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String matching is a time and resource consuming operation that lies at the core of Network Intrusion
Detection Systems. In this paper a method and corresponding hardware architecture for string matching
is presented. The proposed method is composed of two main steps. The first step performs a pre-detec-
tion of signatures alignment, and in the second step the alignment is corrected and the signatures are
detected by a matcher. The compact and efficient architecture is designed to share resources among sev-
eral modules that perform the detection and correction step needed for the string matching. Implemen-
tation results in a FPGA Virtex5 device show that the proposed architecture can perform string matching
with a database with more than 400 K characters. And is also capable of achieving speeds of more than
30Gbps, which is much higher that previous works reported in the literature.
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1. Introduction

Current data transmission technologies are capable of achieving
multi-gigabit rates. For instance, recent standard for optical wire
technologies OC-768 [1] present a data transmission rate of
40Gbps. In Network Intrusion Detections Systems (NIDS) one of
the main tasks is the scanning of the packets content. Thousands
of strings declared as signatures of malicious content must be de-
tected in order to identify imminent attacks. And the speed of the
data flow on which this string matching operation should be per-
formed is extremely high. In addition, lowering such speed is not
a valid option since this would affect the quality of the service pro-
vided by the network.

In the most demanding environments, current sequential ma-
chine technologies are unable to meet these requirements [2]. Con-
sider the hypothetical situation where a General Purpose
Processors (GPP) could process a single character per clock cycle.
It would need to be working at 5 GHz in order to achieve 40 Gbps.
Obviously, this is not possible with current technologies. This tech-
nological barrier dominated by the operating frequency of the
sequential devices can be outperformed with an intensive use of
parallelism. Here is where the Field Programmable Gates Arrays
devices (FPGAs), have played an important role for NIDS in the last
decades. The most important advantages of these devices over tra-
ditional GPPs are the reconfigurability and the fine grained paral-
lelism they can provide. Reconfigurability, allows updating the
signatures set any number of times, and with the use of parallel-
ism, the signatures can be concurrently detected, while one or
more than one character is processed at each clock cycle.

Hardware cost reduction and throughput increment, are key is-
sues in string matching through hardware; being the hardware
cost reduction the more widely researched. The reason is that aug-
menting throughput elevates the hardware cost. Therefore, there
will be fewer resources available to detect more strings. That is
why the most used practice has been to obtain a low cost architec-
ture and replicate it in order to obtain more throughput.

The throughput of a data flow processing hardware architecture
is defined as the amount of bits processed per time unit. Basically,
there are three strategies to increase the throughput. The first
strategy is focused on the frequency, while the other two concern
the amount of data processed. Achieving a high operational fre-
quency depends on several factors such as: the complexity of the
placed logic, the critical path signals, and the underlying device
technology. Well know techniques as pipelining can be applied in
order to reduce timing at the cost of introducing latency in the
architecture.

The second strategy is works well when the scanned data flow
is divided in streams of data chunks or packets. The data packets
are distributed into several identical string matching units working
in parallel. The overall throughput is the sum of the throughput
provided by each unit. This is commonly called aggregated
throughput. Due to the packetized nature of some data flows, this
form of processing is not very efficient. This is because it is possible
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to have some units with no data to process at all, while there are
still data waiting for being processed in other units. This strategy
is easy to implement by just replicating as many processing units
as possible.

The third strategy consists on augmenting the amount of data
symbols processed from the data flow at each clock period. Archi-
tectures with this feature are commonly called multi-character
architecture. This form is more efficient as it does not underutilize
hardware resources and it can be used on either, packetized or con-
tinuous data streams. On the other hand, when several characters
are processed at each clock cycle, the signatures may appear una-
ligned regarding the input. The simple approach to face this mis-
alignment problem is a replication of the matching logic linear to
the amount of character processed per clock cycle.

The last two naïve strategies to increase the throughput re-
quires resources to invest in hardware replication. In this work
we propose a not naïve multi-character approach which reduces
considerably the hardware replication. Our architecture solves
the misalignment problem in real time. The hardware consump-
tion presented is lower than that obtained in naïve strategies for
multi-character architectures. The implementation for four charac-
ters per cycle utilizes 63% of a FPGA Virtex5 fx100t device. For a
signature set counting more than 84,000 characters the architec-
ture achieves a throughput of 6.4 Gbps. Our strategy is to invest re-
sources in a cost-effective alignment pre-detection and correction
phase. In doing so, resources sharing are possible and the replica-
tion of the hardware is reduced.

In this work we take leverage of the fact that in a set of strings,
each string may have a substring which is unique regarding the
rest of the members in the set. The length of the unique substring
may be equal or lower than its substring; in case of being equal, the
unique substring is the string itself. For the set of signatures in-
cluded in the most popular Network Intrusion Detection System,
Snort, the length of unique substrings tend to be shorter than the
length of the container signatures.

The proposed architecture consists of two processing steps. In
the first step, the signature unique substrings are matched obtain-
ing the alignment of the candidate signature. A candidate signature
indicates a signature likely to exists in the data flow. In the second
step the inputs of signature matchers are aligned in correspondence
with the information provided by the first step. Since the signature
matchers inputs will be aligned with the candidate signature in real
time, no hardware replication will be needed in the second step.

We present a method and corresponding hardware architecture
for string matching. A previous work that addresses a similar prob-
lem was published in [3]. This described an architecture that de-
tects and corrects the signature alignment in the data flow
through a unique substring predetection. This work presents a
completely new architecture aimed at obtaining a significant
reduction in area requirements when compared to the previous re-
ported work. The main contributions of this work are twofold:

� Reduction of area resources of around 40% when compared
against the naïve approach for multi-character architecture.
� A new partitioning criterion named security threshold which

allows resources sharing and the elimination of ambiguities in
matching process due to the misalignment problem.

The rest of the paper is as follows. In Section 2 we expose the
works related with special emphasis in multi-character architec-
tures in both, naïve and not naïve approaches. In Section 3, the cen-
tral ideas and our partitioning scheme are explained in detail. In
Section 4, the architecture is presented as well as its functioning.
The results of the implementation and tests are discussed in Sec-
tion 5. Conclusions and future work will be exposed in Section 6.
2. Related work

In general, the most part of hardware-based solutions for string
matching fall into the following categories. Brute Force compara-
tors (BF) [4,5,7], Automata based architectures with the Aho-Coras-
sick automaton (AC) as the most implemented [2,3,8,11–13,20].
Content Addressable Memory based (CAM) architectures [6], and
Hash based architectures [10]. Naturally, there are combinations
of them [22,24,17–19].

Naïve multi-character architectures has been proposed in [4–9].
Sourdis et al. [4] proposed pipelines of discrete characters compar-
ators in order to match an entire string. Their four-character input
version was capable of achieving more than 10 Gbps. In a shift-
and-compare pipeline, each character line feeds a shift register,
by selecting the proper offsets, the character lines are ‘‘ANDed’’
to obtain a final match for a corresponding string. Sourdis et al.
[5] proposed a shift-and-compare architecture using SLR16 shift
register, while Baker and Prassana in [7] proposed partitioning
scheme that allows resource sharing. Sung et al. [6] proposed an
algorithm for a CAM memory-based architecture that processes
four bytes per cycle, achieving more than 10 Gbps. Clarck and
Schiemmel [8] perform a deep analysis of the hardware cost when
extending the architecture for processing more bytes per clock cy-
cle. They proposed a NFA logic-based architecture, where they can
reach the impressive throughput of 99 Gbps. However, due to the
high hardware cost introduced they just match up to 250 charac-
ters. Hardware implementation of the shift-or algorithm is pro-
posed in [9]. Processing four character per cycle they achieve
16 Gbps for a 1500 character set.

In [10] the double port feature of modern embedded memory
blocks are employed to process 2 bytes per cycle. Their architec-
ture uses hashing in a first step to identify a possible match.
Then, in a second step, the string is fetched from memory and
is compared one-to-one with the characters in the data flow.
Yang et al. [11] present a multi-character logic-based regular
expression matching architecture. They propose an algorithm
for extending regular expression to multi-character. Additionally,
they propose the implementation of character classes operators
using embedded RAM. Similarly, in [12] static strings which are
part of regular expressions are detected by a classical AC using
an off-chip memory, then logic-based NFAs match the regular
expression metacharacters. A memory-based multi-character reg-
ular expression matching architecture is proposed by Brodie et al.
in [13]. They define the concept of Equivalent Class Index, ECI. An
ECI represents multiples sequences of characters sharing the
same states in a multi-character-extended NFA. Their architecture
first encode the data flow into ECI characters, then it uses an state
machine to implement the NFA. In addition, they apply several
optimizations and codifications for reducing the amount of mem-
ory required per NFA state. Yiang et al. [2] Proposed a pipelined
and multi-character AC automaton where failure transitions are
not needed since each level of the AC trie has its own hardware.
A similar approach is proposed in [14], where the firsts states of
the AC automaton are implemented using a pipeline of binary
search trees.

A not naïve multi-character memory-based architecture is pro-
posed by Cho et al. in [15]. They use the string prefix for pre-detec-
tion and alignment correction. Since several strings may have the
same prefix, the string set must be partitioned so that each string
in a subset possesses a unique prefix. The same strategy is used by
in Chang et al. [16] with the difference that instead of memories,
and brute force matching, they use logic-based NFA matchers. Ser-
rano et al. [3] proposed the use of unique substrings instead of un-
ique prefixes, since unique substrings tend to be shorter and better
suited as partitioning criterion.



Fig. 1. Histogram of u-substrings in u-substrings length.
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The average case throughput is improved in [17,18]. In [17] the
authors present an Aho-Corassick architecture where they uses
hashing techniques for the state selection. In [18] the most visited
states are cached in memory avoiding on average traditional AC
next state selection. On this way, these architectures can accept
more one character per cycle on average. In [19] AC memory is
shared among several string matching modules in a time multi-
plexed access scheme.

Recent works are more focused in hardware cost reduction than
in throughput increment. In the automata based solutions the state
cost reduction is an important issue. In [20] AC states with similar
transitions are merged. The authors propose a mechanism to effi-
ciently rectify the functional errors caused by the states merging.
In doing so a reduction of 24% in the cost is achieved. A perfect
hashing technique for indexing the AC states is proposed in [21].
Meiners et al. [22] introduced TCAMs to store RE transitions, the
method is patented in [23]. They leverage the ternary nature and
the first-matching semantic of the TCAMs to codification the tran-
sitions. In doing so, a TCAM entry can be shared by multiples
states. Peng improves the state codification in [24] achieving a
higher reduction in the number of TCAMs entries. On the same ba-
sis, Yun [25], avoid to store AC failure transitions. Guinde and Ziav-
ras [26] proposed a compression method for the string set. In doing
so, the memory required for store the strings is significantly re-
duced. A newly approach is proposed in [27], where the support
vector machine theory [28] is introduced for network intrusion
detection systems.
3. Partitioning scheme

Our main target is reducing the hardware cost in a multi-char-
acter architecture by avoiding the naïve approach efficiently. If we
could know the alignment of the signature in real time, the re-
sources used in the replication of the hardware could be released
to be used in a less expensive pre-detection phase. Keeping this
in mind both, a cost-effective alignment detection phase and a
cost-effective alignment correction phase are needed.

The proposed method in this work consists in two partitioning
levels. The first one was proposed in [3] and is further explained in
Section 3.1. The second one, proposed in this work, works over the
sets created by the first partitioning level. This is explained in Sec-
tion 3.2. The architecture presented is brand new, and it takes
advantage of both levels of partitioning.
Table 1
Number of strings on each u-set.

U-partition Strings

1 2937
2 138
3 16
4 4

Total 3095
3.1. Partitioning based on unique substrings

It is straightforward to demonstrate, that a random string set
has the following properties.

� Given a set of strings P, a subset U # P,jUjP 1, can be found
such that each string in U will contain at least one substring
not repeated in any other string in U.
� If R = P � U, then the former property is also valid over R.

By using these properties as partitioning criteria, a partition of P
will contain at least one U subset. Let us denote as u-sets all the U
subsets of the partition. Each string in a u-set will contain at least
one substring which is not repeated in any other signature of the
set. Let us denote this unique substrings as u-substring. The u-sub-
string becomes into an exclusive identifier of its corresponding sig-
nature. In other words, the detection of such u-substring is a
necessary condition for the existence of the signature in the data
flow. Therefore, detecting a u-substring imply that the correspond-
ing signature, and no other, is a possible match.
The Fig. 1 shows the u-substring distribution over the u-sub-
string length, of the Snort signatures set. Note that most of u-sub-
strings are less than seven character in length, while 68.7% have
four characters or less. The shorter the u-substring, the less expen-
sive is the detection. Taking advantage of this fact, matching u-sub-
strings leads to a cost-effective alignment pre-detection phase.

Matching u-substrings is more efficient than matching unique
prefixes [15,16]. The reason is that unique prefixes tend to be long-
er than u-substrings. If two strings have unique prefixes, both com-
mon and uncommon characters have to be taken into account. For
example the strings ‘‘abcdf’’ and ‘‘abtdf’’ have ‘‘abc’’ and ‘‘abt’’ as un-
ique prefixes but ‘‘t’’ and ‘‘c’’ as unique substrings.

A string of length m has
Pm

i¼0ðm� iÞ u-substrings and just m
prefixes. Since the number of u-substrings contained in a string
is greater than the number of prefixes, the probability of find a un-
ique substring is also greater. As a consequence, u-sets will be
greater than the sets resulting from a partitioning based on un-
ique-prefixes.

The first step in the architecture construction is to partition the
set of signatures into several u-sets. The whole Snort rule data base
in its February-2012 release, contains 13,767 distinct statics
strings. In the default configuration of Snort, just 3981 of them
are used. We have selected this subset of signatures for testing
our partitioning scheme. We have found that some signatures are
equivalent since its hexadecimal representation is the same. There-
fore, we have converted all the signatures to hexadecimal codifica-
tion and we have eliminated duplicated signatures, resulting in a
set of 3928 signatures.

Since we employ 6-input LUTs as comparators, the cost per sig-
nature of our architecture is lower than the naïve approach only for
those signatures greater than seven characters. In correspondence,
we first extract all the signatures of seven characters or less from
the original set resulting in a subset of 819 short signatures. This
represents the 20.8% of the overall set. The short signatures are
matched in a naïve approach.

The longer signatures, counting 3109 are partitioned according
the unique substrings criteria. In Table 1 the resulting partitions
are represented. Note that most of the signatures are grouped in
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the first u-set and the size of the following u-sets decrease
exponentially.

In Table 1 just those u-sets counting with more than one string
are represented. Note that the total number of signatures differs
from the initial set in 14 signatures. Actually, there are 14 single-
string u-sets. In Section 4 it will be demonstrated how resources
can be shared on each u-set. These single-signature u-sets repre-
sents no resources savings in our architecture. Therefore, for sim-
plicity they are implemented as simple multi-character logic-
based NFAs [8].

3.2. Partitioning based on security threshold

In order to have an errors-free alignment correction phase, it is
mandatory to have just one u-substring match at the time. Mean-
ing that, just one signature of the u-set can be candidate to be
matched against the data flow. This is not a problem when just
one character is accepted per clock cycle. But in multi-character
processing, there are some conditions where more than one u-sub-
strings is matched. In order to eliminate such conditions we pro-
pose a second partitioning level. The additional partitioning
eliminates ambiguities in the matching process.

The Fig. 2a shows two consecutive signatures, ‘‘abcdt’’ and
‘‘abedt’’, transiting by a four character pipeline. These signatures
have u-substring ‘‘c’’ and ‘‘e’’ respectively. The Fig. 2a also shows
the lines for detecting u-substrings at any misalignment. The sha-
dow square represents a matched u-substring.

There are two possible scenarios: (a) Two subsequent strings
are candidate, i.e. are members of the same u-set, Fig. 2a. (b) One
or both signatures are impostors; meaning that they contain some
u-substrings but they are not signatures. See Fig. 2b. In the first
case just one u-substring will match at the time. In the second case
there is a double matching. See in Fig. 2b that the u-substrings ‘‘e’’
and ‘‘c’’ match in the same clock cycle, but just the first string is a
signature. In this case it is impossible to predict which of both
(a) (b)

(d)(c)
Fig. 2. (a,d) One unique substring detected, one candidate signature. (b) Two
unique substrings detected, both signatures are candidate. (c) Two unique
substrings detected, the left-most signature is candidate.
matching results is a candidate signature if any. The situation
would be the same if the impostor string were the last one.

Now let us consider another couple of signatures as example.
For simplicity, let us use the same signatures but with the charac-
ter ‘‘m’’ added at the beginning. Additionally, in case of double
matching let us assume the first string as the candidate and the last
string as the impostor. For the signatures in Fig. 2c, double match-
ing is only possible when both are impostors, or when the first one
is the candidate and the second one is impostor. A double matching
never happens when the first one is impostor and the second one is
candidate, Fig. 2d. In other words for this couple of signatures a
double matching indicates that just the first one in the sequence
is the candidate one.

Let us denote as q the amount of characters read per clock cycle.
We define the function liu() for computing the distance in charac-
ters between two u-substrings u1,u2, of two different consecutive
signatures p1 and p2. For instance, with u1 = c and u2 = e, liu(‘‘-
mabcdt’’,‘‘mabedt’’) = 5. For any pair of signatures the function
liu() can be calculated in two ways, liu(p1,p2) and liu(p2,p1), and
the results are not necessarily equal. For that reason we define
the security threshold as, saveth(p1,p2) = min(liu(p1,p2), liu(p2,p1)).
Our second partitioning level is based on the following
observation.

� If saveth(p1,p2) > q and u1 and u2 match at the same moment.
Just p1 is the candidate string.

Let us define a partition S over an u-set, such that for each pair
of strings x, y 2 s, s 2 S, saveth(x,y) > q. We name the S partition,
security threshold based partition.

The next step in the construction of our architecture is the par-
titioning of the u-sets by applying the security threshold criteria.
We have implemented an algorithm that computes the saveth of
any couple of strings in a set. Once the algorithm is executed, each
u-set is divided into two sets, t-set and h-set. The h-set accumulate
signatures with large prefixes, taking as prefix the characters from
the beginning of the string to the beginning of the u-substring. The
t-set accumulate signatures with large suffixes, taking as suffix the
characters from the beginning of the u-substring to the end of the
string. The algorithm also returns the signatures not compliant
with the security threshold criteria, usually a little portion of the
overall signatures. In the same way we proceeded with the sin-
gle-string u-sets, this outlier signatures will be detected using a
naïve multi-character architecture.

In Table 2 the resulting partitions from applying the security
threshold criteria over u-partitions are presented. The subindex
indicates the u-sets they come from, and the letter indicates
whether they are h-set or t-set. The number of signatures not sat-
isfying the security threshold criteria sum 52, being the 1.7%.

The security threshold partitioning has several advantages.
Since it warranties that in a (h) t-set just one signature will be
candidate for a matching each time; an important portion of the
resources dedicated for the alignment correction can be temporary
shared. This is the main source of efficiency of our architecture.
Table 2
Partition based on security threshold.

Partition Signatures Chars.

h1 1289 45841
t1 1604 36301
h2 35 689
t2 96 1038
h3 3 42
t3 12 123
t4 4 39

Total 3043 84073



Fig. 4. Character matrix.
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Moreover, no extra resources are needed to eliminate ambiguities
in matching process. Because of the whole string set is divided into
several sets, long paths signals and signal fan-out are reduced, thus
improving the operating frequency. The architecture that shares
resources on each partition is further explained in the next section.

4. Architecture

Each (h) t-set resulting from the partitioning algorithm is
implemented as an independent hardware module called, match-
ing engine. Fig. 3 illustrates the matching engine functional blocks.
In the first block, u-substrings are matched in a naïve fashion. This
is a shift-and-compare like architecture [7]. It follows, the align-
ment codification block. This encodes from one-hot to binary the
result from the u-substring matching block, returning the align-
ment of the candidate signature to the next block. The third block
is the alignment correction module. Taking benefit our partitioning
properties, the resources invested in this block are shared by the
rest of the architecture. The next block is the signature matching
module. Here the signatures are matched by pipelined discrete
comparator modules. Each comparator can match up to six charac-
ters lines. In this block no hardware replication is needed because
the signatures are matched as if it were a single-character architec-
ture. Finally, a pipelined encoder converts the signature matching
results into unique identifiers.

4.1. Alignment detection phase

Fig. 5 shows an example of our alignment detection phase. At
the input, each character is decoded into a 256 bit vector having
one bit signal per character. There are four binary to one-hot
decoders, one for each character input.

The character lines feed a pipeline of registers. This pipeline is
shared by all the matching engines. The u-substrings are matched
by ‘‘ANDed’’ the character lines in the proper offsets. This tech-
nique is known as shift-and-compare. Different to traditional
shift-and-compare approaches where the strings are matched as
soon as possible, we define a common stage in the pipeline from
which all the character lines for matching the u-substrings are con-
nected. The dashed line in the Fig. 5 represents the common stage.
This is calculated for a matching engine by adjusting all its signa-
Fig. 3. Functional blocks.
tures as depicted Fig. 4. See in Fig. 4 that the signatures are aligned
according to the u-substring (cells in gray color) locations.

The Fig. 4 shows a matrix of characters where each row contains
a signature. The signatures has been properly aligned such that the
first characters of all u-substrings fit in the same column. The ar-
row marks the number of pipeline stages before the common stage
where the matching logic is placed. In doing so, just one match re-
sult is obtained at once.

Each u-substring matcher detects four version of the same u-
string; one for each possible alignment. Therefore, four one-bit
outputs tells the next block which is then alignment of the candi-
date signature. Seeing that all the string matchers works in paral-
lel, just the alignment of the signature is needed. Because of that,
the outputs of the all u-substring matchers representing the same
alignment are ‘‘ORed’’ together. In order to obtain low timing this
OR functions are implemented as pipelined trees of LUTs. At the
end, the result is encoded by a high priority one-hot to binary en-
coder. This provides to the alignment correction phase with the
alignment of some candidate signature.

Although in the first part of the architecture we use a naïve ap-
proach to detect the u-substrings, their short length lowers the
hardware cost. Furthermore, with the overhead introduced by
the alignment codification logic, the cost is still lower than a full-
string-matching shift-and-compare approach.

4.2. Signature matching phase

In the signature matching phase, the input character lines are
selected according to the detected alignment. Then the signature
matchers perform the matching operation over the corresponding
character lines. Finally, the match result is encoded into a binary
identifier which represents the detected signature.

The Fig. 6 shows the character matrix module. This performs
the alignment correction. Each matrix element corresponds to a
character, and is implemented as a single-LUT multiplexor. Charac-
ter matrix component follows the signature set representation as
proposed in Fig. 4. In figure Fig. 6 note that multiplexors in dashed
line correspond to u-substring characters. A multiplexers column
corresponds to a character position in the signatures. Each four-
to-one multiplexor selects one of the four character signals from
the pipeline, according to the current alignment.

In large string sets it is very common signatures sharing charac-
ters in the same locations. For instance, in Fig. 4, in the second col-
umn from left to right, the ‘‘a’’ character is repeated. In
consequence, we can share the character multiplexors among sig-
nature matchers. Note that in Fig. 5 just one multiplexor for the ‘‘a’’
character is needed. This resource sharing is possible because, our
partitioning eliminates ambiguities in the matching process.
Meaning that we will always have just one valid, and likely, match
option. Hence, all the circuitry can be temporary configured to re-
spond accordingly.

The signatures matchers are 6-input LUTs oriented. Each LUT
acts as a discrete comparator capable of matching up to six charac-
ters. Pipeline stages are introduced as needed for long signatures.
For example a 12 characters signature would need two pipeline



Fig. 5. Alignment detection phase.

Fig. 6. Signatures matching phase.
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states, two 6-input LUTs and one 2-input LUT. All signatures are
matched parallelly, taking few clock cycles to get the result
depending on the signature length.

The final component is a pipelined one-hot to binary encoder.
This is a commonly used technique to encode long one-hot vectors
with reduced timing. With 6-input LUTs, a few pipeline stages are
needed to obtaining the identifier of a matched signature.

In the proposed architecture the input pipeline and the input
characters decoders are shared by all the matching engines. Addi-
tionally, on each matching engine the character matrix module is



Table 3
Implementation results.

Strings Chars. LUTs FFs LUT/char FF/char Naive est. LUT/char Device usage (%) Thput. (Gbps)

1446 21,591 21,572 18,151 0.84 0.90 1.12 33 8.3
3095 84,403 38,598 40,329 0.45 0.47 1.03 63 6.4
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shared among the signature matchers. In the next section, the
implementation results of the proposed architecture are discussed.
5. Implementation, results, and comparisons

We have developed a python program to autogenerate all the
architecture VHDL source code from the Snort rules set. The archi-
tecture was synthesized and implemented using Xilinx ISE 13.1.
After successfully simulation it was configured into a Virtex-5
FX100T counting with 64,000 LEs. In Table 3, the results of two
implementations are presented. The first implementation can rec-
ognize 1445 signatures from the Snort signatures set. For the sec-
ond, the number of signatures was incremented to 3095. The first
implementation counting with 21,591 characters occupy 33% of
the device. Meanwhile, the second with almost four times more
characters than the first, barely duplicates the mentioned device
occupation percentage. This is product of the resources sharing
provided by our architecture.

The implementation counting with 84,403 characters occupies
63% of the device logic. Since the registers utilization is greater
than the LUTs utilization, this number, represents the hardware
use in terms of registers.

It is notable the per-character cost of the architecture. The col-
umn labelled as, naïve est. shows the estimated cost of the archi-
tecture in a naïve approach. On the other hand, the columns
LUTs/char and FF/char contains the cost of our architecture as a
whole. For the first implementation the per-character cost is very
close to the naïve approach. While for the second, the cost of
0.47 LUTs/char represents a reduction of more than 50% regarding
to the naïve approach. This means, that our architecture is more
efficient in the signature set increment.

When the second implementation is synthesized for a Virtex5
LX330 as target device, the hardware utilization is just 19% of the
device. So, it could be up to five times replicated, achieving an
aggregated throughput of 34 Gbps. Otherwise, different sets of
similar size can be placed together with an estimated character
capacity over 400 K characters.

Also note that both implementations may fit in this device.
Working in parallel, they could match a string set of 105,994 char-
acters. Different configurations of string sets can be tested, looking
for a best throughput and set size ratio. For example two instances
Table 4
Comparisons with other works.

Approach Device Input width

Our approach virtex5FX100T 32

Baker-Prasanna [7] virtex2P100 32
Cho et al. [15] Spartan3-2000 32
Hwang et al. [9] StratixERS140 32
Serrano and Palancar [3] virtex5FX100T 32
Chang et al. [16] virtex5LX85T 32
Yang et al. [11] virtex4LX40 32
Sourdis et al. [5] virtex2-6000 32
Sourdis et al. [4] virtex2-6000 32
Tseng et al. [18] virtex2P –
Kennedy et al. [19] Stratix 16
Yang et al. [14] virtex5LX330 16
Lin and Chang [20] n/a 8
Guinde and Ziavras [26] virtex2P70 8
of the second implementation working in parallel could obtain an
aggregated throughput of 16.6 Gbps.

In Table 4 comparisons with other approaches are offered.
When compared with other architectures having the same input
width. Our approach presents the best per character cost.

Another relevant aspect is that our approach presents a well
balance between character capacity and throughput. Consider that
our architecture doubles the throughput of the approach with
highest character capacity [14]. Meanwhile, it has 27 times the
character capacity of the architecture with higher throughput [9].
As already mentioned, in devices with higher resources available,
the architecture could be replicated in many ways depending on
the primary interest, high character capacity or elevated
throughput.

For real testing we have used a Virtex5 FX100T placed on the
development kit HTG-V5-PCIE-DDR3 [29]. A PCIExpress end-point
was also implemented and properly connected with the architec-
ture. The working flow starts in an input buffer which feeds the
architecture with the packets to be analyzed. During the process-
ing, an output buffer saves the identifiers of signatures founded
in the packet. The result is then transferred to the PC. The transfer-
ence between hardware accelerator and the PC is held through Di-
rect Memory Access (DMA) technique. Randomly generated
packets containing some signatures were passed to the architec-
ture, all the signatures were successfully detected. Running at
125 MHz the throughput of the architecture was of is 4 Gbps.
6. Conclusions and future work

The main objective of this work is to lower the resources
requirements when more than one character are processed per
clock cycle. The motivation is to obtain high throughput and high
character capacity. To meet this objective, we proposed a not naïve
architecture, meaning that we avoid as much as possible the hard-
ware replication as a choice for elevating the throughput. We chose
instead, a cost-effective string alignment detection phase and an
efficient signature matching phase working together. To attain this
objective we propose a two partitioning levels that combined allow
resource sharing. In doing so a reduction of more than 50% in the
hardware cost regarding the naive approach is achieved. The pro-
posed partitioning criteria were, the unique substrings and the
security threshold. They allow to group a large amount of signa-
Chars. LE (char.) Bit (char.) Thput. (Gbps)

84403 0.47 0 6.4
21592 0.84 0 8.3
19584 0.65 0 7.3
19021 1.4 0 8
3028 1.5 0 11.6
20235 1.65 0 3.26
16028 1.89 0 7.27
15000 2.2 0 7.46
17592 3.56 0 9.7
2457 19.4 0 8
25642 n/a n/a 10.5
109467 0.63 61 7.4
>700 K n/a n/a 3.2
36359 n/a 4 4
105763 0.052 17.7 2.4
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tures in a few partitions where the resources are shared, at the
same time, several characters are accepted as input.

It was also demonstrated that our architecture is more efficient
on large signatures set, presenting a reduction of the hardware cost
per character, while the set size increase. Due to the reduced hard-
ware cost several instances of the architecture can be placed to-
gether to match up to more than 400 K characters for larger
devices, while attaining an elevated throughput. It is also possible
to increase the aggregated throughput by replicating several times
the same architecture.

As future work we study the addition of memory based string
matchers to work in parallel with the logic-based ones. On this
way to exhaustively use this two kind of resources, i.e. Logic Cells
and Memory Blocks, in order to achieve higher character capacity.
References

[1] SONET:www.sonet.com.
[2] W. Jiang, Y.-H. Yang, V. Prasanna, Scalable multi-pipeline architecture for high

performance multi-pattern string matching, in: 2010 IEEE International
Symposium on Parallel Distributed Processing (IPDPS), 2010, pp. 1–12.

[3] J.M.B. Serrano, J.H. Palancar, String alignment pre-detection using unique
subsequences for FPGA-based network intrusion detection, Computer
Communications 35 (6) (2012) 720–728.

[4] I. Sourdis, D. Pnevmatikatos, Fast- large-scale string match for a 10 Gbps FPGA-
based network intrusion detection system, in: P.Y.K. Cheung, G.
Constantinides (Eds.), Field Programmable Logic and Application, Lecture
Notes in Computer Science, vol. 2778, Springer, Berlin/Heidelberg, 2003, pp.
880–889.

[5] I. Sourdis, D. Pnevmatikatos, Pre-decoded cams for efficient and high-speed
NIDS pattern matching, in: Proceedings of the 12th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, FCCM’04, IEEE Computer
Society, Washington, DC, USA, 2004, pp. 258–267.

[6] J. Sung, S. Kang, Y. Lee, T. Kwon, B. Kim, A multi-gigabit rate deep packet
inspection algorithm using TCAM, in: Global Telecommunications Conference,
GLOBECOM’05, vol. 1, IEEE, 2005, p. 5.

[7] Z.K. Baker, V.K. Prasanna, Automatic synthesis of efficient intrusion detection
systems on FPGAs, IEEE Transactions on Dependable ane Secure Computing 3
(4) (2006) 289–300.

[8] C.R. Clark, D.E. Schimmel, Scalable pattern matching for high speed networks,
in: FCCM 2004: 12th Annual IEEE Symposium on Field-Programmable Custom
Computing Machines, IEEE Computer Society, Los Alamitos, CA, USA, 2004, pp.
249–257.

[9] W. jyi Hwang, C.-M. Ou, Y.-N. Shih, C.-T.D. Lo, High throughput and low area
cost FPGA-based signature match circuit for network intrusion detection,
Journal of the Chinese Institute of Engineers 32 (3) (2009) 397–405.

[10] I. Sourdis, D. Pnevmatikatos, S. Wong, S. Vassiliadis, A reconfigurable perfect-
hashing scheme for packet inspection, in: Proceedings of 15th Int. Conf. on
Field Programmable Logic and Applications, 2005, pp. 644–647.

[11] Y.-H.E. Yang, W. Jiang, V.K. Prasanna, Compact architecture for high-
throughput regular expression matching on FPGA, in: ANCS ’08: Proceedings
of the 4th ACM/IEEE Symposium on Architectures for Networking and
Communications Systems, ACM, New York, NY, USA, 2008, pp. 30–39.

[12] Hiroki Nakahara, Tsutomu Sasao, Munehiro Matsuura, A regular expression
matching circuit: decomposed non-deterministic realization with prefix
sharing and multi-character transition, Microprocessors and Microsystems
36 (8) (2012) 644–664.

[13] B.C. Brodie, D.E. Taylor, R.K. Cytron, A scalable architecture for high-
throughput regular-expression pattern matching, SIGARCH Computer
Architecture News 34 (2) (2006) 191–202.

[14] Y.-H.E. Yang, H. Le, V.K. Prasanna, High performance dictionary-based string
matching for deep packet inspection, in: Proceedings of the 29th Conference
on Information Communications, INFOCOM’10, IEEE, 2010, pp. 86–90.

[15] Y.H. Cho, W.H. Mangione-Smith, Deep network packet filter design for
reconfigurable devices, ACM Transactions on Embedded Computing Systems
7 (2) (2008) 1–26.

[16] Y.-K. Chang, C.-R. Chang, C.-C. Su, The cost effective pre-processing based NFA
pattern matching architecture for NIDS, in: Proceedings of the 2010 24th IEEE
International Conference on Advanced Information Networking and
Applications, AINA ’10, IEEE Computer Society, Washington, DC, USA, 2010,
pp. 385–391.

[17] K.-K. Tseng, Y.-C. Lai, Y.-D. Lin, T.-H. Lee, A fast scalable automaton-matching
accelerator for embedded content processors, ACM Transactions on Embedded
Computing Systems 8 (3) (2009) 19:1–19:30.

[18] K.-K. Tseng, Y.-L. Lai, C.-C. Chen, C.-Y. Hsu, A fuzzy-updated cache of
automaton-matching for embedded network processor, Journal of Circuits,
Systems, and Computers (JCSC) 20 (3) (2010) 401–415.
[19] A. Kennedy, X. Wang, Z. Liu, B. Liu, Ultra-high throughput string matching for
deep packet inspection, in: Proceedings of the Conference on Design,
Automation and Test in Europe, DATE ’10, European Design and Automation
Association, 3001 Leuven, Belgium, Belgium, 2010, pp. 399–404.

[20] C.-H. Lin, S.-C. Chang, Efficient pattern matching algorithm for memory
architecture, IEEE Transactions on Very Large Scale Integration Systems 19 (1)
(2011) 33–41.

[21] Y. Xu, L. Ma, Z. Liu, H.J. Chao, A multi-dimensional progressive perfect hashing
for high-speed string matching, in: Proceedings of the 2011 ACM/IEEE Seventh
Symposium on Architectures for Networking and Communications Systems,
ANCS ’11, IEEE Computer Society, Washington, DC, USA, 2011, pp. 167–177.

[22] C.R. Meiners, J. Patel, E. Norige, E. Torng, A.X. Liu, Fast regular expression
matching using small TCAMs for network intrusion detection and prevention
systems, in: Proceedings of the 19th USENIX Conference on Security, USENIX
Association, Berkeley, CA, USA, 2011, p. 8.

[23] X.A. Liu, C.R. Meiners, E. Torng, Regular Expression Matching Using TCAMs for
Network Intrusion Detection, US Patent 20,120,072,380, March 2012.

[24] K. Peng, Q. Dong, M. Chen, Tcam-based DFA deflation: a novel approach to fast
and scalable regular expression matching, in: Proceedings of the Nineteenth
International Workshop on Quality of Service, IWQoS ’11, vol. 13, IEEE Press,
San Jose, California, Piscataway, NJ, USA, 2011, pp. 13:1–13:3.

[25] S. Yun, An efficient TCAM-based implementation of multipattern matching
using covered state encoding, IEEE Transactions on Computers 61 (2) (2012)
213–221.

[26] N.B. Guinde, S.G. Ziavras, Efficient hardware support for pattern matching in
network intrusion detection, Computers & Security 29 (7) (2010) 756–769.

[27] Y.-H.C.T.-W.K.R.-J.C.J.-L.L.C.D.P. Shi-Jinn Horng, Ming-Yang Su, A novel
intrusion detection system based on hierarchical clustering and support
vector machines, Expert Systems with Applications 38 (2011) 306–313.

[28] V. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, New
York, NY, 1995.

[29] www.hitechglobal.com, 2012.

José M. Bande received the B.Eng from Telecommuni-
cations and Electronics Engineering at the Jose Antonio
Hechevarria University, (CUJAE), in 2009. He is currently
a PhD student in the Advanced Technologies Applica-
tions Centre (CENATAV). His research interests include
High Performance Computing and Reconfigurable
Computing.
José Hernández Palancar works in the Advanced
Technologies Application Center (CENATAV) from 2003,
place where he is a Senior Researcher and Deputy
Director for Applied Research, before he was the Head of
Data Mining Department. In CENATAV his research
interests focus on Parallel Processing applied to Data
Mining and Pattern Recognition algorithms and Bio-
metric.
René Cumplido received the B.Eng. from the Instituto
Tecnologico de Queretaro, Mexico, in 1995. He received
the M.Sc. degree from CINVESTAV Guadalajara, Mexico,
in 1997 and the Ph.D. degree from Loughborough Uni-
verity, UK in 2001. Since 2002 he is a professor at the
Computer Science Department at INAOE in Puebla,
Mexico. His research interests include the use of FPGA
technologies, custom architectures and reconfigurable
computing applications. He is co-founder and Chair of
the ReConFig international conference and founder
editor-in-chief of the International Journal of Reconfig-
urable Computing. He also serves as associate editor of

several international journals.

http://refhub.elsevier.com/S0141-9331(13)00099-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0005
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0010
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0015
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0015
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0015
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0015
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0015
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0020
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0025
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0025
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0025
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0030
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0030
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0030
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0030
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0030
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0035
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0035
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0035
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0040
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0045
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0045
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0045
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0045
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0050
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0050
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0050
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0055
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0060
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0060
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0060
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0065
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0070
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0070
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0070
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0075
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0075
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0075
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0080
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0080
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0080
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0080
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0080
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0085
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0085
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0085
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0090
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0090
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0090
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0090
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0090
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0095
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0095
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0095
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0095
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0095
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0100
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0100
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0100
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0100
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0100
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0105
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0105
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0105
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0110
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0110
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0115
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0115
http://refhub.elsevier.com/S0141-9331(13)00099-9/h0115

	Multi-character cost-effective and high throughput architecture  for content scanning
	1 Introduction
	2 Related work
	3 Partitioning scheme
	3.1 Partitioning based on unique substrings
	3.2 Partitioning based on security threshold

	4 Architecture
	4.1 Alignment detection phase
	4.2 Signature matching phase

	5 Implementation, results, and comparisons
	6 Conclusions and future work
	References


