
A parallelization methodology for reconfigurable
systems applied to edge detection.

Juan M. Campos∗, Rene Cumplido†, Claudia Feregrino-Uribe‡, Roberto Pérez-Andrade‡
∗ † ‡Instituo Nacional de Astrofisica Optica y Electronica.

Email: ∗jcampos, †rcumplido, ‡cferegrino, @inaoep.mx
‡Center for Scientific Research and Higher Education of Tamaulipas.

Email: jrperez@tamps.cinvestav.mx

Abstract—In this paper, a novel parallelization methodology
is applied to Edge Detection Algorithm (EDA). The proposed
methodology is based on a multiprojection approach and on
a fusion of processor elements. It eliminates the relationship
between problem size and processor array size when using
methodologies based on projections. EDA is an interesting prob-
lem because its data dependencies and its potential parallelism,
besides EDA is used in multiple applications. In this study,
multiple versions of the EDA architecture are generated in order
to fulfill requirements of throughput and implementation area.

Keywords—Design methodologies; Image processing; Parallel
processing; Reconfigurable systems; Parallel architectures.

I. INTRODUCTION

Due to its potential to greatly accelerate a wide variety of
applications, reconfigurable computing has become a subject
of a great deal in research [1]. Its key feature is the ability
to perform computations in hardware while retaining flexibil-
ity. Flexibility allows modification of some characteristics of
the architecture in a number of different ways resulting on
improvements of implementation area, throughput or use of
memory resources. Such characteristics are directly dependent
on the number of processor elements, the communication
network, and the data flows within the architecture. Most of
the algorithms presents some parallelism, i.e., it is possible to
process them by performing more than one single operation
per time unit. In order to execute algorithmic tasks in paral-
lel, hardware with multiple processor elements is necessary.
Processor arrays are parallel architectures composed of inter-
connected processor elements. They present one or more of
the following characteristics [26]:

• The architecture is implemented by only a few differ-
ent components.

• Control and data path are regular structures, then the
components are connected in a local and regular way.
Long distances or irregular connections are avoided or
at least minimized.

• Maximum parallelism is achieved when all compo-
nents are active at the same time. Input-output require-
ments are minimized by internal transfers between
elements producing several computations for each I/O
access.

By using a design methodology, it is possible to achieve
processor arrays fulfilling the characteristics proposed in [26].

A design methodology is a tool to generate a mathematical
model from an algorithm and its data dependencies. Working
on the model is possible to generate transformations to improve
throughput and data locality while reducing the implementa-
tion area. Such transformations are intended to create a parallel
version of the original algorithm. Information provided by a
design methodology could be used to create a processor array
that implements the desired functionality [14].

A. Design methodologies

Design methodologies are particularly useful when the
algorithm includes loops as those used in image processing.
In the Polytope model, each block of instructions or loop
element is represented as a node inside a polytope and data
dependencies as arrows between nodes [16], [2], [19], [10].
Two functions relate nodes, mapping them with execution
times and physical resources. Both functions represent when
and where nodes will be executed. These functions are called
scheduler and allocator and are determined to take full ad-
vantage of the available algorithmic parallelism. Optimizing
these functions to produce faster and smaller architectures
is the main objective of the Polytope model; however, data
dependencies conditions this aim. The function to perform
the mapping between nodes and execution times is called
scheduler [5], [6], [18], [21]. If there exists more than one
possible schedule function, the fastest is preferred. Allocation
refers to the relationship between nodes in the polytope and
processor elements [7], [4], [9]. First option is to assign one
processor element to each node inside the polytope; however,
the cost in the implementation area could be prohibitive.
The problem of finding the optimal scheduler and allocator
has been widely studied. In this work, the proposal is to
introduce data conditions into the original problem statement
in order to generate a processor array able to be compressed.
The proposed methodology is applied to the Edge Detection
Algorithm (EDA) [23] [24] [22] in order to generate multiple
versions of the hardware architecture. The final set of architec-
tures is suitable for a reconfigurable system, covering options
from maximum parallelism and high throughput to minimal
implementation area with limited throughput.

B. Edge Detection Algorithm (EDA)

Regarding EDA, multiple and large data dependencies
are the main challenge for designing and implementing an
efficient architecture. This problem has previously boarded
in [22] and [24]. Edge detection is one of the most used

978-1-4673-6180-4/13/$31.00 ©2013 IEEE

operations in image analysis. An edge is defined by a
discontinuity in gray level values [23]. Edges are one of the
most important visual clues for interpreting images. Edge
detection is by far, the most common approach for detecting
meaningful discontinuities in the gray level. [17]. The edge
detection process outputs an image where edge details appear
as the outlines of image objects. Edge detection is commonly
used as the first stage in complex processes as feature
detection and object recognition. There are many different
methods for edge detection such as Sobel filtering, Prewitt
filtering, Laplacian of Gaussian filtering, moment-based
operators, the Shen and Castan operator and the Canny and
Deriche operator [17]. No matter the selected approach, all
methods require a high amount of computational power. In
this context, taking advantage of the inherent parallelism in
algorithms while reducing the implementation area is a key
point in design of architectures.

The rest of the paper is organized as follows: In Section II,
basics on the Polytope model are presented. In Section III,
the extended parallelization methodology is introduced. In
Section IV, a representative Edge Detection Algorithm as
proposed in [24] is modeled and transformed according to the
proposed methodology. Finally, discussion and conclusions
close the paper in Sections V and VI.

II. BACKGROUND

The Polytope model [16][8] is a mathematical tool that
allows generation of efficient processor arrays from an algo-
rithm. In Polytope context, each loop iteration in the algorithm
is represented by one node within a polytope.

Definition 1 (Polytope): A polytope is an intersection of a
finite number of half-spaces. Each of the half-spaces provides
a face to the polytope.

The iteration vector is the vector formed with values of the
indices of all loops surrounding one statement. An iteration
vector represents a dynamic instance of a statement appearing
in a loop nest. A program comprises a sequence of statements,
each statement surrounded by loops in a given order. The set
of all the iteration vectors is called the iteration space (IS).

Definition 2 (Iteration Space): An iteration space IS is a
set. Its elements are valid values for an index vector iv. The
iteration space is a discrete, not necessarily finite set.

In this work, (IS) is assumed to be an n-dimensional subset
of integers. In the Polytope model context, iteration spaces
are formulated as polytopes or even more general as so-called
linearly bounded lattices.

Definition 3 (Linearly bounded lattice): A linearly
bounded lattice (LBL) denotes an iteration space of the form
IS = {I ∈ Zn | I = Mx + c ∧ Ax ≥ b} Where x ∈ Zl,
M ∈ Zn×l, c ∈ Zn, A ∈ Zm×l and b ∈ Zm denotes the
set of integral points within a convex polytope or in case
of boundedness within a polytope in Zl. This set is mapped
onto iteration vectors iv using an affine transformation
(iv = Mx+ c).

In this work, it is assumed that the matrix M is square and of
full rank.

The set of data dependencies is represented by a dependence
matrix D as in Equation 1.

D =
[
~d1, ~d2, ..., ~di

]
(1)

Where, di is the i-dependence in the dependence set.

Using data dependencies and IS characteristics, it is pos-
sible to find an optimum execution time for each node I in the
IS i.e., an optimum execution order by using an optimization
process, for instance, a linear program approach [5], [11], [2]
and [3].
The result of the optimization process is a schedule vector
Λ ∈ Z1×n. The schedule vector is used to generate integer
execution hyperplanes, orthogonal to it.

Definition 4 (Hyperplane): A hyperplane is an (n − 1)-
dimensional subspace of an n-dimensional vector space.

All nodes in the same hyperplane can be executed in parallel
without affecting the functional behavior of the original algo-
rithm. If it is possible to express a function φ(I) as a schedule
vector as shown in Equation 2 then, the scheduler is said to
be linear.

φ(I) = bΛIc ∀I ∈ IS (2)

In Equation 2, the linear schedule vector Λ ∈ Z1×n is such
that Λdi > 1 for all di ∈ D. This condition [15] ensures that
all data dependencies are preserved under the schedule vector
Λ and could be expressed as Equation 3.

φ(Idi2)− φ(Idi1) > 1 (3)

Where Idi2 and Idi1 are the destiny and source nodes in IS of
the data dependence (di). In other words, if there exists a data
dependence di between nodes I2 and I1, the condition in 3
ensures that the node I1 will be executed after the node I2
when using the schedule vector Λ or the schedule function φ.
Since the schedule vector Λ defines an execution time for each
node in IS, it is possible to calculate the total execution time
TΛ of the IS with Equation 4.

TΛ = 1 +max(φ(Iy)− φ(Ix)) (4)

Where Iy and Ix are any two nodes in the IS. The optimal
linear scheduler Tl in Equation 5 is the one that minimizes TΛ

over all possible schedule vectors Λ with the only condition
of preserving data dependencies (Equation 3).

Tl = min(TΛ) | Λ ∈ Z1×n,ΛD ≥ 1 (5)

Definition 5 (Iteration Interval): The iteration interval λ
is the number of integer execution hyperplanes between the
execution of two nodes I .

Integer execution hyperplanes refers to the hyperplanes orthog-
onal to the schedule vector intersecting at least one node I in
the IS. However, there exists a more relevant approach of λ
value indicated by w which denotes the number of time steps
between the production and the consumption of a datum in
nodes I1 and I2, respectively. Such datum is intended to fulfill
the data dependence i as shown in Equation 6. Value w is
equal to (λ− 1).

φ(Idi2)− φ(Idi1) = w (6)

From processor elements perspective, w indicates how many
memory localities are required for storing the data to fulfill

a data dependence. For instance, a value of w = 3 indicates
a datum will be required three time steps forward. Because a
new datum could be generated at each time step, three memory
localities are required.

Additionally to the schedule vector, it is necessary to know
in which processor element will be computed each node I . In
this work, the selected method for such allocation [11], [3] is
the projection [13], [25]. The projection is represented as the
vector P. Similar to the schedule vector, the allocation vector
P could be expressed as the allocation function ρ(I).

ρ(I) = bPIc ∀I ∈ IS (7)

Function ρ(I) sets a relationship between nodes in the IS
and processor elements. For instance, Equation 8 indicates that
both nodes Iy and Ix will be executed in the same processor
element using the allocation function ρ(I).

ρ(Iy)− ρ(Ix) = 0 (8)

The projection vector should be carefully selected since a
bad choice could be unfavorable in terms of throughput or
implementation area. Traditionally, the allocation vector has
been proposed by hand requiring multiple tests to select the
best option in terms of performance and implementation area
[11], [20]. Additionally, under the projection approach, the
number of processor elements in the processor array depends
on the size of the problem.

Main contributions of this work are the next:

• The allocation vector is automatically obtained and
finally the processor array is compressed.

• Different versions of the same architecture are gener-
ated providing a wide range of implementation options
suitable for a reconfigurable system.

• Memory requirements are considerably smaller when
compared with processor arrays generated with tradi-
tional approaches.

III. EXTENDED PARALLELIZATION METHODOLOGY

In this work, an extended parallelization methodology
based on the seminal work of Alain Darte [2], [3] is applied
to the EDA problem, previously boarded in [22], [24]. This
process provides a number of different architectures for im-
plementing the EDA algorithm while reducing the number of
processor elements in the processor array.

The proposed methodology consists of the following
stages:

• Algorithmic representation

• Allocation

• Scheduling

• Reducing the number of processor elements

In the proposed methodology, the allocator is firstly ob-
tained. After, by modifying the dependence set, the scheduler
is calculated. This strategy is intended to generate the required
conditions to compress the processor array.

A. Algorithmic representation

In general, algorithms are firstly presented using mathe-
matical language and after expressed using loop structures for
software implementation/simulation. Using a loop representa-
tion is useless when the objective is to extract the parallelism
because such representations impose a serial execution order.
According to [11], it is possible to model any algorithm
directly from its mathematical representation to produce a
system of uniform recurrence equations (SURE) representation
avoiding the loop translation.

The concept of SURE was introduced in 1967 [12]
for modeling regular iterative processes. The idea is to
model k functions a1(I), a2(I), ..., ak(I) where each function
ai(I), i ∈ [1..k] is assumed to be evaluated in all the points I
en IS where IS is an integral subset, IS ⊆ Zn

Using a SURE representation, the concept of data depen-
dency could be represented in a natural manner. A single
recurrence equation is of the form:

a1(I) = F1(a1(I − d1), a1(I − d2), ..., a1(I − dk)) (9)

Where I ∈ IS, dj |j ∈ [1..k] is an n-dimensional inte-
ger vector called iteration vector and F1 is a single-valued
function. If any difference I − dj is element of Zn and each
vector dj is constant, the equation is said to have a uniform
dependency. A system of uniform recurrence equations is
generally given by

ai(I) = Fi(ai1(I − di1), ..., aik(I − dik)) ∀I ∈ IS (10)

Where IS ⊆ Zn, dij ∈ Zn, j ∈ [1..k] any differ-
ence I − dj ∈ Zn, and Fi is an arbitrary function.
In case of representing algorithms, instead of functions,
indexed variables are considered. Such indexed variables
are supposed to be defined for each element on IS ={

(i, j)
T ∈ Zn|1 ≤ i ≤ maxi ∧ 1 ≤ j ≤ maxj

}
B. Allocation

In this work, the allocating function is firstly obtained.
Allocating function is obtained by a linear programming
approach including data dependencies as conditions. This
approach produce a processor array that responds to the data
flow requirements. The process is similar to the one described
in Section II for obtaining the schedule vector.

To achieve it, Equation 11 is proposed where NP indicates
the number of processor elements required to implement the
IS using the allocator P .

NP = 1 +max(ρ(Iy)− ρ(Ix)) (11)

Where Iy and Ix are any two nodes in the IS. In this proposal,
the optimal allocator is the one that minimizes NP over all
possible allocation vectors P such that Equation 3 is fulfilled.
This is expressed as Equation 12.

Nl = min(NP) | P ∈ Z1×n, PD > 1 (12)

In this work, an allocation approach on Equation 3 allows
optimization of the use of processor elements. If there exists

a data dependence between nodes Idi2 and Idi1 , the allocation
function ensures that nodes Idi2 and Idi1 will be executed in
processor elements with minimal distance between them as
the schedule vector could ensure that the same nodes Idi2 and
Idi1 would be executed at different moments with minimal time
between executions.

The objective function is min(~X1, ~X2)b subject to condi-
tions in Equations 13:

1. ~XD ≥ 1

2. ~X1A = ~X

3. ~X2A = − ~X
4. ~X1 ≥ 0

5. ~X2 ≥ 0

(13)

Where D = [~d1, ~d2, ..., ~dn] is the dependence matrix.

From Equations 13,

• Condition 1 ensures data dependencies will be pre-
served under function X .

• Conditions 2 and 3 guarantees the convexity of the
solution.

• Conditions 4 and 5 ensures the solution will have a
positive direction in the convex domain.

C. Scheduling

In order to calculate the schedule function, the original
linear programming problem is modified. An artificial data
dependence is included in the data dependence set. Such data
dependence has to be orthogonal to the allocator vector [25]
to ensure that the schedule function:

• Maintains the functional behavior of the original al-
gorithm.

• Is generated from a component independent of the
allocating vector.

Two vectors, a = [a1, a2, ..., an] and b = [b1, b2, ..., bn] are
orthogonal if their dot product is zero, where dot product is
defined by Equation 14

a • b =

n∑
i=1

a1b1 + a2b2 + ...+ anbn (14)

The new data dependency is attached to the dependence
matrix. Objective function remains the same as for calculating
the allocating vector: min(~X1, ~X2)b subject to conditions in
Equations 15:

1. ~XD ≥ 1

2. ~X1A = ~X

3. ~X2A = − ~X
4. ~X1 ≥ 0

5. ~X2 ≥ 0

(15)

PE 1 PE 2 PE 3 PE 4 PE 5
PE

1,5

PE

2,4
PE 3

a) b)

Fig. 1. Fusion approach. a) transforms into b).

Where D = [~d1, ~d2, ..., ~dn, (allocating vector)⊥].

The combination of allocating and scheduling creates ac-
tivity holes which are used to compress the resulting processor
array.

D. Reducing the number of processor elements

Once a processor array has been generated by using the
allocating function, the number of processor elements can
be reduced. The limit for reducing the number of processor
elements without decrease the throughput is the number of
parallel activations. In order to maintain the structure of the
data flow, a defined approach for merging processor elements
is used as shown in Figure 1.

The fusion approach preserves the data flow structure by
maintaining originally adjacent processors side by side.

Suppose that nodes Ix and Iy will be executed in PEx

and PEy respectively and processor elements PEx and PEy

will be merged in the processor element PEz . In this case,
the condition in Equation 16 guarantees that Iy will not be
executed while Ix is executed.

∀Ix, Iy ∈ IS | ρ(Ix) = PEx ∧ ρ(Iy) = PEy, φ(Ix) 6= φ(Iy)
(16)

Each fusion of processor elements generates a new instance
of the condition in Equation 16. New conditions are included in
the linear program problem in the form of data dependencies.
Adding new conditions will not change the schedule function
while the number of processor elements remains over the
maximum parallelism.

IV. APPLYING THE PARALLELIZATION METHODOLOGY TO
THE EDA

In order to expose results of the proposed methodology, a
reduced IS of 4× 4 nodes is used. Because the regularity of
the IS, schedule and allocating functions remains the same no
matter the IS size.

A. Algorithmic representation

Recurrence equations of the proposed EDA are shown in
Algorithm 1.

B. Allocation

From SURE representation, data dependence matrix is
shown in Equation 17:

D =

(
0 0 1 1 1 2

0 1 0 1 2 1

)
(17)

Algorithm 1 Edge detection algorithm (EDA)

1. p
(
i
j

)
= pi

(
i
j

) (
i
j

)
∈ Ii

2. q
(
i
j

)
= 2 ∗ p

(
i−1
j−1

) (
i
j

)
∈ I2

3. h1

(
i
j

)
= p

(
i−1
j−2

)
+ p
(
i−1
j

) (
i
j

)
∈ I3

4. h2

(
i
j

)
= h1

(
i
j

)
+ q
(
i
j

) (
i
j

)
∈ I4 = I3

5. v1

(
i
j

)
= p

(
i−2
j−1

)
+ p
(

i
j−1

) (
i
j

)
∈ I5

6. v2

(
i
j

)
= v1

(
i
j

)
+ q
(
i
j

) (
i
j

)
∈ I6 = I5

7. h3

(
i
j

)
= h2

(
i−2
j−1

)
+ h2

(
i

j−1

) (
i
j

)
∈ I7

8. h4

(
i
j

)
= |h3

(
i
j

)
|

(
i
j

)
∈ I8 = I7

9. v3

(
i
j

)
= v2

(
i−1
j−2

)
− v2

(
i−1
j

) (
i
j

)
∈ I9 = I7

10. v4

(
i
j

)
= |v3

(
i
j

)
|

(
i
j

)
∈ I10 = I7

11. s
(
i
j

)
= h4

(
i
j

)
+ v4

(
i
j

) (
i
j

)
∈ I11 = I7

12. p0

(
i−2
j−2

)
= min(255, s

(
i
j

)
)

(
i
j

)
∈ I12 = I7

with:
I1 =

{(i
j

)
∈ Z2|

(0≤i≤N−1
0≤j≤M−1

)}
, I2 =

{(i
j

)
∈ Z2|

(1≤i≤N
1≤j≤M

)}
I3 =

{(i
j

)
∈ Z2|

(1≤i≤N
2≤j≤M−1

)}
, I5 =

{(i
j

)
∈ Z2|

(2≤i≤N−1
1≤j≤M

)}
I7 =

{(i
j

)
∈ Z2|

(3≤i≤N
3≤j≤M

)}

According to the parallelization methodology presented in
Section III, the data dependence conditions become:,

1. ~XD

b ≥ 1

a ≥ 1

a+ b ≥ 1

a+ 2b ≥ 1

2a+ b ≥ 1

(18)

The allocation vector (1,1) is obtained from the linear
programming approach [3], [2]. Figure 2 shows the resultant
processor array by using such allocator and original data
dependencies as arrows between nodes.

C. Scheduling

The next step is to include a new data dependency in the
data dependence set. New data dependency has to be orthog-
onal to allocating vector (1,1), then the new data dependency
is the vector (-1,1). Dependence matrix is extended as in
Equation 19.

D =

(
0 0 1 1 1 2 −1

0 1 0 1 2 1 1

)
(19)

With extended dependence matrix, the new linear program-
ming problem is solved to obtain the schedule vector (1,2).

In Figure 3, columns represent execution times
(T1, T2, ...T12) and rows represent iteration points I

j

i

PE 7

Pe 5

PE 6

PE 1

PE 2

PE 3

PE 4

Dependence graph

Processor

array

Fig. 2. Dependence Graph and processor array by using allocating vector
(1,1)

i j T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

1 1 PE 4

1 2 PE 5

1 3 PE 6

1 4 PE 7

2 1 PE 3

2 2 PE 4

2 3 PE 5

2 4 PE 6

3 1 PE 2

3 2 PE 3

3 3 PE 4

3 4 PE 5

4 1 PE 1

4 2 PE 2

4 3 PE 3

4 4 PE 4

Fig. 3. Activation sequence of processor elements with schedule vector (1,2)
and allocating vector (1,1).

(nodes in the IS). For instance, the iteration point (1,1) will
be executed in time T3 at the processor PE 4 in the reduced
IS of 4×4. As a result of the projection vector in Figure 2,
the first approach is to use a processor array of 9 elements.
However, a more detailed analysis including Figure 3, shows
that, the maximum number of parallel activations is two by
using schedule vector (1,2). It means, the processor array
could be reduced to two elements without decreasing the
throughput.

D. Reducing the number of processor elements

In order to minimize the impact of merging processor
elements in the control size, the fusion process must maintain
the data flow across the execution time. In Figure 4, dotted
lines indicate processor elements to be merged and columns
indicate the nodes that are executed in each processor element
according to the allocating vector (1,1). Data flow starts in PE
4 and propagates to extreme directions (right and left). After
processor elements fusion, in Figure 5, the data flow remains
constant and characteristics for processor arrays proposed in

PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE7

4, 1 3,1

4,2

2,1

3,2

4,3

1,1

2,2

3,3

4,4

1,3

2,4

1,41,2

2,3

3,4

PE 4'

PE 3'

PE 2'

PE 1'

Fig. 4. Original processor array and first processor fusion.

PE 1' PE 2' PE 3' PE 4'

4,1

1,4

3,1

4,2

1,3

2,4

2,1

3,2

4,3

1,2

2,3

3,4

1,1

2,2

3,3

4,4

PE 1'' PE 2''

Fig. 5. Processor arrays after second and third processor fusions.

[26] are still present.
A new fusion of processor elements produces a processor array
of two elements which is the minimal configuration able to
maintain the throughput. A simple control system is possible,
since data move between adjacent elements avoiding irregular
data transmissions.
From this point, if the number of processor elements is
reduced, the throughput is affected because the schedule vector
is changed; however, processor array remains regular and
data communications short. In the reduced IS, a last fusion
generates a serial architecture where one single processor
element executes all nodes I in the IS.

V. DISCUSSION

In this paper, an extended parallelization methodology has
been applied to the EDA to produce different versions of the
architecture fitting different criteria.

In Figure 6, it is shown that the size of the processor array
could be reduced until 25% of the original size. As the IS size
grows, and after fusion process, the final processor array size
approximates to 25% of the original size without decreasing
the throughput.

Compressed processor array with a number of processor el-
ements equal to the number of parallel activations is considered
the first implementable version of the EDA architecture. For
instance, in a problem with IS of 500×500 nodes, the original
processor array requires 999 processor elements. The number
of processor elements is reduced to 250 processor elements

200 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

100

0

10

20

30

40

50

60

70

80

90

IS Size

P
e
rc

e
n
ta

g
e

Fig. 6. Percentage of compression with different IS sizes.

Data

Dependencies

0 0 1 1 1 2Data

Dependencies 0 1 0 1 2 1

Vector (1,1) 0 1 1 2 3 3

Vector (1,2) 0 2 1 3 5 4

Fig. 7. Required memory locations per data dependency.

without affecting the execution time. Therefore, it is the first
implantable version. From this point, the number of processor
elements could be reduced by a half decreasing the throughput
in the same proportion. Since the data flow remains unaltered,
the control system remains simple.
Another contribution is related to the memory required to
implement the final architecture. In Figure 7, the first two rows
correspond to data dependencies in EDA. Third row presents
the number of required memory locations per data dependency
under schedule vector (1,1) which is the scheduler producing
minimal values for w. Fourth row shows the memory locations
required per data dependency under proposed schedule vector
(1,2).

In total, schedule vector (1,1) requires 10 memory locations
per processor element versus proposed schedule vector (1,2)
which requires 15 memory locations. In the IS of 500 × 500
nodes, the allocation vector (0,1) which is the allocator pro-
ducing minimal processor elements, produces 500 processor
elements versus 250 with the proposed allocating vector (1,1).
Then, the number of required memory locations with the
proposed methodology is 3750 versus 5000 using alternative
values.

The problem of communication in the EDA has been
previously reported in [24] and [22] where data dependencies
are modified to avoid large transferences of data. The main
contribution of our work is that the original data dependencies
are no modified as in [24]. Modifying data dependencies
could change the schedule vector avoiding the optimal ex-
ecution time. In this study, to modify data dependencies is
not necessary because the projections approach compress them
in n − 1 dimensions. This reduces the distance between
processor elements in the final processor array. In [22] and
[24] a partitioning approach is selected based on the designer
experience. By using partitions, high amounts of memory
could be required to store temporal values. Partitioning and
high memory requirements issues are avoided in the proposed
work. It is possible since the allocating vector is obtained by
an automated process allowing data naturally flow between

processor elements. Different versions of the architecture can
be used as different configurations in a reconfigurable approach
to meet specific requirements. From the full parallel version
to the serial approach.

VI. CONCLUSION

In this work, a parallelization methodology applied to the
EDA has been presented. EDA presents interesting challenges
because the high dependence between iterations. In this paper
has been shown how the proposed design methodology obtains
allocating and schedule vectors and generates different ver-
sions of the required architecture. The main differences with
previous works are: 1) data dependencies remain unaltered
allowing optimal schedule and allocating vectors, 2) In a
first stage, the number of processor elements is reduced at
no cost of the execution time and 3) Required memory for
implementing the processor array remains small as compared
with state of the art values. The second point eliminates the
main disadvantage of the projection approaches where the
number of processor elements is directly related to the size
of the IS thus only suitable to certain problem sizes. Results
of this work can also be applied to related problems where
complex data dependencies are presented.

VII. FUTURE WORK

Future work includes to fit the proposed methodology
under a tiling approach. Additionally, perform the necessary
changes to optimize the use of memory resources directly from
the linear programming problem.

REFERENCES

[1] Katherine Compton and Scott Hauck. Reconfigurable computing: a
survey of systems and software. ACM Comput. Surv., 34(2):171–210,
2002.

[2] Alain Darte. Mathematical tools for loop transformations: From systems
of uniform recurrence equations to the polytope model. Algorithms for
parallel processing, Springer Verlag, 105:147–183, 1997.

[3] Alain Darte, Leonid Khachiyan, and Yves Robert. Linear scheduling is
close to optimality. In International conference on application specific
array processors (ASAP), pages 37–46, 1992.

[4] Michèle Dion and Yves Robert. Towards automatic distribution.
Parallel computing, 22(10):1373–1397, 1996.

[5] P. Feautrier. Some efficient solutions to the affine scheduling problem:
Part i, one-dimensional time. In International journal of parallel
programming, volume 21, pages 313–347, 1992.

[6] P. Feautrier. Some efficient solutions to the affine scheduling problem:
Part ii, multidimensional time. In International journal of parallel
programming, volume 21, pages 389–420, 1992.

[7] P. Feautrier. Towards automatic distribution. Technical report, Institut
Blaise Pascal/Laboratoire MASI, 1992.

[8] Paul Feautrier. Automatic parallelization in the polytope model.
Technical report 8, Laboratoire PRiSM, Université des Versailles St-
Quentin, 1996.

[9] Martin Griebl, Paul Feautrier, and Armin Großlinger. Forward commu-
nication only placements and their use for parallel program construction.
languages and compilers for parallel computing, pages 16–30, 2005.

[10] Gautam Gupta and Sanjay Rajopadhye. The z-polyhedral model. In
ACM SIGPLAN symposium on principles and practice of parallel
programming, pages 237–248, 2007.

[11] Frank Hannig. Scheduling techniques for high throughput loop acceler-
ators. PhD thesis, University of Erlangen Nuremberg, Germany, 2009.

[12] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. The
organization of computations for uniform recurrence equations. Journal
of the association for computing machinery, 14(3):563–590, 1967.

[13] Robert H. Kuhn. Transforming algorithms for single-stage and vlsi
architectures. In In workshop on interconnection networks for parallel
and distributed processing, pages 11–19, 1980.

[14] S. Y. Kung. VLSI array processors. Prentice Hall, 1988.
[15] Leslie Lamport. The parallel execution of do loops. In Communications

of the ACM, volume 17, pages 83–93, 1974.
[16] Christian Lengauer. Loop parallelization in the polytope model. Pro-

ceedings of the 4th International Conference on Concurrency Theory
(CONCUR), 715:398–416, 1993.

[17] Lily Rui Liang and Carl G. Looney. Competitive fuzzy edge detection.
Applied Soft Computing, 3(2):123–137, 2003.

[18] Shih-Tang Lo, Ruey-Maw Chen, Yueh-Min Huang, and Chung-Lun
Wu. Multiprocessor system scheduling with precedence and resource
constraints using an enhanced ant colony system. Expert Systems with
Applications, 34(3):2071–2081, 2008.

[19] S.P.K. Nookala and Tanguy Risset. A library for z-polyhedral opera-
tions. Technical Report 1330, IRISA, 2000.

[20] Fabien Quilleré, Sanjay Vishnu Rajopadhye, and Doran Wilde. Gener-
ation of efficient nested loops from polyhedra. International journal of
parallel programmin, 28(5):469–498, 2000.

[21] Radosław Rudek, Agnieszka Rudek, and Andrzej Kozik. The solution
algorithms for the multiprocessor scheduling with workspan criterion.
Expert Systems with Applications, (0), 2012.

[22] Siegel Sebastian and Merker Renate. Efficient realization of data
dependencies in algorithm partitioning under resource constraints. In
Euro-Par 2006 Parallel Processing, volume 4128, pages 1181–1191,
2006.

[23] M. Sharifi, M. Fathy, and M.T. Mahmoudi. A classified and comparative
study of edge detection algorithms. In Information Technology: Coding
and Computing, 2002. Proceedings. International Conference on, pages
117–120, 2002.

[24] S. Siegel and R. Merker. Minimum cost for channels and registers
in processor arrays by avoiding redundancy. In Application-specific
Systems, Architectures and Processors, 2006. ASAP ’06. International
Conference on, pages 28–32, 2006.

[25] Kittitornkun Surin and Yu Hen Hu. Processor array synthesis from
shift-variant deep nested do loops. The journal of supercomputing,
24(3):229–249, 2003.

[26] Maurice Tchuente. Parallel Computation on regular arrays. Manchester
University Press, 1991.

