
High Throughput Signature Based Platform

for Network Intrusion Detection

José Manuel Bande Serrano1, José Hernández Palancar1, and René Cumplido2

1 Advanced Technologies Application Center, 7ma A � 21406, e/ 214 y 216, Siboney,
Playa, CP: 12200, Havana, Cuba

{jbande,jpalancar}@cenatav.co.cu
http://www.cenatav.co.cu

2 Instituto Nacional de Astrof́ısica Optica y Electrónica, Luis E. Erro 1, Sta. Ma.
Tonanzintla, Puebla, 72840, México

rcumplido@inaoep.mx

Abstract. In this work we propose the intensive use of embedded mem-
ory blocks and logic blocks of the FPGA device for signature matching.
In our approach we arrange signatures in memory arrays (MA) of em-
bedded memory blocks, so that every signature is matched in one clock
cycle. The matching logic is shared among all the signatures in one MA.
In addition, we propose a character recodification method that allows
memory bits savings, leading to a low byte/character cost. For fast mem-
ory addressing we employ the unique substring detection, in doing so we
process four bytes per clock cycle while hardware replication is signifi-
cantly reduced.

Keywords: NIDS, string matching, content scanning, FPGA, unique
substrings.

1 Introduction

Network Intrusion Detection Systems (NIDS) are designated to protect net-
works and services against attacks executed by insiders or outsiders. There are
three kinds of NIDS: Signature-based, Misuse-based and Anomaly-based [1]. In
Signature-based data flow is scrutinized in the search of attacks with signa-
tures known beforehand. In Misuse-based signatures are automatically discov-
ered through Supervised Learning methods. Finally, Anomaly-based, assumes
that intrusions are, by nature, deviations from normal behavior. Of the three,
only Anomaly-based intrusion detection is capable of detecting unknown
attacks [1].

Although much progress has been made in Anomaly and Misuse-based detec-
tion, a fast and efficient signatures detection is still needed. The reason is that
the types of NIDs exposed before, represent the natural mechanics of learning.
This is, the unknown knowledge is perceived, then is characterized, and finally
it becomes part of the current knowledge. In this integration, signature-based
detection becomes into the first line of defense, because it makes, or helps to
make decisions based on the current knowledge, as fast as possible [2].

J. Ruiz-ShulcloperandG. Sanniti di Baja (Eds.): CIARP 2013, Part II, LNCS 8259, pp. 544–551, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



High Throughput Signature Based Platform for Network Intrusion Detection 545

Since the speed of data streams will continue to grow for the next years, and
fast responses to attacks are necessary in high security environments, signature
matching is an active field of research. This demanding environment requires
hardware solutions. In that direction, we propose a memory and logic based ar-
chitecture where signatures are compressed and stored in memory arrays. Our
matching logic allows the comparison of one signature per clock cycle. The en-
tire signature set is partitioned. From each one of resulting subsets, only one
signature is selected at each clock to be matched with the data flow. This is
carried out by a predetection step. In order to store the entire signature set in
memory we propose character recodification. In doing so the resulting architec-
ture presents a better balance in the use of memory and logic, regarding other
multi-character architectures.

The rest of the document is as follows. In the section two, we analyze the
related works, paying special attention to those multi-character architectures. In
the section three, the employed partitioning method is explained. In the section
four, the architecture is presented. Section five is dedicated to experiments and
comparisons with other works. Finally, conclusions are presented.

2 Related Works

Baker and Prassana in [3] proposed partitioning scheme that allows resource
sharing in a logic-based architecture. Hardware implementation of the well-
known string matching Shift-or algorithm is proposed in [4]. In [5], the well-
known Aho-Corassick (AC) automaton structure is shared among several string
matching modules in a time multiplexed access scheme. In [6], AC states with
similar transitions are merged. The authors propose a mechanism to efficiently
rectify the functional errors caused by the states merging. In doing so a reduction
of 24% in the cost is achieved. Guinde and Ziavras [7] proposed a compression
method for the string set where the required memory for storing the set is signif-
icantly reduced. In [11], they propose MIN-MAX algorithm for solving ambigu-
ity and overlapped matching for Character Classes with Constraint Repetitions
based Regular Expressions. A previous work was presented in [9] where the use
of unique subsequences is introduced for reducing the hardware replication. In
[8], a binary search tree state-of-the-art architecture is proposed, achieving the
lowest memory cost per character but with a limited throughput.

3 Partitioning Methods

The present work is based on the partitioning methodology presented in [9] and
then extended in [10]. Firstly, the initial signature set is partitioned into several
sets denoted as u-sets. The partitioning criterion is that, every signature in a
u-set must contain, at least, one unique substring. This is, a substring that is
not contained in any other signature of that set. This substring is named unique
substring, u-substring for short.



546 J.M. Bande Serrano, J. Hernández Palancar, and R. Cumplido

This partitioning allows that in a u-set, every signature can be mapped one-to-
one with its corresponding u-substring. Therefore to find a u-substring in some
data flow location, implies that its container signature, and no other, likely exist
in that section of data stream, so there is no need to match any other signature.
The likely-present signature is called candidate signature (CSig). This is fetched
from memory every time its corresponding u-substring is detected. The section of
data stream where the signature is expected to reside is named region of interest
(RoI). A match occurs when CSig match character by character with the data
stream, in a RoI. When extended to multi-character, it may happen that several
u-substrings match in the same clock period. In order to avoid malfunctioning, a
second partitioning is applied [10]. This is called security threshold partitioning.
The output of this matching module is the signature ID, which is the signature
address in the SMA, and a match enable output, signalling when a match occurs.

The first step in the construction of our architecture is to partition the sig-
nature set according to [9] and [10]. By using these methods, we guarantee only
one possible signature match per clock cycle, for a u-set. The main contribu-
tions of this paper regarding ours previous works consist in: a) the use memory
instead of logic, for storing signatures; b) the proposition of a character reconfig-
uration method which reduce, on average, the amount of memory bits required
per character; and c) a different efficient masking solution, allowing to match
non-uniform length signatures, using uniform hardware logic.

4 Architecture

Our method starts by representing every u-set as a matrix, with one character
per cell and one signature per row. The signatures in this matrix are displaced,
so that all u-substring first characters fall in the same column. In figure 2(a)
there are three matrices. In the signature matrix, the top one, each row contains
a signature where u-substrings are “bb”, “lb” and “tl”, respectively. The column
where all substrings begin is called aligning-column, because it works as pivot
for the Aligning. The dashed line in the figure2(a) marks the boundary between
the head, i. e., the prefix up to Aligning Column, and the tail, which is the rest
of the signature.

Since a signature matrix column, may contain repeated characters, the number
of distinct characters in a column is lower, or equal, to the alphabet size. We
build a second matrix called character matrix, the middle one in figure 2(a). This
matrix collects only distinct characters in columns from the signature matrix.
In real signature sets, the size of the character matrix columns tends to be
lower than 256. This makes possible to reencode the characters in order to save
memory. Let p be the number of characters in a character matrix column, the
number of bits required to encode the signature characters is log2(p). This is
what we have called character-recodification.

The bottom array of the figure 2(a) shows the bits that are required to store
per column. Note that some columns have 0 bits, meaning that, we do not need
to save this characters in memory. In these columns, the selected character is



High Throughput Signature Based Platform for Network Intrusion Detection 547

Fig. 1. General architecture view

always the same for any signature, so these characters lines can be hard-wired
in the matching module, consuming no memory resources.

Figure 2(b) shows a histogram where bars represent the columns count with
a specific width in bits. For a signature matrix with 1024 signatures extracted
from the Snort rule database [12], there is a reduction of at least one bit in
relation to the original character size. Note that 43 columns are six-bit wide,
saving 43 ∗ 2 = 86 bits of memory. The matrix has 136 columns, without re-
encoding 136∗8 = 1088 bits per row are required, while with re-encoding, this is
reduced to 688, leading to a reduction of 36%. In terms of memory blocks, each
of these contains 36 bits per entry, so �1088/36� = 31 are originally required,
while with our method this is reduced to �688/36� = 20. This implies that the
length of the memory entry can be shortened, making feasible the concatenation
of embedded memory blocks, storing one signature per entry.

Each signature matrix is stored in an array of memories, called Signature
Memory Array (SMA), occupying one entry per signature. The amount of entries
of a MA is restricted to 1024. Therefore, the same u-set can require several SMAs.
A Signature Matching Unit, SMU, is the basic component of our architecture,
and its objective is to match the signatures contained in one MA. In figure 1,
all but the input pipeline and the input character decoders, are components
of the SMU. It performs five main tasks. First, match u-substrings from the
data flow (Carried out by Unique Substring Detector). Second, fetch the Csig
from the SMA corresponding to a matched u-substrings (Carried out by Unique
Substring Detector and SMA). Third, align the Csig with the RoI (Carried out
by SMA, Alignment Detection Component and Character Matrix Component).
Four, execute the matching between the RoI and de Csig, comparing character
by character (Carried out by Character Decoder component, Matching logic
Component). Five, provide the match result, and the unique identifier of the
recognized signature (Carried out by Matching Logic Component).



548 J.M. Bande Serrano, J. Hernández Palancar, and R. Cumplido

(a) (b)

Fig. 2. (a)Signature Matrix example (b) Counting of columns at every width

As shown in figure 1, the architecture processes four characters per clock
cycle. These characters are decoded into bit lines, and passed through a pipeline
of register, denoted as i-pipeline. Every step in the i-pipeline, is divided into
four sections, corresponding to four characters, resulting in a total of 256 ∗ 4 bit
lines per step. The i-pipeline can be seen as a serial to parallel buffer, where the
parallel outputs feed the SMUs inputs. The input of the SMU is called Matching
window (MW). In the MW, every column of the signature matrix is related
to four consecutive sections since a RoI can present four different alignments
regarding to CSig. Therefore, the MW width, in number of sections, is the same
as the signature matrix width, multiplied by four. One of the principal tasks of
the SMU is to align the RoI with CSig in the MW, this is the process that we
have called Aligning.

The module in charge of addressing the candidate signature from the MA
is the The Unique Substrings Detector component. In this module, brute force
detection is performed to find out u-substrings in the data flow. Meaning that
every u-substring is detected by four matchers, one for each possible shift of the
signature. Since the u-substrings are of short length, the matchers consumes few
resources. The alignment detection component function is to find out the current
RoI alignment. This is carried out by finding the location of the u-substring first
character in the MW. Recall that these characters are contained in the aligning
column. Character Matrix component is consistent with the character matrix
representation as depicted figure 2. In this, a four-to-one multiplexor per matrix
cell is deployed. Once the alignment of the RoI is known, this is used to control
the array of multiplexers that performs the alignment.

The Character Decode Component receives a RoI aligned with the CSig. In
this component, the characters of the CSig are decoded and compared against
those of the RoI. There is one multiplexor per column controlled by the cur-
rent column value (CSig re-encoded character). A character match occurs when
the selected input of the multiplexor is asserted, meaning that the re-encoded
character and the character in the RoI are equal. The output of the Character



High Throughput Signature Based Platform for Network Intrusion Detection 549

Fig. 3. Matching logic component

Decoder component is a bit vector named raw matching vector, rm-vector for
short, and its length is equal to the signature matrix width. Each bit in this
vector represents a match in the corresponding column. The central idea is to
count the number of consecutive one’s in the range of bits occupied by the candi-
date signature in the rm-vector, and signal a match result, when this number is
equal to the signature size. This is performed by the Matching Logic Component
presented in figure 3. The typical way of performing this operation is by saving
a bit mask per signature with all ones out of the signature range and all zeroes
in the signature range, then perform a typical masking operation when needed.

Reconsider the example with the signature matrix width of 136 columns, an
equal number of bits would be needed to store at every memory entry, leading to
an increment of �136/36 = 4� additional memory blocks. We propose a different
approach in the architecture presented in figure 3. In this, the number of mask
bits required for the same example is reduced to only seventeen bits. The rm-
vector is split into slices. Each slice takes six consecutive bits from the rm-vector.
In the first step of the pipeline, the inner most slice of each section i.e. the closest
to the dashed line, are processed. It continues with the next slice, and so on,
until the outer most slice. The slice processing at each pipeline step is carried
out by the Matching Units (MU) located at both sides of the pipeline.

The MUs also conform a pipeline of four signals, these are: stage, index,
continuity, and match. We propose a bit mask composed by two pairs of stage
and index values, one for the head section, and one for the tail section, these are
h-stage, h-index, t-stage and t-index, respectively. These are stored in the entry
together with the signature. Stage represents the outer most slice of the rm-
vector occupied by signature, while index is a bit mask with all ones in the bits
allowed by the signature in that slice. For example, a signature with rm-vector
depicted in fig 3, whose signature has 15 characters in the head and 9 characters
in the tail, his corresponding stage and index values are: h-stage = 2, h-index =
“000111”, t-stage = 1 and t-index = “111000”. The number of bits required for
the h-stage and t-stage together is equal to the rm-vector width divided by six,



550 J.M. Bande Serrano, J. Hernández Palancar, and R. Cumplido

Table 1. Signature Matcher implementation

Virtex5FX100T implementation
Signatures Characters SMUs Frec. Thput. BRAMs LUTs LUTs/char Bit/char

3,739 112,431 7 150MHz 4.8Gbps 60 35,508 0.32 20

Table 2. Comparisons with previous works

Comparison with previous works
Arch. device Input width chars. LE/chars bit/char Thput.

Gbps

Our approach VirtexFX100T 32 112,431 0.32 20 4.8

Baker and Prasanna [3] Virtex2P100 32 19,508 0.65 0 7.3

Hwang et. al. [4] StratixERS140 32 3,028 1.5 0 11.6

Serrano et. al. [9] VirtexFX100T 32 5,024 1.62 0 5.69

Kennedy et. al. [5] Stratix 16 109,467 0.63 61 7.4

Prasanna and Le. [8] VirtexFX200T 16 217,680 n/a 11 3.2

Lin and Chang. [6] n/a 8 36,359 n/a 32 4

Guinde and Ziavras. [7] virtex2P70 8 105,763 0.052 17.7 2.4

and the indexes sum twelve bits. For the example exposed before, the overall
bits required are seventeen, compared with the original 139 bits required, this
means a reduction of 86.3%.

5 Experiments and Results

Table 1 shows the results of the architecture implementation for a signature set
of 3,739 signatures from Snort database [12]. For the Virtex-5 FX100T device
containing 64,000 logic elements (LE) and 200 embedded memory blocks, the
overall architecture occupies 60% of the resources. Table 2 shows the compari-
son against previous works. Our architecture presents the best logic cost regard-
ing to others 32-bit-width architectures. The best memory cost is presented by
Prasanna and Le [8]. However their throughput of 3.2 Gbps is achieved by using
the double port memory feature of embedded memory blocks. By applying the
same strategy, our architecture would double the throughput to 9.6 Gbps while
maintaining the same memory cost. The largest Virtex5 device has 207,360 LE,
the same architecture can be replicated up to 5 times in this device, achieving an
aggregated throughput of 24 Gbps. Likewise, we estimate a character capacity
of more than 500K characters.

6 Conclusions

We have presented a multi-character architecture which exploits intensively both,
memory and logic resources. The replication of hardware is significantly reduced,



High Throughput Signature Based Platform for Network Intrusion Detection 551

which leads to a better use of resources, lowering the cost per character compared
to others multi-character architectures. Our character re-codification method al-
lows storing one signature in a memory entry. Therefore we can compare the
entire signature in one clock cycle. In addition, we have presented a uniform ar-
chitecture capable of matching non-uniform signatures. If the double port access
feature of embedded memory blocks is used the throughput can be doubled, tak-
ing into account the capacity of larger FPGA devices, a similar implementation
as the one presented here can be replicated up to five times on a Virtex5-330T
device.

References

1. Endorf, C., Schultz, E., Mellander, J.: Intrusion detection and prevention.
Mc-Graw-Hill (2004)

2. Ghorbani, A., Lu, W., Tavallaee, M.: Network intrusion detection and prevention:
concepts and techniques, vol. 47. Springer (2010)

3. Baker, Z.K., Prasanna, V.K.: Automatic synthesis of efficient intrusion detection
systems on fpgas. IEEE Trans. Dependable Secur. Comput. 3(4), 289–300 (2006)

4. Hwang, W.J., Ou, C.M., Shih, Y.-N., Lo, C.T.D.: High throughput and low area
cost fpga-based signature match circuit for network intrusion detection. Journal of
the Chinese Institute of Engineers 32(3), 397–405 (2009)

5. Kennedy, A., Wang, X., Liu, Z., Liu, B.: Ultra-high throughput string matching for
deep packet inspection. In: Proceedings of the Conference on Design, Automation
and Test in Europe, DATE 2010, pp. 399–404 (2010)

6. Lin, C.-H., Chang, S.-C.: Efficient pattern matching algorithm for memory archi-
tecture. IEEE Trans. Very Large Scale Integr. Syst. 19(1), 33–41 (2011)

7. Guinde, N.B., Ziavras, S.G.: Efficient hardware support for pattern matching in
network intrusion detection. Computers & Security 29(7), 756–769 (2010)

8. Prasanna, V.K., Le, H.: A Memory-Efficient and Modular Approach for Large-
Scale String Pattern Matching. IEEE Transactions on Computers 62(5), 844–857
(2013)

9. Serrano, J.M.B., Palancar, J.H.: String alignment pre-detection using unique sub-
sequences for FPGA-based network intrusion detection. Computer Communica-
tions 35(6), 720–728 (2012)

10. Serrano, J.M.B., Palancar, J.H., Cumplido, R.: Multi-character cost-effective and
high throughput architecture for content scanning. In: Microprocessors and Mi-
crosystems (in press, 2013) (accepted manuscript), available online August 22:
http://authors.elsevier.com/sd/article/S0141933113000999

11. Wang, H., Pu, S., Knezek, G., Liu, J.-C.: MIN-MAX: A Counter-Based Algorithm
for Regular Expression Matching. IEEE Transactions on Parallel and Distributed
Systems 24(1), 92–103 (2013)

12. Snort, http://www.snort.org

http://authors.elsevier.com/sd/article/S0141933113000999
http://www.snort.org

	High Throughput Signature Based Platform 
for Network Intrusion Detection
	1 Introduction
	2 Related Works
	3 Partitioning Methods
	4 Architecture
	5 Experiments and Results
	6 Conclusions
	References




