
Expert Systems with Applications 39 (2012) 2203–2210
Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Hardware–software platform for computing irreducible testors

Alejandro Rojas, René Cumplido ⇑, J. Ariel Carrasco-Ochoa, Claudia Feregrino, J. Francisco Martínez-Trinidad
Computer Science Department, National Institute for Astrophysics, Optics and Electronics, Sta. Ma. Tonanzintla, Puebla 72840, Mexico

a r t i c l e i n f o
Keywords:
Feature selection
Testor theory
Custom architectures
FPGAs
0957-4174/$ - see front matter � 2011 Elsevier Ltd. A
doi:10.1016/j.eswa.2011.07.004

⇑ Corresponding author.
E-mail address: rcumplido@inaoep.mx (R. Cumplid
a b s t r a c t

In pattern recognition, feature selection is a very important task for supervised classification. The
problem consists in, given a dataset where each object is described by a set of features, finding a subset
of the original features such that a classifier that runs on data containing only these features would reach
high classification accuracy. A useful way to find this subset of the original features is through testor
theory. A testor is defined as a subset of the original features that allows differentiating objects from
different classes. Testors are very useful particularly when object descriptions contain both numeric
and non-numeric features. Computing testors for feature selection is a very complex problem due to
exponential complexity, with respect to the number of features, of algorithms based on testor theory.
Hardware implementation of testor computing algorithms helps to improve their performance taking
advantage of parallel processing for verifying if a feature subset is a testor in a single clock cycle. This
paper introduces an efficient hardware–software platform for computing irreducible testors for feature
selection in pattern recognition. Results of implementing the proposed platform using a FPGA-based
prototyping board are presented and discussed.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Reconfigurable computing based on the combination of conven-
tional microprocessors and field programmable gate arrays
(FPGAs), has become increasingly popular for implementing
special-purpose hardware to accelerate complex tasks. Usually an
FPGA-based implementation is embedded in a PC or workstation,
which drives its activity and manages the results. Following this
trend, we developed an efficient hardware–software platform for
computing irreducible testors (Lazo-Cortés, Ruiz-shulcloper, &
Alba-cabrera, 2001) for feature selection in pattern recognition
(Al-Ani, 2009; Chen, Tseng, & Hong, 2008; Jain & Zongker, 1997;
Kwan & Choi, 2002; Liu & Setiono, 1998).

The feature selection problem in pattern recognition consists in,
given a dataset where each object is described by a set of features,
finding a subset of the original features such that a classifier that
runs on data containing only these features would reach higher
classification accuracy. This procedure can reduce not only the cost
of recognition by reducing the number of features to be collected,
but in some cases it can also provide better classification accuracy.
For this task, a higher performance with lower computational
effort is expected (Kwan & Choi, 2002). Several algorithms have
been proposed for feature selection, however, most of them were
developed for numeric features (Guyon & Elisseeff, 2003; Jain &
Zongker, 1997). We chose BT, an algorithm based on testor theory,
ll rights reserved.

o).
which can be applied on datasets described with both numeric and
non-numeric features, even when there are missing data. Although
the theoretical aspect of computing irreducible testors is advanced
(Asaithambi & Valev, 2004; Djukova, 2005; Kudryavtsev, 2006;
Martínez-Trinidad & Guzmán-Arenas, 2001; Valev & Sankur,
2004), there are not practical hardware implementations reported
previously, excepting our previous works.

In our first work, an architectural design based on a brute force
approach for computing testors was proposed (Cumplido, Carrasco,
& Feregrino, 2006). In this first approach, each candidate was gen-
erated by a counter that incremented its value by 1 on each itera-
tion. The architecture is able to evaluate if a candidate is a testor in
a single clock cycle, however, the architecture did not exploit the
characteristics of a particular data set that could allow to signifi-
cantly reduce the number of candidates tested. The next step in
our architectural design (Rojas, Cumplido, Carrasco-Ochoa, Feregri-
no, & Martnez-Trinidad, 2007) was the implementation of BT
algorithm for computing testors where a candidate generator that
jumps over unnecessary candidates allows reducing the number of
comparisons needed in the brute force approach. These two previ-
ous works compute the whole set of testors, however for pattern
recognition applications where testor theory can be applied, it is
important to obtain only testos that are irreducible. Thus, as the
next step in our design, this work proposes a hardware–software
platform for computing only irreducible testors. This platform
consists of the combination of a specialized hardware architecture
that is implemented on a commercial FPGA-based prototyping
board and a host application running on a PC. The architecture

http://dx.doi.org/10.1016/j.eswa.2011.07.004
mailto:rcumplido@inaoep.mx
http://dx.doi.org/10.1016/j.eswa.2011.07.004
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


Table 1
N-tuples omitted by step 3.

2204 A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210
implements the BT algorithm, as in Rojas et al. (2007), but it also
includes a new module that eliminates most of the testors that
are not irreducible before transferring them to the host application
for final processing.

The intensive computational requirements due to the exponen-
tial complexity, with respect to the number of features, of the
testor theory based algorithms can be met by a combination of
technological improvements and efficient hardware architectures
based on parallel computational models. Specific parallel architec-
tures can be designed to exploit the parallelism found in the
irreducible testor computing algorithms. Further optimizations
such as incremental processing and the use of multiple processing
elements are also possible.

2. Computing irreducible testors

In pattern recognition, feature selection is a very important
task for supervised classification. A useful way to do this selec-
tion is through testor theory. The concept of testor for pattern
recognition was introduced by Dmitriev, Zhuravlev, and Krende-
liev (1966). They defined a testor as a subset of features that al-
lows differentiating objects from different classes. Testors are
quite useful, especially when object descriptions contain both
numeric and nonnumeric features, and maybe they are incom-
plete (mixed incomplete data) (Martínez-Trinidad & Guzmán-
Arenas, 2001).

Let TM be a training matrix with K objects described through N
features of any type (x1, . . . ,xN) and grouped in r classes. Let DM be
a dissimilarity Boolean matrix (0 = similar, 1 = dissimilar), obtained
from feature by feature comparisons of every pair of objects from
TM belonging to different classes. DM has N columns and M rows,
where M� K.

Testors and irreducible testors are defined as follows:

Definition 1. A subset of features T is a testor if and only if when
all features are eliminated from DM, except those from T, there is
not any row of DM with only 0s.
Definition 2. A subset of features T is an irreducible testor if and
only if T is a testor and there is not any other testor T0 such that
T0 � T.

In Definition 1, if there is not any row of DM with only 0’s it
means that there is not a pair of objects from different classes that
are similar on all the features of T, that is, a testor T allows
differentiating between objects from different classes.

The number of rows in DM could be too large, therefore a
strategy to reduce this matrix without losing relevant information
for computing irreducible testors was introduced by Lazo-Cortés
et al. (2001).

Definition 3. If t and p are two rows of DM, then p is a sub-row of t
if and only if:
(a) t has 1 everywhere p has 1
(b) there is at least one column such that t has 1 and p has 0.
Definition 4. A row t of DM is a basic row of DM if and only if DM
does not have any other row t0 such that t0 is a sub-row of t.
Definition 5. The matrix that contains only the basic rows of DM is
called basic matrix and is denoted by BM.

Let TT(M) be the set of all irreducible testors of the Boolean matrix
M, then
Proposition 1. TT(DM) = TT(BM).

This proposition indicates that the set of all irreducible testors
calculated using DM or BM is the same (Lazo-Cortés et al., 2001).
However, BM is smaller than DM and the construction of BM from
DM is a very fast process, for example, the time for obtaining a BM
matrix with 48 columns and 32 rows from a DM matrix with 48
columns and 193,753 rows, is about 0.21 s on a PC with an Intel
Centrino Duo processor running at 1.6 GHz, with 1024 MB of RAM.

There are two kinds of algorithms for computing irreducible
testors: the internal scale algorithms and the external scale
algorithms. The former analyzes the matrix to find out some condi-
tions that guarantee that a subset of features is an irreducible
testor. The latter looks for irreducible testors over the whole power
set of features; algorithms that search from the empty set to the
whole feature set are called Bottom–Top algorithms and algorithms
that search from the whole feature set to the empty set are called
Top–Bottom algorithms. The selected algorithm is a Bottom–Top
external scale algorithm, called BT (Sánchez-Díaz & Lazo-Cortés,
2002). This algorithm was selected because of its simplicity and
inherent parallelism which can be easily exploited in a hardware
architecture.

In order to review all the search space, BT codifies the feature
subsets as binary N-tuples where 0 indicates that the associated
feature is not included and 1 indicates that the associated feature
is included (some examples can be seen in Table 1). For computing
testors, BT follows the order induced by the binary natural num-
bers, this is, from the empty set to the whole feature set. The BT
algorithm is as follows:

1. Generate first no null N-tuple
a ¼ ða1; . . . ;aNÞ ¼ ð0; . . . ;0;1Þ:
2. Determine if the generated N-tuple a is a testor of BM.
3. If a is a testor of BM, store it and take
a0 ¼ ½ðaÞb þ 2N�k�tuple;
where k is the index of the last 1 in a and (a)b represents the natural
number corresponding to a and [(a)b + 2N�k]tuple represents the tu-
ple associated with the natural number (a)b + 2N�k.
4. If ais not a testor of BM, determine the first row v of BM with

only 0’s in the columns where a has 1’s and generate a0 as:
a0j ¼
aj j < k;

1 j ¼ k;

0 j > k;

8><
>:
where k is the index of the last 1 in v.
5. Take a = a0.
6. If ais not after (1,1, . . .,1,1) then, go to 3.
7. Eliminate from the stored testors those which are not irreduc-

ible testors.

Step 3 jumps over all the supersets that can be constructed from
a by adding 1’s (features) after the last 1 in a. For example if N = 9
and a = (0,1,1,0,0,1,0,0,0) then k = 6 and the following
2N�k � 1 = 29�6 � 1 = 7 N-tuples represent supersets of the feature



Table 3
Basic matrix with N = 5 columns and M = 2 rows.

BM x1 x2 x3 x4 x5

v1 0 0 1 0 0
v2 0 1 0 0 0

Fig. 1. Route of BT through the search space for computing

Table 2
N-tuples omitted by step 4.

A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210 2205
set represented by a, which is a testor, and therefore these super-
sets are testors but they are not irreducible testors, as it can be
seen in Table 1.

Step 4 jumps over all the sets (N-tuples) that can not be a testor
according to definition 1, because for any combination of 0’s and
1’s in those N-tuples, the row v of BM has 0’s in those positions.
For example if a = (011001001) and v = (100100000) following step
4, the next N-tuple to be verified will be a0 = (011100000) which
has 1 in at least one position where v has 1 (in this case x4). Note
that all the N-tuples between a and the next N-tuple to be verified
are not testors, because of v, as it can be seen in Table 2.

For example, consider the basic matrix of Table 3. Although not
all N-tuples are generated and evaluated, Fig. 1 shows all the
search space, in order to illustrate the jumps that BT algorithm
would perform.

In Fig. 1, only the N-tuples marked with ‘‘*’’ are verified by BT in
order to compute the irreducible testors of the BM of Table 1. The
shadowed N-tuples do not need to be neither generated nor veri-
fied. At the end, only 01100 and 11100 are stored, and from them
the irreducible testors of the basic matrix of Table 3.



Virtex II XC2V3000

XtremeDSP Board

Output
File

Prog. File

Testor StreamPCI
Interface

Input
Matrix

Control Unit

FIFOBT
Architecture

Fig. 2. Proposed hardware–software platform.

Candidate
Generator

BM Dismiss
Testorsrst

clk

enabled

testor

done

N
N

N

Vx

Is_testor

Candidate

Fig. 3. BT architecture.

...
V1

VM

PE

N...

N
Candidate Is_Testor

V

...

Is_Testor

...
. . .

BM Row

...

Fig. 4. BM module.

2206 A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210
only 01100 is an irreducible testor, therefore 11100 is eliminated
by step 7. Finally, the set of all irreducible testors, for this example,
is {{x2,x3}}.

3. Proposed platform

Since algorithms for computing all irreducible testors have
exponential complexity, with respect to the number of columns
in BM, software based implementations do not provide reasonable
performance for practical problems. An interesting alternative is to
migrate to custom hardware architectures based on programmable
logic to take advantage of the parallelism inherent in this type of
algorithms. This work is a continuation of our previous work (Rojas
et al., 2007) and reports the development of a hardware–software
platform for computing irreducible testors using the BT algorithm.
The proposed platform is shown in the Fig. 2. A description of all
the platform modules is given in the next sections.

4. Hardware architecture

The process of deciding if an N-tuple is a testor of BM involves
comparing the candidate against each one of the BM’s rows. For
software-only implementations, this is a big disadvantage, in
particular for large matrices with many rows. The proposed
hardware architecture exploits the parallelism inherent in the BT
algorithm and evaluates whether a candidate is a testor or not in
a single clock cycle. It is composed by three main modules as seen
in Fig. 3. The BM module stores the input matrix and includes logic
to decide if an N-tuple is a testor. The candidate generator module
produces the candidates (N-tuples) to be evaluated by the BM
module. In order to calculate the next candidate according to the
BT algorithm, the architecture feedbacks the evaluation result of
the previous candidate to the generator module, this allows to
drastically reduce the number of candidates tested thus the
number of iterations needed by the algorithm. At this point, the
architecture is able to obtain all testors of BM, however since only
irreducible testors are of interest, a final hardware processing
module eliminates most of the testors that are not irreducible
before sending the remaining testors to the software for final pro-
cessing. The dismiss module exploits the way consecutive testors
are obtained. If a testor is a superset of at least one previous testor,
it is not an irreducible testor, thus it is eliminated. This final
process does not introduce delays, thus the architecture is still
capable of evaluating a candidate in a single clock cycle.

The BM module is composed of M sub-modules named Vx, as
shown in Fig. 4. Each Vx module contains a row (N bits) of the



Register

Jump_2

Jump_1

N

Is_Testor

V

clk
reset

N
Candidate

Done

N

Increase
+

Overflow

Priority
Encoder Rearranging

M

Fig. 5. Candidate generator module.

A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210 2207
BM matrix and logic to perform testor evaluation. To decide if an N-
tuple is a testor, a bitwise AND operation is performed between the
constant stored in each Vx module and the current candidate. If at
least one bit of the AND operation result is TRUE, then the output
istestor of that particular Vx sub-module will be TRUE, and if the
outputs of all Vx sub-modules are TRUE, then the output istestor
of the BM module will be TRUE, which means that the candidate
is declared a testor of BM.

When a candidate fails to be a testor of BM, the output V of the
BM module contains the value of the row closest to the top that
caused the failure. If the candidate is declared as testor, the output
V is just ignored. The value of V is obtained by using the output of a
priority encoder as the select signal of a multiplexer that can select
among all the rows of BM. This is similar to having a read address
in a register file to access the value stored in a particular row.

The candidate generator module uses the feedback from the BM
module to calculate the next candidate to be evaluated. As speci-
fied by the BT algorithm, there are two ways of generating the next
candidate according to the evaluation result of the previous one.
The candidate generator module (Fig. 5) consists of two sub-mod-
ules, the first sub-module (jump_1) generates the next candidate
when the previous one is a testor and the second sub-module
(jump_2) generates the next candidate when the previous one fails
to be a testor. The next candidate is selected by a multiplexer
according to the evaluation result of the previous candidate.

The jump_1 sub-module uses a priority encoder to obtain the
index, k, of the last ‘1’ in the previous candidate value. The next
candidate value is obtained by adding 2N�k to the previous candi-
date as indicated by the step 3 of the BT algorithm.
Fig. 6. Dismiss tes
Besides the value of the previous candidate, the jump_2 sub-
module uses an input V that contains the value of the row of BM
that caused the previous candidate not to be a testor. A priority
decoder obtains the index k of the last ‘1’ of V. By taking the value
of the previous candidate, the next candidate is obtained by letting
all bits to the left of the kth position unchanged, the bits to the
right are changed to ‘0’, and the kth bit is set to ‘1’. See step 4 of
the algorithm.

The dismiss testors (DT) module (Fig. 6) discards some candi-
dates that were evaluated as testors in the BM module, but they
are supersets of other testors, thus they are not irreducible testors.
The DT module has a predefined number of REG_DT sub-modules
that store equal number of testors. These sub-modules are initial-
ized with the N-tuple 1, . . . ,11. A new testor is evaluated in each
sub-module. If the input testor is a superset of any of the stored
ones, it must be disposed, else, it is sent to the output testor and
furthermore, it is stored in the first REG_DT sub-module. Each time
a new testor is stored, each REG_DT sub-module passes its value to
the next one. As the number of registers within the REG_DT sub-
modules is limited, a discarding policy must be implemented to
delete a testor once all sub-modules are filled. Because the last
testor is more likely to be a superset of one or more of the previ-
ously generated testors, the selected discarding policy consists in
eliminating the oldest testor stored within the DT module.

On each REG_DT sub-module, a bitwise AND operation is
performed between the stored value in the register and the input
Candidate. The N-tuple stored is compared again, this time against
the result of the previous operation. If both are equal, it means that
the input testor is a superset of the stored one. The output of each
REG_DT sub-module always takes the value stored in the register,
moving out this value to the next register in case of being
necessary.

The used prototyping kit allows partitioning the functionality of
the application between software and hardware effectively. It
provides a set of functions that allows the user to communicate
data between the hardware architecture in the FPGA and the host
application running on the PC using high level calls. An interface
core provided with the kit offers a communication mechanism to
build a simplified interface for connecting the user architecture
in the FPGA to the PCI bus using a FIFO memory as buffer. This
abstracts the complexities of the communication process. In turn,
for the host application, a set of Application Program Interfaces
(APIs) provides functions for sending and receiving data from
across the PCI (XtremeDSP, xxxx).

Table 4 summarizes experiments made for deciding the appro-
priate number of registers in the dismiss testors module. As results
tors module.



Table 4
Remaining testors using the dismiss testors module, with different amount of REG_DT sub-modules.

BM Received Amount of registers in the dismiss testors module

Testors 8 16 32 64 128 256 512 1024

21 173,957 57,020 36,243 26,014 19,943 15,081 11,934 9,965 7,870
22 280,926 85,624 51,667 36,643 27,302 20,776 16,875 13,978 11,176
23 476,445 134,068 80,296 55,491 39,314 28,679 22,982 18,852 14,800
24 822,454 214,127 121,877 79,440 55,398 40,731 32,869 26,962 21,348
25 1,483,468 352,075 192,316 124,136 84,781 59,736 47,075 37,549 29,356
26 2,506,239 537,179 281,416 176,384 117,335 84,304 67,515 54,513 42,936
27 4,492,643 839,811 443,758 272,190 175,103 123,866 98,442 77,682 61,278
28 6,712,871 1,236,039 637,972 385,418 246,115 170,057 133,463 105,581 84,056
29 9,956,854 1,727,804 892,049 551,305 355,303 247,730 193,879 151,596 120,986

Fig. 7. User interface for BT hardware–software platform.

Fig. 8. BM input file format.

Table 5
Processing time in seconds (broken down for each stage) for 45X100 low, medium
and high density matrices.

Stages Low density Medium density High density

HW/SW SW-O HW/SW SW-O HW/SW SW-O

Load BM 0.031 0.031 0.031 0.031 0.032 0.031
BM arrangement 0.281 0.281 0.281 0.024 0.282 0.01
Files creation 0.032 N/A1 0.031 N/A1 0.046 N/A1

Synthesis 691 N/A1 1,032 N/A1 930 N/A1

IT2 computing 316 170,830 1,303 51,777 8 0.06
TOTAL 1,008 170,831 2,336 51,778 939 0.11

1 Not Applicable.
2 Irreducible testors.

2208 A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210
show, the more REG_DT sub-modules, the higher the percentage of
non irreducible testors eliminated. However, as the number of
REG_DT sub-modules impacts directly on hardware requirements,
we concluded that 16 REG_DT provide a good tradeoff for two
reasons: (1) the percentage of non irreducible testors eliminated
was always over 79%; and (2) as shown in Table 7 (in Section 6),
the hardware requirements are still modest when compared
against the rest of the architecture. This number of REG_DT is used
for all the experiments.
5. Software description

The software component of the hardware–software platform
works as an interface between the user, the computer, and the
FPGA board. Fig. 7 shows the user interface, which requests the
location of the input file containing the basic matrix, and allows
starting and stopping the irreducible testor computing process.
The input data file must be in plain text following the format
shown in Fig. 8.

The process of deciding if a testor obtained by the architecture
is an irreducible testor by the host application is straightforward. It
consists in deciding for each new testor, if it is a superset of any
previously stored testor, which indicates that the new testor is
not an irreducible testor, and it must be discarded. This process
starts once the first testor is received by the host application, from
that moment until the last testor is received, both the hardware
architecture and the host application work alternately. Thus the
processing times reported in Table 5 for the irreducible testors
processing is mostly the time spent by the hardware architecture
to produce the testors, including the time needed for deciding
which of the testors obtained by the architecture are indeed irre-
ducible testor. The platform is able to extract all irreducible testors
independently of the number of Reg_DTs. The purpose of the DT
module is to reduce the number of testors sent to the host applica-
tion in order to avoid having a bottleneck in the system. The
amount of the reduction can be seen in Table 4.

The testor computing process begins when the user clicks the
Start button. First the basic matrix is read from the input file. Once
the matrix is loaded into the computer’s memory, the basic matrix
is reorganized by swapping rows and columns in such a way the
resulting basic matrix is close to be a lower-left-triangular matrix,
this with the purpose of optimizing the jumps that BT algorithm
performs. Afterward, in order to complete the project files, three
VHDL files are generated and used to create a project for ISE
(implementation tool from Xilinx), which produces the program-
ming file for the FPGA device.

In the next stage, the interaction between hardware and soft-
ware is started. First, the board and the FPGA are located, then
the device is programmed with the bit-file obtained from the
previous stage, and both, the board and the device are initialized.
Now, the hardware architecture starts computing testors. Each
testor is temporally stored in a FIFO memory, when there are
512 elements in the FIFO they are sent to the software through
the PCI bus. The software stores the incoming testor set into a
buffer. When the buffer is full, the hardware is paused while a
selection process empties the buffer by choosing and storing only
irreducible testors. After this, the hardware architecture and the
software alternate until the last candidate is verified.



Medium Density Matrices

0
5

10
15
20
25
30

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Columns

Pr
oc

es
si

ng
 ti

m
e 

(h
ou

rs
)

BTHW

BTSW

Fig. 10. Whole processing time in hours for medium density matrices.

Fig. 11. BM Whole processing time in hours for low density matrices.

Table 6
Synthesis summary of FPGA Resources utilization a operating frequency for the
architecture targeted for a Virtex-II XC2V3000 FPGA device (N = 100, M = 325).

Number of slices 11,137 (77%)
Number of 4-input LUTs 2,484 (8%)
Number of flip-flops 2,1262 (74%)
Maximum clock frequency 55.510 MHz

A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210 2209
6. Evaluation

In order to show the performance of the proposed hardware–
software platform, it was compared against a software-only imple-
mentation of the BT algorithm. For experimentation purposes,
three kinds of basic matrices were randomly generated. Each type
containing different amount of 1’s per row:

(1) High density matrices: between 90% and 98%.
(2) Low density matrices: between 4% and 12%.
(3) Medium density matrices: between 47% and 53%.

High density matrices represent datasets with well separated
classes, so it is very easy to find out subsets of features that allow
differentiating objects from different classes; in consequence it is
easy to compute all irreducible testors. On the other hand, low
density matrices represent datasets where objects from different
classes are very similar, which results in a low amount of 1’s;
therefore it is difficult to find a feature subset that allows to
distinguish between objects belonging to different classes and
computing all irreducible testors would be more difficult. Medium
density matrices contain a balanced amount of 1’s and 0’s, and they
come from datasets where the classes are not well separated, but
there still be enough difference between objects from different
classes. These are difficult matrices for computing all irreducible
testors, and in practice, most of the interesting pattern recognition
problems produce this kind of matrices.

Several basic matrices of different sizes were randomly gener-
ated for each density, from 35 to 50 columns and all of them with
100 rows. On the hardware–software platform the runtimes for the
following stages: load basic matrix to memory, matrix arrange-
ment, project files creation, synthesis of ISE project, and irreducible
testor computing (with a hardware frequency of 40 MHz), were
measured. Figs. 9–11 show graphs of the whole processing time
for high, medium and low density matrices respectively. In these
graphs, it is possible to see that the proposed platform obtains
better performance than the software-only implementation of BT
for low and medium density matrices. For high density matrices
the software-only implementation required less time, because
computing irreducible testors is very easy for this kind of matrices,
and the synthesis time required for the proposed platform is much
higher than the irreducible testor computing time.

The processing time t, of the last stage of the proposed platform,
for a specific matrix is given by:

t ¼ 2N

f

 !
c

100

� �
; ð1Þ

where f is the clock frequency of the architecture and c is the
percentage of candidates tested. Note that the value of c is data
dependent, i.e. it varies for each basic matrix, BM.

It is important to notice that the processing time for computing
irreducible testors does not only depend on the size and density of
High Density Matrices

0.00

0.05

0.10
0.15

0.20

0.25

0.30

Pr
oc

es
si

ng
 ti

m
e 

(h
ou

rs
)

BTHW

BTSW

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Columns

Fig. 9. Whole processing time in hours for high density matrices.
the BM, but also on the distribution of 0’s and 1’s inside the matrix.
This assertion can be appreciated in points 43–45 of Fig. 11.

Table 5 shows the processing time for each stage of the data
flow, for 45X100 low, medium, and high density matrices. This
table shows that the proposed platform allows running BT 169
times faster that the software-only implementation, for a 45X100
low density matrix and 22 times faster for the medium density
matrix of the same size. Moreover, taking into account only the last
stage of the data flow, the improvement over the software is 540X
for the low density matrix and 39X for the medium density one.
The only type of matrices where the proposed platform does not
perform better that the software-only BT implementation was
the high density ones, this is because of computing irreducible
testors is very fast for this kind of matrices. The software-only
implementation of BT was executed on a PC with an Intel Centrino
Duo processor running at 1.6 GHz, with 1024 MB of RAM.

The proposed platform has been designed to process variable
sizes of the BM matrix. The maximum size of the matrix that can
be implemented is only limited by the available resources on the
specific FPGA board. For example, for the Virtex-II XC2V3000 from
Xilinx (Virtex-II, xxxx) embedded on an XtremeDSP board (Xtrem-
eDSP, xxxx), the biggest medium density matrix that can fit into
the FPGA is about 100X325. Table 6 summarizes the resource
utilization for this matrix.

Finally, Table 7 summarizes the resource utilization for a
50X100 matrix for different buffer sizes on the Dismiss Testor mod-
ule, all for the same device. Although 8 and 32 are good choices, 16
results in a better trade-off between resource utilization (small
when compared against the whole architecture), and the non irre-
ducible testors eliminated (always over 79%, as Table 4 shows).



Table 7
FPGA Resource utilization for Virtex II XC2V3000 for N = 50 and M = 100 (Whole architecture vs Dismis testors module).

Resources 8 REG_DT 16 REG_DT 32 REG_DT

Whole Dismiss Whole Dismiss Whole Dismiss
Architecture Testors architecture Testors Architecture Testors

Slices 2365 338 2676 679 3331 1342
Flip-flops 1024 400 1451 800 2236 1600
LUTs 4256 258 4472 472 4871 892

2210 A. Rojas et al. / Expert Systems with Applications 39 (2012) 2203–2210
7. Discussion

The proposed hardware–software platform provides higher
processing performance than the software-only implementation
of the BT algorithm for two of the three kinds of matrices used in
the experimentation. This behavior is possible because the hard-
ware component of the proposed platform is capable of testing if
an N-tuple is a testor of a BM in a single clock cycle, independently
of the number of columns and rows, whereas software-only imple-
mentation processing time will significantly increase for matrices
with a large number of rows.

Moreover, the performance improvement is directly related to
the percentage of candidates tested (c), which heavily depends
on density and distribution of the values into the BM matrix. Proofs
for this dependence are the resulting processing times of high
density matrices. This kind of matrices has a high amount of 1’s,
thus there are low chances to find a row with only 0’s when an
N-tuple is evaluated, which results in a great reduction in the
number of operations made by the BT algorithm. This occurs in
the software-only as well as in the hardware–software implemen-
tations, but the proposed platform also needs to synthesize the
specific architecture. Therefore, the best choice for computing all
irreducible testors for high density matrices is the software-only
implementation of BT algorithm. However, most of the real world
pattern recognition problems produce medium density matrices,
where using the proposed platform is the best choice for comput-
ing all irreducible testors.

Experiment results show that the proposed platform allows
computing irreducible testors faster than the software-only imple-
mentation of the BT algorithm, with improvements in the range of
2 orders of magnitude. However, for very large real data this
improvement could be significantly higher.
8. Conclusions

The high performance of the proposed platform is feasible due
to the high level of parallelism implicit in the BT algorithm which
can be efficiently implemented on an FPGA. The proposed architec-
ture is capable of evaluating a testor candidate in a single clock
cycle for any BM matrix, regardless of the number of columns
and rows, the only limitation being the size of the FPGA device
used. The architecture provides a good trade-off between perfor-
mance and hardware resource utilization and it is suitable to be
used as a high performance processing module in a hardware-in-
the-loop approach (Gómez, 2001).

Even though the proposed architecture offers an improvement
compared with a previously reported hardware implementation,
further improvements, such as testing two or more candidates
per iteration, are still possible. Also, because resource require-
ments are relatively small, a scheme where the processing core
can be replicated will also be explored; this will effectively reduce
the processing time, in proportion to the number of processing
cores that can be accommodated on the FPGA device.

References

Al-Ani, A. (2009). A dependency-based search strategy for feature selection. Expert
Systems with Applications, 36, 12392–12398.

Asaithambi, A., & Valev, A. (2004). Construction of all non-reductible descriptors.
Pattern Recognition, 37, 1817–1823.

Chen, w. S., Tseng, S. S., & Hong, T. P. (2008). An efficient bit-based feature selection
method. Expert Systems with Applications, 34, 2858–2869.

Cumplido, R., Carrasco, A., & Feregrino, C. (2006). On the design and implementation
of a high performance configurable architecture for testor identification.
Lectures Notes on Computer Science, 4225, 665–673.

Djukova, E. V. (2005). On the number of irreducible coverings of an integer matrix.
Computational Mathematics and Mathematical Physics, 45, 903–908.

Dmitriev, A. N., Zhuravlev, Y. I., & Krendeliev, F. P. (1966). About mathematical
principles of objects and phenomena classification. Diskretni Analiz, 7, 3–17.

Gómez, M. (2001). Hardware-in-the-loop simulation. Embedded Systems
Programming, 14, 38–49.

Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
Journal of Machine Learning Research, 3, 1157–1182.

Jain, A., & Zongker, D. (1997). Feature selection: Evaluation, application, and small
sample performance. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 9, 153–158.

Kudryavtsev, V. B. (2006). Test recognition theory. Discrete Applied Mathematics, 16,
319–350.

Kwan, N., & Choi, C. H. (2002). Input feature selection for classification problems.
IEEE Transactions on Neural Networks, 13, 143–159.

Lazo-Cortés, M., Ruiz-shulcloper, J., & Alba-cabrera, E. (2001). An overview of the
evolution of the concept of testor. Pattern Recognition, 34, 753–762.

Liu, H., & Setiono, R. (1998). Some issues on scalable feature selection. Expert
Systems with Applications, 15, 333–339.

Martínez-Trinidad, J. F., & Guzmán-Arenas, A. (2001). The logical combinatorial
approach to pattern recognition an overview through selected works. Pattern
Recognition, 34, 741–751.

Rojas, A., Cumplido, R., Carrasco-Ochoa, J. A., Feregrino, C., & Martnez-Trinidad, J. f.
(2007). FPGA based architecture for computing testors. Lectures Notes on
Computer Science, 4881, 188–197.

Sánchez-Díaz, G., & Lazo-Cortés, M. (2002). Modifying BT algorithm for improving
its runtimes. Revista Ciencias Matemáticas, 20, 129–136.

Valev, V., & Sankur, B. (2004). Generalized non-reducible descriptors. Pattern
Recognition, 37, 1809–1815.

Virtex-II Pro Data Sheet Version 4.7. Xilinx Inc.
XtremeDSP Development Kit Pro User Guide Version 1.0. Xilinx Inc.


	Hardware–software platform for computing irreducible testors
	1 Introduction
	2 Computing irreducible testors
	3 Proposed platform
	4 Hardware architecture
	5 Software description
	6 Evaluation
	7 Discussion
	8 Conclusions
	References


