀P,Q,R ∈ E(Fq) [20]:

Bilinearity: ê(P +R,Q)=ê(P,Q)ê(R,Q) and
ê(P,Q+R)=ê(P,Q)ê(P,R)

Non-degeneracy: ê(P, P)6=1

Computability: ê is efficiently computed

Under certain circumstances, bilinear pairings are defined over
two different curves ê:E(Fq)×E(Fqk) → F∗

qk . This kind of
pairing is called asymmetric pairing, while the former is called
symmetric [20].

C. The Tate and eta pairing

The smallest possible value of r that makes rP = ∞ is
called the order of P . The subset of points in E(Fq) of order
r is named the r-Torsion subgroup, denoted by E[r]. Given an
elliptic curve E(Fq) and a point P ∈ E(Fq) of order r such
that GDC(r, q) = 1, the embedding degree of the curve is the
smallest integer k that satisfies r|qk − 1. For binary fields
and supersingular curves the maximum embedding degree
achievable is k = 4 [21].

The Tate pairing is an asymmetric bilinear pairing over
elliptic curves defined in equation 8, where: DQ is a divisor
of point Q, and fP is a function over the elliptic curve that
returns a finite field element. Readers are referred to [22]
and [20] for more detailed definitions. The computation of
equation 8 is divided in two stages: first fP (DQ) is computed
by the Miller’s Algorithm [22], second an exponentiation
to the (qk − 1)/r-th power, called final exponentiation, is
required [21]. The Miller’s Algorithm is a numeric method to
construct the function fP satisfying the necessary conditions
of a bilinear pairing [22].

τ : E(Fq)[r]×E(Fqk)[r]→ F∗
qk (8)

τ(P,Q)= fP (DQ)
(qk−1)/r

Several works have been done to optimize the Tate pairing
at an algorithmic level [8], [23], [24]. An especial case of the
original Tate pairing for supersingular curves is the eta pairing
(ηT) presented in [8]. ηT reduces the Miller’s Algorithm to
the half becoming the most popular algorithm for bilinear
pairings over binary fields. ηT requires a distortion map
ψ : E(Fq)→ E(Fq) for the point Q in order to satisfy E(Fq)
being a cyclic group. Additionally, it can be shown that the
groups E(Fq) and E(Fqk) are isomorphic, becoming ηT a
symmetric pairing.

In Figure 1 is depicted the algorithm for computing the
ηT over F2m . Several parameters depend on the elliptic
curve and finite field [8]. Consider the supersingular curve
E : y2 + y = x3 + x+ b over F2m , where b = {1, 0} and m
is odd, embedded degree k = 4, tower field defined as [8],

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F2m).
Ensure: ηT (P,Q) ∈ F2km .

1: s← x1 + α
2: F ← s · (x1 +x2 +1)+ y1 + y2 +

1−β
2 +(y2 + s) ·u+ v

3: for i = 1 to (m+ 1)/2 do
4: s← x1 + γ, x1 ←

√
x1,y1 ←

√
y1

5: G← s · (x1 + x2 + γ) + y1 + y2 + (1 + γ) · x1 + δ +
(s+ x2) · u+ v

6: x2 ← x22,y2 ← y22
7: F ← F ·G
8: end for
9: return F (22m−1)·(2m+1−ε2(m+1)/2)

Fig. 1. Computation of ηT (P,Q) over F2m .

and the distortion map ψ(x, y) = (x+u+1, y+xu+v). Lets
define β = −1 when m ≡ 1, 7 mod 8 and b = 1 or m ≡ 3, 5
mod 8 and b = 0, or β = 1 in all other cases. α = 0, γ = 1
when m ≡ 1, 5 mod 8 otherwise α = 1, γ = 0. δ = 1 if
m ≡ 5, 7 mod 8, otherwise δ = 0. And finally, ε = (−1)b if
m ≡ 1, 7 mod 8 or ε = (−1)(1−b) if m ≡ 3, 5 mod 8.

In Figure 1, lines 1 throw 8 are the Miller’s Algorithm stage.
Lines 2 and 5 set F,G ∈ F24m . Line 7 is a multiplication
over the extended field, thanks to the structure of G, this
multiplication can be simplified. Finally, line 9 is the final
exponentiation that can be computed using several techniques
[21], [25], [26].

Nevertheless, an alternative algorithm for computing the ηT
using different parameters for basis is presented in [27]. Both
works [8] and [27] are able to compute bilinear pairings in a
very different way. The necessity of a flexible solution able
to manage this variety of parameters and algorithms emerges
because development of algorithms and improvements are still
in process and further, the lack of an standard for computing
bilinear pairings in cryptographic applications.

IV. CRYPTOPROCESSOR ARCHITECTURE

The aim of the proposed pairing cryptoprocessor is to bring
flexibility to the computation of bilinear pairings over binary
fields. Several algorithms have been proposed for computing
pairings, and for the best of the authors knowledge there is
no protocol or standard that defines an specific algorithm or
parameters to be considered. So a flexible cryptoprocessor for
pairings that allows to manage several parameters such as the
elliptic curve, the tower field and the distortion map, or even
different algorithms is desired. The proposed solution consists
in a programmable cryptoprocessor composed by a micro-
architectural datapath with its corresponding instruction set.

All operations required by the pairing algorithm can be
translated into arithmetic in F2m no matter the curve selected.

3 2 1 0 S1 S0 R0R1R2R3 S1 S0 R0R1R2R3

CMD OP1OP2

015

Fig. 2. Proposed Instruction Format.

TABLE I
INSTRUCTION SET FOR THE PROPOSED ARCHITECTURE.

Name Description

StoreMult(D[]) Store a multiplication result.

Addition(D[], S[]) Addition of registers of a Bank.

Squaring(D[], S[]) Squaring an addition of registers of a Bank.

Square Root(D[], S[]) Square root an addition of registers of a Bank.

LoadMult(S2[], S1[]) Load and start a new multiplication.

IncG0() Increment B0 in 1.

MoveBank(D[], S[]) Copy values from source to the dest. Bank.

Wait(n) Freeze the IP register for n clock cycles.

Jmp(n) Unconditional Jump to instruction n.

For(n) Hardware support to FOR-Loop n.

Jz() Conditional Jump

Even the arithmetic for extended fields can also be translated
to simpler arithmetic operations in F2m no matter the tower
field used. So the schedule of the instructions in the program
is enough to implement some pairing algorithm with some
parameters. In this sense, the first restriction is that the micro-
architecture should only support arithmetic in F2m .

In order to satisfy the first design restriction, the instructions
set has to cover all the operations in F2m used in the pairing
algorithms for binary fields reviewed in the literature. These
operations are the addition, multiplication, squaring and square
root discussed in previous sections. Additionally, some instruc-
tions are required for program control in order to support
loops, as well as conditional and unconditional jumps. The
complete instruction set is shown in table I where D means
the destination bank, S means the source bank, and between
brackets the registers accessed within the bank are indicated:
F [0, 1] means to access registers F0 and F1.

In extended field arithmetic, input operands are usually
additions over the coefficients of an extended field element. In
Miller’s Algorithm, multiplication inputs are usually additions
among the coordinates of points P and Q. A second restriction
is that multiplication, squaring and square root are always
preceded by an addition of at most four elements.

Pairing algorithms do not require operations with constant
values rather than 0 or 1. A third requirement is that only oper-
ation among registers is supported. Constant values 0 and 1 are
easily computed, for any element A ∈ F2m , A⊕A=0. Using
the bit vector representation, the operation A⊕ 1 is performed
by the negation of the LSB of A, then A⊕ (A⊕ 1)=1.

The proposed architecture uses a 16-bit instruction. Figure
2 illustrates the instruction format. For all instructions, CMD
is a 4-bit field indicating the functionality, OP2 is a 6-bit field
that indicates the destination register, OP1 is a 6-bit field that
indicates the source register. The subfields S1 and S0 are used
to select the bank register. Subfields R3 to R0 are used to
select the specific registers within the bank. Note that more
than one register within the bank can be read at the same time.
Each bank has 4 registers in order to store one extended field

+1 G0 G1 G2 G3F0 F1 F2 F3

V0 V1 V2 V3 W0 W1 W2 W3

Gs
()2

nT(P,Q)

+

Fs

Q(X2,Y2)P(X1,Y1)

H0

H1

H2

H3

I0

I1

I2

I3

ROM
4K x16

PROGRAM
MEMORY

PROGAM
CONTROL

CLK START

FOR n

WAIT n

JMP n

IP

n

OP2

CMD

OP1

Jz n

R r

Fig. 3. Proposed architecture for computing bilinear pairings over binary fields.

element. Architecture supports four control instructions: Jmp,
For, Wait and Jz. For these instructions, OP2 and OP1 act
like a 12-bit constant. Instruction format only allows one bank
access at a time except for multiplication.

Figure 3 shows the proposed datapath. It contains six bank
registers F,G,H, I, V,W . Only banks F and G can be used as
source banks for arithmetic operations. For the multiplication,
one operand comes from bank F and the other comes from
bank G. Only banks V , W and G can be used as destination
banks for arithmetic operations. Banks H and I are used
as temporal storage of banks V and W respectively. The
MoveBank instruction is used to copy the values from one bank
to another but just certain movements are supported: from V
to F or H , from H to F , from W to G or I , and from I to G.
There are two extra registers, Fs and Gs, used as alternative
inputs for multiplication. The register G0 is equipped with
extra hardware for computing G0 = G0⊕ 1.

A. Architectural Modules

Addition is computed using a single bitwise XOR gate. An
addition is directly performed at the output of banks F and G
using a 4-input XOR each. In order to indicate which registers
are being added and which not, each register within bank F
and G has a read enable signal.

Multiplication was implemented using a serial-parallel ap-
proach of the Karatsuba-Ofman Algorithm (KOA) [11]. Inputs
of size m are split twice using the KOA resulting in 9
partial operands of size m/4. These 9 partial multiplications
are computed serially by a fully-parallel KOA of m/4 bits.
Finally, the 9 partial results are merged according to KOA
to complete the multiplication. State-of-art improvements are
implemented for the m/4-bits multiplier [28]. Figure 4 shows
the architecture for the F2m multiplication used in this work.
This multiplier requires 9 clock cycles for computing a field
multiplication.

Modular reduction is required within both multiplication
and squaring modules. Representing f(x) as a bit-vector
notice that fm = f0 = 1. Thus, xA(x) becomes a shift to
the left operation on A(x) leading to a (m + 1)-bit vector,

xA(x) = (am−1, am−2, · · · . , a1, a0, 0). The resulting bit
vector is the same with an extra 0 at the least significant
position. If am−1 = 0, a reduction is not necessary. However,
if am−1 = 1, the resulting polynomial is reduced mod f(x),
following equation 9, which defines xA(x) mod f(x) con-
sidering fm = f0 = 1, where ⊕ represents a bitwise XOR
operation and � represents a bitwise AND operation. This
expression is well modeled by the Linear Feedback Shift
Register (LFSR) shown in figure 5. The combinatorial logic,
CL-LFSR performs the required arithmetic to compute xA(x)
mod f(x). Therefore, d CL-LFSR blocks could be connected
in a cascade fashion to implement a parallel LFSR (PLFSR)
and to obtain xdA(x) mod f(x) in just one iteration. More
details on the LFSR and the PLFSR are described in [29].

xA(x) mod f(x) = (9)
(am−2 ⊕ [fm−1 � am−1], am−3 ⊕ [fm−2 � am−1], ...,

a0 ⊕ [f1 � am−1], am−1)

As it is shown in equation 2, squaring consists in an
expansion of the input vector interleaving a ‘0’ between each
bit, followed by a modular reduction. PLFSR are used for this
purpose. Square Root is also a cheap operation when using
trinomials as irreducible polynomial. Following the algorithm
described in section II-A, matrix M−1 can be computed off-
line because the irreducible polynomial is the same when
computing the pairing. The matrix multiplication M−1A is
very sparse, so just a couple of additions are only needed.

Program Control module is used to implement the instruc-
tions Jmp, For, Wait and Jz. These instructions make use of a
12-bit constant contained in the instruction itself. Inside this
module there is the 12-bit Instruction Pointer register (IP)
used to indicate next instruction to be executed. A total of 4K
instructions can be addressed. “START” signal resets the IP
register to ‘0’. Normally the IP register increments its value
every clock cycle. When a control instructions is loaded, the
value of the IP register depends on the instruction.

A generic implementation of the Miller’s Algorithm re-
quires a test over r, the binary representation of the order

A (m-bits)

B (m-bits)

Fully-
Paralell
Hybrid
KOA

m/4-bits

<< << <<

<<

MOD_RED (PLFSR)

A B (m-bits)

Fig. 4. Serial-parallel multiplier based on Karatsuba-Ofman algorithm with
modular reduction by Parallel Linear Feedback Registers.

of the points P and Q, see algorithm 1 of [8]. But so far
the proposed algorithms for binary fields do not require it, the
instruction Jz() is intended to cover that requirement if needed
by a pairing algorithm for binary fields. A register named R
inside the program control module is used for loading the input
r with the “START” signal.

B. Programmability

The instructions set along with the datapath allow a lot of
flexibility for pairing computing because of its programmabil-
ity. Consider the algorithm depicted in figure 1 and assume
that registers F0 to F3 contain the values x1, y1, x2, y2
as shown in figure 3. The addition G0 = F0 + F2 is
computed by the instruction Addition(G[0], F [0, 2]), while
W2 = G0 + G1 + G2 + G3 is computed by the instruction
Addition(W [0], F [0, 2, 3, 4]). Notice that when only one reg-
ister is accessed at the source bank and destination bank, the
instruction Addition(D[], S[]) is equivalent to just move one
register to other.

Consider y1 + y2 + 1−β
2 of the line 2 in algorithm

1 where the result depends on the value of β. When
β = 1 the instruction Addition(G[0], F [1, 3]) is enough for
computing G0 = y1 + y2. When β = −1 the instruction
Addition(G[0], F [1, 3]) followed by the instruction IncG0() are
required for computing G0 = y1 + y2 + 1.

Now consider the multiplication s · (x1 + x2 + γ) in
line 5 of algorithm 1. Both operands depend on γ and
previous multiplication is required to compute x1 =

√
x1.

1) Addition (G[0], F [0]): move x1 to G0
2) IncG0(): compute s = x1 + 1
3) Addition(Fs,G[0]): move s to Fs
4) SquareRoot(G[0], F [0]): compute G0 =

√
x1

5) IncG0(): compute G0 =
√
x1 + 1

6) Addition(G[1], F [2]): move x2 to G1
7) LoadMult(Fs,G[0, 1]): begin s · (√x1 + x2 + 1)

when γ = 0, consider the next sequence instead:
1) SquareRoot(G[0], F [0]): compute G0 =

√
x1

2) Addition(G[1], F [2]): move x2 to G1
3) LoadMult(F [0], G[0, 1]): begin s · (√x1 + x2)

Notice here that the program complexity is closely related
with the amount of operations and the data dependency.

. . .

x·A(x) mod f(x)
Combinatorial logic for LFSR

(CL-LFSR)

A(x)=am-1x
m-1+am-2x

m-2+...+a1x+a0

m

am-1

am-2 am-3 am-4 a0

fm-1 fm-2 fm-3 f1

xdA(x)mod f(x)(CL-LFSR)1

mA(x) ...m mm m
(CL-LFSR)2 (CL-LFSR)d

m

Fig. 5. Modular Reduction using Linear Feedback Shifts Registers.

Also notice that other operations can be computed while the
multiplication is being executed. For this example in line 5 of
algorithm 1, y1 + y2 + (1 + γ) · x1 + δ can be computed in
parallel with the multiplication s · (√x1 + x2 + γ).

The programmability of the proposed architecture also
brings support to compute the multiplicative inverse operation.
This operation is very expensive for hardware implemen-
tation because it requires several operations in an iterative
loop. Algorithms like the Binary Euclidean Algorithm require
comparators and shifters. However, the Itoh-Tsujii Algorithm
computes a multiplicative inverse operation using squarings
and multiplications [18], so no extra hardware is required for
computing this algorithm in the proposed architecture.

Arithmetic in the extended field is easily supported by the
proposed cryptoprocessor independently of the tower field.
Consider raising an element to the q-th power. Equation 5
computes this operation for the tower field presented in [8].
Nevertheless, in [27] a different tower field is used, so raising
an element to the q-th power is computed by equation 10. Both
equations, 5 and 10 consist in computing four coefficients
over F2m . Implementing this operation with the proposed
architecture consists in four instructions Additions(D[], S[]),
the only consideration is that all coefficients of the element G
be in the same bank.

Gq = (g0 + g2) + (g2)x+ (g1 + g3)x
2 + g3x

4 (10)

Finally, let discuss the program control instructions: Jmp,
For, Wait and Jz. Instruction Jmp(n) is used to perform an
unconditional jump to the address specified in the instruction.
Instruction Wait(n) is used to freeze the IP register for n clock
cycles. Instruction For(n) is used to support a For-Loop in
hardware by setting an internal counter to value n and testing:
if n = 0, IP register increments by 1, if not, IP register
increments by 2. Instruction Jz() performs a test in the LSB
of register R, if R0 = 0, IP register increments by 1, if not,
IP register increments by 2.

V. EXPERIMENTAL RESULTS.
The proposed architecture was implemented using VHDL

as a description language. Program memory was implemented
with Xilinx’s Block Memory Generator LogiCORE. For de-
sign validation, C/C++ routines based on the library Miracl1

1Copyright 2012 CertiVox IOM Ltd. Online available:
https://certivox.com/solutions/miracl-crypto-sdk/

TABLE II
IMPLEMENTATION RESULTS FOR ηT PAIRING WITH 128 BITS OF SECURITY LEVEL.

Reference Is Flexible? Device
Finite Area Memory

Maximum Clock
Latency A · T

field (slices) (kbits)
Frequency Cycles

(us) Slices× Seg.
(MHz) (×103)

Exp. 1
YES Virtex 6 Binary 16,402 5.3 1801 51.5 286 4.69
YES Virtex 4 Binary 50,968 5.3 73 51.5 703 36.1

Exp. 2
YES Virtex 6 Binary 16,402 10.3 1801 57.6 320 5.24
YES Virtex 4 Binary 50,968 10.3 73 57.6 787 40.1

[10]2 NO Virtex 6 Prime 7,032+32DSP 810 250 143.1 573 4.03

[11] NO Virtex 6 Binary 15,167 N/R 250 47.6 190 2.88

[12] NO Virtex 6 Binary 16,403 N/R 267 27.3 102 1.7

[13]3 NO Virtex 4 Binary 78,874 N/R 130 2.4 18.8 1.41

[14] Some Virtex 4 Ternary 4,755 24 192 260 2,227 10.59

[16] YES Virtex 4 Prime 52,000 N/R 50 1,729 34,600 1,799

[30] Software Intel Core i7 Binary 8 Threads N/R 2,000 1,034 517 N/A

[30] Software Intel Core i7 Binary 1 Thread N/R 2,000 6,455 3,228 N/A

1 Synthesis using flag -register balancing. 2 This works implements Optimal Ate pairing. 3 This works reach a security level of 105 bits.

were used to generate test data vectors. Xilinx ISim 13.2 was
used as simulation environment. For synthesis, Xilinx ISE
13.2 was used targeting both Xilinx Virtex-6 (xc6vlx130t) and
Xilinx Virtex-4 (xc4vlx200) devices using flags by default.

Two experiments were carried out in order to validate
the correct functioning of the proposed cryptoprocessor. Two
different versions of the ηT were used in each experiment.
Experiment 1 uses Miller’s algorithm and extended field basis
from [8] and the final exponentiation from [25]. Experiment
2 implements the algorithm and all the parameters presented
in [27]. For both experiments, the underlying finite field was
F21223 defined by the trinomial f(x) = x1223 + x255 + 1, for
a security level of 128-bits [26].

Table II shows the implementation results of the synthesis
process. The required area is 16,402 slices for a Virtex 6 de-
vice. From this area, about 42% is used by the field multiplier;
being this, as expected, the biggest individual module from all
arithmetic modules. Nevertheless, the multiplexers inside each
bank register consume a great amount of resources, a total of
44%. The remaining 14% of the area is used for the rest of the
arithmetic modules and control signals. Notice how the area
is closely related with the technology, for a Virtex 4 a total of
50,968 were used. This is due to one Virtex 6 slice contains 4
Look-Up Table (LUT) of 6 bits input, in contrast one Virtex
4 slice contains only 2 LUTs of 4 bits inputs.

The maximum clock frequency depends on the longest
path delay among two registers, for the proposed architecture
this path is inside the multiplier with 7 levels of logic. The
maximum frequency that the architecture can operate with is
132 MHz for a Virtex 6. Nevertheless this frequency can be
improved during the synthesis process using the flag regis-
ter balancing. This flag moves registers through combinatorial
logic to evenly distribute the paths delay between registers,
increasing the maximum clock frequency. With this synthesis
flag, a maximum frequency of 180 MHz is reached. In the

same way, time is closely related with the technology, Virtex
6 is a 40 nm device able to work with a clock frequency up to
1,600 MHz, while Virtex 4 is 90nm technology able to work
with a clock frequency up to 500 MHz.

The amount of memory required by experiment 2 is almost
the double than the required by experiment 1, this is because
the operations in experiment 2 in general are more dependents
so more instructions MoveBank(D[], S[]) were required. Ad-
ditionally, the final exponentiation in experiment 2 requires a
total of five multiplications over Fqk , while final exponenti-
ation in experiment 1 only performs one multiplication over
Fqk , so less code was needed. Notice that the proposed design
compared with related works requires less memory.

Table II also compares the implementation results with
related works. When comparing area for a Virtex 6, it can
be seen that this work consumes a similar amount of slices
than [11] and [12]. Even [10] reports less area, it requires 32
DSP blocks and more than 100 KB of memory. Neither [11],
[10] nor [12] are flexible architectures, they are optimized to
support specific tower field and distortion map. For a Virtex
4, only [14] reports less area than the proposed work but
the architecture proposed in this work is almost 3x faster.
Comparing processing time is hard because the proposed
architecture depends on the version of the chosen algorithm
and programming skills. The results in table II show that
the proposed cryptoprocessor is faster compared with other
flexible implementations including the state-of-art in software
[30]. On the other hand, the proposed architecture is very
competitive compared with custom architectures. The A · T
product reached in this work is 5.24, which is just 1.3x
bigger than [10], 1.82x bigger than [11] and 3.08x bigger
than [12]. Compared with [13] the A · T product is 3.72x
bigger, but notice that [13] only reaches a security level of
105 bits. These results show that optimized architectures are
slightly faster/smaller than the proposed design, but with all

the flexibility achieved, it is a fair cost.
From the results obtained, the proposed cryptoprocessor is

a very feasible solution for bilinear pairing computation over
binary fields. The programmability reached by this architecture
allows to compute bilinear pairings independently of the
elliptic curve, tower field, distortion map and the version of
the pairing algorithm required by the application.

VI. CONCLUSION AND WORK IN PROGRESS.

Algorithms and parameters for computing bilinear pairings
are still under development. Improvements are constantly
reported, sometimes based on different parameters. Custom
architectures are not able to support such changes, so a flexible
solution able to manage several parameters like the elliptic
curve, the tower field, the distortion map, or the version
of the pairing algorithm is better preferred, being flexible
architectures more suitable for different applications.

This paper has introduced a programmable architecture
for computing bilinear pairings in binary fields. Different
to other architectures this one is able to compute different
versions of the pairing algorithm considering different elliptic
curves, tower fields, and distortion maps, all these with the
same hardware. Implementation results show that the proposed
design requires a competitive amount of resources compared
with related work. In addition, the processing time is shorter
than the one achieved by other flexible architectures and
almost as good as the custom architectures of the state-of-
art. The compact instruction format allows smaller programs
than related works, therefore it consumes less memory.

Several works are being performed to achieve better results.
A thorough optimization process is being performed in order
to improve the maximum clock frequency, being pipelining
technique used as a first approach. Resource consumption is
being analyzed in order to reach a smaller design, especially
in the areas where more consumption is located. As this
pairing cryptoprocessor was originally conceived within a
whole system, a communication interface to send/receive the
operands will be implemented, for this last purpose an initial
idea is to use a shared memory approach so that a master
processor uses this memory to transmit data and also to load
the desired program.

REFERENCES

[1] A. Menezes, T. Okamoto, and S. A. Vanstone, “Reducing elliptic
curve logarithms to logarithms in a finite field,” IEEE Transactions on
Information Theory, vol. 39, no. 5, pp. 1639–1646, 1993.

[2] G. Frey, M. Muller, and H.-G. Ruck, “The Tate pairing and the discrete
logarithm applied to elliptic curve cryptosystems,” IEEE Transactions
on Information Theory, vol. 45, no. 5, pp. 1717–1719, Jul. 1999.

[3] V. S. Miller, “Use of Elliptic Curves in Cryptography,” Advances in
Cryptology - CRYPTO 1985, pp. 417–426, 1986.

[4] N. Koblitz, “Elliptic Curve Cryptosystems,” Mathematics of Computa-
tion, vol. 48, no. 177, pp. 203–209, 1987.

[5] A. Joux, “A One Round Protocol for Tripartite Diffie Hellman,”
Algorithmic Number Theory, vol. 1838, pp. 385–393, 2000.

[6] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil
Pairing,” in Advances in Cryptology - CRYPTO 2001, pp. 213–229.

[7] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” Journal of Cryptology, vol. 17, no. 4, Jul. 2004.

[8] P. S. L. M. Barreto, S. D. Galbraith, C. O. Héigeartaigh, and M. Scott,
“Efficient pairing computation on supersingular Abelian varieties,” De-
signs, Codes and Cryptography, vol. 42, no. 3, pp. 239–271, Feb. 2007.

[9] A. Menezes, “An Introduction to Pairing-Based Cryptography,” Recent
trends in cryptography, vol. 447, pp. 47–65, 2009.

[10] R. C. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede,
and G. X. Yao, “FPGA Implementation of Pairings Using Residue
Number System and Lazy Reduction,” in Cryptographic Hardware and
Embedded Systems - CHES 2011, no. 07, 2011, pp. 421–441.

[11] S. Ghosh, D. Roychowdhury, and A. Das, “High Speed Cryptoprocessor
for ηT Pairing on 128-bit Secure Supersingular Elliptic Curves over
Characteristic Two Fields,” in Cryptographic Hardware and Embedded
Systems - CHES 2011, 2011, pp. 442–458.

[12] J. Adikari, M. A. Hasan, and C. Negre, “Towards Faster and Greener
Cryptoprocessor for Eta Pairing on Supersingular Elliptic Curve over
F21223 ,” in 19th International Conference, Selected Areas in Cryptog-
raphy 2012, 2012, pp. 166–183.

[13] J.-L. Beuchat, J. Detrey, N. Estibals, E. Okamoto, and F. Rodrı́guez-
Henrı́quez, “Fast Architectures for the ηT Pairing over Small-
Characteristic Supersingular Elliptic Curves,” IEEE Transactions on
Computers, vol. 60, no. 2, pp. 266–281, Feb. 2011.

[14] N. Estibals, “Compact Hardware for Computing the Tate Pairing over
128-Bit-Security Supersingular Curves,” in Pairing-Based Cryptography
- Pairing 2010, vol. 6487, 2010, pp. 397–416.

[15] J.-L. Beuchat, N. Brisebarre, M. Shirase, T. Takagi, and E. Okamoto,
“A Coprocessor for the Final Exponentiation of the η T Pairing in
Characteristic Three,” in International Workshop on the Arithmetic of
Finite Fields (WAIFI 2007), 2007, pp. 25–39.

[16] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury, “High Speed
Flexible Pairing Cryptoprocessor on FPGA Platform,” in Pairing-Based
Cryptography - Pairing 2010, vol. 6487, 2010, pp. 450–466.

[17] I. N. Herstain, Abstract Algebra, 3rd ed. Wiley, 1996.
[18] F. Rodrı́guez-Henrı́quez, A. Dı́az-Pérez, N. A. Saqib, and C. K. Koc,

Cryptographic Algorithms on Reconfigurable Hardware, ser. Signals and
Communication Technology. Boston, MA: Springer US, 2006.

[19] J.-P. Escofier, Galois Theory, ser. Graduate Texts in Mathematics. New
York, NY: Springer New York, 2001, vol. 204.

[20] J. H. Silverman, The Arithmetics of Elliptic Curves, 2nd ed. Springer,
2009.

[21] P. S. L. M. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient Algo-
rithms for Pairing-Based Cryptosystems,” in Advances in Cryptology -
CRYPTO 2002, vol. 2442, 2002, pp. 354–369.

[22] V. S. Miller, “The Weil Pairing, and Its Efficient Calculation,” Journal
of Cryptology, vol. 17, no. 4, pp. 235–261, Aug. 2004.

[23] S. D. Galbraith and J. F. Mckee, “Pairings on Elliptic Curves over Finite
Commutative Rings,” Cryptography and Coding, vol. 3796, pp. 392–
409, 2005.

[24] F. Hess, N. Smart, and F. Vercauteren, “The Eta Pairing Revisited,” IEEE
Transactions on Information Theory, vol. 52, no. 10, pp. 4595–4602,
Oct. 2006.

[25] J.-L. Beuchat, N. Brisebarre, J. Detrey, E. Okamoto, and F. Rodrı́guez-
Henrı́quez, “A Comparison Between Hardware Accelerators for the
Modified Tate Pairing over F2m and F3m ,” in Pairing-Based Cryp-
tography - Pairing 2008, 2008, pp. 297–315.

[26] D. Hankerson, A. Menezes, and M. Scott, “Software Implementation of
Pairings,” in Identity-Based Cryptography, M. Joye and G. Neven, Eds.
IOS Press, 2008, ch. XI, pp. 188 – 206.

[27] R. Ronan, C. O’hEigeartaigh, C. Murphy, M. Scott, and T. Kerins,
“FPGA acceleration of the tate pairing in characteristic 2,” in 2006 IEEE
International Conference on Field Programmable Technology. IEEE,
Dec. 2006, pp. 213–220.

[28] G. Zhou, H. Michalik, and L. Hinsenkamp, “Complexity Analysis and
Efficient Implementations of Bit Parallel Finite Field Multipliers Based
on Karatsuba-Ofman Algorithm on FPGAs,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 18, no. 7, pp. 1057–1066,
Jul. 2010.

[29] M. Morales-Sandoval, C. Feregrino-Uribe, and P. Kitsos, “Bit-serial and
digit-serial GF(2m) Montgomery multipliers using linear feedback shift
registers,” IET Computers & Digital Techniques, vol. 5, no. 2, pp. 86–94,
2010.

[30] D. F. Aranha, E. Knapp, A. Menezes, and F. Rodrı́guez-Henrı́quez,
“Parallelizing the Weil and Tate Pairings,” in 13th IMA International
Conference, IMACC 2011, 2011, pp. 275–295.

