
IEICE Electronics Express, Vol. , No. , 1–7

A multi-cycle fixed point square
root module for FPGAs

Fernando Martin del Campo1, Alicia Morales-Reyes1, Roberto

Perez-Andrade3, Rene Cumplido1, Aldo G. Orozco-Lugo2

and Claudia Feregrino1

1 INAOE, Computer Science Department, Puebla, Mexico

2 CINVESTAV IPN, Electrical Engineering Department, D. F., Mexico

3 CINVESTAV IPN, Information Technology Laboratory, Tamps., Mexico

[martin,a.morales]@ccc.inaoep.mx, jrperez@tamps.cinvestav.mx, aorozco@cinves-

tav.mx, [rcumplido,cferegrino]@ccc.inaoep.mx

Abstract: This paper presents a module that solves the square root

by obtaining a number of more significant bits from a look-up table as

an approximate root. A set of possible roots are then appended and

squared for comparison to the original radicand, finely tuning the cal-

culation. The module stops as soon as it finds an exact root, therefore

not all entries take the same number of cycles, reducing the number

of iterations required for full resolution. The proposed FPGA module

overcomes a Xilinx’s logiCORE IP in terms of resources utilization and

in several cases latency due to its flexible structure configuration.

Keywords: Square root, non-restoring algorithm, FPGA

Classification: Electron devices, circuits, and systems

References

[1] K. Piromsopa, C. Aporntewan, and P. Chogsatitvataa, “An FPGA im-

plementation of a fixed-point square root operation”, Proc. Int. Symp.

on Communications and Information Technology, Thailand, pp. 587-589,

2001.

[2] Yamin Li andWanming Chu, “A new non-restoring square root algorithm

and its VLSI implementations”, Proc. IEEE Int. Conf. on Computer

Design: VLSI in Computers and Processors, Austin, USA, pp. 538-544,

October, 1996.

[3] Yamin Li and Wanming Chu, “Parallel-Array implementations of a non-

restoring square root algorithm”, Proc. IEEE Int. Conf. on Computer

Design: VLSI in Computers and Processors, Washington, USA, pp. 690-

695, October, 1997.

[4] Tole Sutikno, “An efficient implementation of the non restoring square

root algorithm in gate level”, Int. Journal of Computer Theory and En-

gineering, Vol. 3, no. 1, pp. 46-51, February, 2011.

[5] S. Imtiaz, M.M. Ahmed and Z.G. Sotirios, “Novel Pipelined Architec-

ture for Efficient Evaluation of the Square Root Using a Modified Non-

Restoring Algorithm”, Journal of Signal Processing and Systems, Vol.

67, pp. 157-166, September, 2010.

[6] Xilixn, Inc., “LogiCORE IP CORDIC v4.0”, Prod. specification DS249,

March, 2011.

[7] S. Samavi, A. Sadrabadi and A. Fanian, “Modular array structure for

non-restoring square root circuit”, Journal of Systems Architecture, Vol.

c© IEICE 2012

1



IEICE Electronics Express, Vol. , No. , 1–7

54, pp. 957-966, April, 2008.

[8] S. Lachowicz and H-J. Pfleiderer, “Fast Evaluation of the Square Root

and Other Nonlinear Functions in FPGA”, IEEE International Sympo-

sium on Electronic Design, Test & Applications - DELTA, pp. 474-477,

2008.

[9] F. Dinechin, M. Joldes, B. Pasca and G. Revy, “Multiplicative Square

Root Algorithms for FPGAs”, IEEE International Conference on Field

Programmable Logic and Applications, pp. 574-577, 2010.

[10] T. Kwon and J. Draper, “Floating-point division and square root using

a Taylor-series expansion algorithm”, Microelectronics Journal, Elsevier,

Vol. 40, pp. 1601-1605, 2009.

1 Introduction

The square root operation is common and widely used in several areas such as

image and signal processing, statistics, communications and design of scien-

tific engines. Calculating the square root is a complicated task thus several

techniques have been proposed to implement this operation in hardware.

Many of them use digit recurrence algorithmic approaches which were suit-

able at a time when hardware devices did not provide embedded modules

such as multipliers or RAM blocks. These modules are now available on re-

configurable fabrics easing the implementation of multiplicative square root

techniques.

In [1], a fixed-point square root module implemented on an Altera FLEX-

10K20RC240 FPGA is reported. Its maximum operation frequency is 21.36

MHz using 13% logic cells for a 48-bit radicand. This architecture only uses

an adder/subtractor and three registers performing one and two bits left shift

and storage for results.

In [2] a non-restoring square root algorithm is proposed. It focuses on the

partial remainder instead of calculating one bit’s root every iteration reduc-

ing significantly the total number of iterations. Two VLSI approaches were

implemented: a fully pipelined design which accepts a square root instruction

every clock cycle and a low-cost implementation using an adder/subtractor

and three registers. A systolic modification of [2] is presented in [3]. The

adder/subtractor unit is replaced by a systolic array using carry-save adders.

This approach reduces the calculation in 1 and 2 cycles for 16 and 32-bit

respectively, but increasing in 8 cycles for 64-bit. The approach significantly

reduces resources requirements.

In [4] a modified non-restoring square root algorithm is presented. Its

main difference is to use a subtract operation and append a binary value

01 instead of appending 11 and add to the developed root. Results for 32

and 64-bit input are characterized with a significant improvement in resource

utilization of more than 50% achieved by an Altera APEX-20KE FPGA. In

[5] another modified non-restoring technique is introduced using fix point

representation for low cost implementation. Its pipeline approach avoids a

write after read hazard by feeding register using different lines in the same
c© IEICE 2012

2



IEICE Electronics Express, Vol. , No. , 1–7

clock cycle. Results showed reduction in hardware usage, shorter latencies

and lower power consumption. Samavi et al. presented a modular array

based on add/subtract units using the non-restoring square root algorithm

[7]. Several elements are removed without accuracy loss achieving significant

reduction in the required area. The structure allows arbitrary input width.

Results showed that latency and hardware resources usage are reduced.

Multiplicative square root techniques have also been proposed considering

current hardware capabilities. In [8], a non-constant LUT based technique

is presented. It consists on an initial approximation using a square function

which allows a reduction in the LUT size. More LUT locations are needed to

store non-linear points but less points describe linear segments of the square

curve. Multipliers are used to calculate the increments iteratively. This

approach is defined for 24-bit radicand only.

In [9], a survey on square root techniques and a polynomial based mul-

tiplicative square root approach are presented. A comparison of a pipelined

digit recurrence square root for single and double precision radicand slightly

outperformed the Xilinx LogiCore in terms of hardware resources. Attention

is paid to the rounding problem which is computationally expensive. This

multiplicative approach based on polynomial approximations results in a the-

oretical latency of 25-27 cycles with maximum accuracy for 64-bit radicand.

In [10], a single precision square root operation is added to a multiply/divide

unit. The method takes advantage of the Taylor-series expansion used in

division to calculate the square root. A comparison among algorithmic ap-

proaches implemented on different GPPs shows a latency of 12 cycles achieved

by this technique.

In this article, a combination of a non-restoring square root algorithm

and a multiplicative technique is proposed. The approach takes advantage of

current reconfigurable hardware capabilities such as embedded multipliers.

To evaluate the proposed approach, a Xilinx LogiCore for square root calcu-

lation is used as reference. This highly efficient core provides a good measure

of the strengths of the proposed module.

2 Square Root Module

The algorithmic approach for the square root calculation is a combination of

a multiplicative technique and the non-restoring square root algorithm [1].

In Algorithm 1 the pseudo code is provided. Initially, the approximate root

is obtained from a look-up table using as index a number of the radicand’s

most significant bits (lines 3-4). The approximate root is appended to a set of

possible roots that are squared and compared to the original radicand (lines

7-11). A comparison tree evaluates the remainders to determine the minimal

(lines 12-20). If the minimal remainder equals zero, the exact square root

was obtained and the algorithm exits (line 22). On the contrary, the square

root with minimal remainder is updated as the new approximate root (line

24). In every iteration, the approximate root grows by a number of bits, until

reaching the least significant bit.

c© IEICE 2012

3



IEICE Electronics Express, Vol. , No. , 1–7

Algorithm 1 Square root algorithm

1: procedure sqr(X2n) ⊲ X radicand, 2n input length

2: (Qn, ..., Q0)← 0; ⊲ Qn square root

3:

(

Qn, ..., Q(n−m

2
), 0, ..., 0

)

← ⊲ Approx. root for m-bit of X’ MSB

4: ROM
[(

X2n, ..., X(2n−m)

)]

;

5: r = 2n−m

p
; ⊲ r blocks of p-bit pending for square root calculation

6: while r 6= 0 do

7: Q′

0 ← ⊲ Square root options by appending 2p solutions

8:

(

Qn, ..., Q(n−m

2
), 0p, ..., 00, 0, ..., 0

)

; ...

9: ... Q′

p
←

(

Qn, ..., Q(n−m

2
), 1p, ..., 10, 0, ..., 0

)

;

10: R0 ←
(

X − (Q′

0)
2
)

; ... ⊲ 2p remainders after subtraction from X

11: ... Rp ←

(

X −
(

Q′

p

)2
)

;

12: q ← 2p >> 1; ⊲ Comparison tree levels

13: while q 6= 0 do ⊲ Determine minimal remainder

14: if Rq < Rq−1 then

15: R′q ← Rq;

16: else

17: R′q ← Rq−1;

18: end if

19: q ← q >> 1;

20: end while

21: if R′q = 0 then

22: Break; ⊲ Exact square root had been calculated

23: else

24: Q← Q′

q
; ⊲ Solution with minimal remainder is assigned

25: r ← r − 1; ⊲ r block(s) pending for root calculation

26: end if

27: end while

28: end procedure

The new square root module operates in a similar way to a non-restoring

algorithm implementation with two main differences:

• A number of the root’s more significant bits are obtained from a look-

up table. This initial root approximation is then finely tuned. For

example, the square root of 5 is ≈ 2.236. The look-up table would

give the value of 2, and only the decimal part of the result has to be

calculated. This increases drastically the speed of the coprocessor using

very little FPGA area.

• Every iteration calculates, in parallel, a block of the root’s bits whose

size varies according to the radicand size and not only one bit as the

non-restoring original technique does. A block chart of the proposed

system is shown in Figure 1.

c© IEICE 2012

4



IEICE Electronics Express, Vol. , No. , 1–7

Fig. 1. Square root module

It is important to consider the bit length of the look-up table memory. As

more bits are added to this structure, the number of iterations to calculate

the square root decreases. However, as this length grows, the memory size

increases significantly, to the point that it is impossible to implement us-

ing FPGA’s memory blocks and even external memories available, like the

SDRAM. Defining the size of the look-up table involves a trade-off that is

particularly important in FPGA architectures.

Another advantage of the coprocessor is that it stops once an exact root is

found, so not all entries take the same number of cycles to be calculated. For

example, if the root of 14.0625 is computed, the process stops after the exact

root is calculated (3.75), even if the original number is represented by 64-bit

requiring usually 6 iterations for full resolution or 5 iterations for maximum

error of ≈ 7.15× 10−7.

3 Results and Discussion

In Table I, results obtained with characterization data for a Xilinx’s FPGA

device Virtex-5 XC5VSX35T are presented. For comparison, the first row

in the table shows performance and resource utilization for the Xilinx’s logi-

CORE IP CORDIC v4.0 configured to perform the square root calculation

[6]. This Xilinx’s IP core is selected due to being optimized for FPGA fab-

rics and therefore a fair reference for performance comparison. This module

can be configured for 16, 32 and 48-bit as maximum input width. For the

proposed architecture a 64-bit input width case is also evaluated.

For each input data size the number of radicand’s most significant bits

whose root is obtained from a LUT (and therefore the LUT’s size) is changed.

Having larger ROM sizes while maintaining the iterative block size increases

the resource utilization but not significantly. The number of multipliers used

in the comparison tree varies according to the size of the iterative block de-

fined by 2-bit for cases reported in Table I. The number of cycles required

to produce a result is also reduced while increasing the ROM size and main-

taining the same iterative block size. This is a consequence of requiring less

c© IEICE 2012

5



IEICE Electronics Express, Vol. , No. , 1–7

Input LUT-FF Max.Freq. Cycles

width pairs (MHz)

logiCORE, IP

16 461 339 16

32 1550 283 32

CORDIC v4.0 [6] 48 2860 241 48

64 – – –

16 325 197 22

4-bit ROM 32 609 197 50

2-bit iterative block 48 857 138 78

64 1139 90 106

16 328 197 15

8-bit ROM 32 618 197 43

2-bit iterative block 48 870 138 71

64 1144 90 99

16 399 197 8

12-bit ROM 32 679 197 36

2-bit iterative block 48 936 138 64

64 1196 90 92

Table I. Results comparison with characterization data for

a Xilinx’s FPGA device Virtex-5 XC5VSX35T

iterations due to the number of bits in the initial approximate root obtained

from the LUT. A more aggressive approach is to significantly increase the

size of both, the LUT memory and the iterative block, that would reflect in

an increase in the use of hardware resources with a reduction in the number

of cycles.

For 16, 32 and 48-bit input width the proposed approach presents a sig-

nificant reduction in resources utilization, when using 4, 8 and 12-bit ROM

array with 2-bit iterative block size. For 16-bit input width, a reduction of

1 and 8 clock cycles is achieved by using 8 and 12-bit ROM in comparison

to the Xilinx’s logiCORE IP CORDIC v4.0. Moreover, a minimum latency

of 4.06×−8 sec. is also achieved by the proposed non-restoring square root

algorithm. In the next section, the main conclusions of this study are pre-

sented.

4 Conclusions

In this article, a flexible approach to the square root non-restoring algorithm

is presented. Two main differences are introduced, the use of a ROM array

to obtain an approximate root of the radicand’s MSB and an iterative block

containing possible root options. ROM and iterative block sizes should be de-

fined. Having variable size in these elements reflects on the overall module’s

performance. The Xilinx’s logiCORE IP Cordic v4.0 is used for performance

reference. This IP core is designed to exploit all features available in modern

FPGAs providing a good measure of the strengths of the new proposed ap-

proach. In terms of maximum clock frequency the reference module achieves
c© IEICE 2012

6



IEICE Electronics Express, Vol. , No. , 1–7

higher frequencies. However, resources utilization by the proposed module

improves when the iterative block size is small together with a reduction in

the number of cycles required to calculate the square root. The proposed

approach requires 4 multipliers for an iterative block size of 2 which is 2%

of the total number of available DSP48E slices in the characterized device.

Thus, it does not represent a significant overuse of those resources. There-

fore, the proposed approach is a competitive option that reduces in less than

half the area required and achieves similar or smaller latencies. Moreover, it

is a compact option suitable for integration into larger architectures designs

with significant configuration flexibility to adapt to specific applications as

required.

c© IEICE 2012

7


