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1Abstract—Parallelization methodologies allow to automate 

the process of designing optimal processor arrays based on 
mathematical representations of the algorithm to be 
implemented. In this work, an optimized multiprojection 
approach based on the Polytope model is proposed as well as 
an automated way for getting the scheduler and the allocator 
vectors. Using a recurrence equations representation, three key 
criteria for choosing the characteristics of the final 
implementation are also proposed. As a case of study, the 
methodology is applied on a matrix-vector multiplication 
example. Results and relevance of the proposed methodology 
are finally discussed. 
 

Index Terms—Data flow computing, Parallel architectures, 
Parallel machines, Parallel processing, Systolic arrays. 
 

I. INTRODUCTION 
Implementation of algorithms on hardware platforms 

presents multiple interesting points because the inherent 
capacity of hardware devices (FPGA, ASIC, etc) for parallel 
processing. One of the most important challenges when 
designing hardware architectures is to identify and to exploit 
the parallelism in the algorithm to be implemented. Such 
parallelism is limited by the data dependencies which have 
to be preserved in order to maintain the original behavior of 
the algorithm. Traditionally, design decisions are based on 
the experience of the designer, however, using a modeling 
technique it makes possible to explore the design space 
before the final implementation to improve some specific 
characteristic in design time, for instance: implementation 
area or throughput. 

A modeling technique allows generating a processor array 
[1] from an algorithmic representation. Such techniques are 
in particular useful when the algorithm to be parallelized 
includes loops since loop elements are represented as points 
inside polyhedra [2-5]. It is possible to apply multiple 
transformations to the polyhedral representation in order to 
obtain an optimal execution time for each loop and even 
more, an optimal mapping between loops and processor 
elements to perform the original algorithm by using a design 
methodology. 
A design methodology provides a direction vector called 
scheduler vector which indicates when each calculation 
should be performed [6-10]. Scheduler vector is a direction 
vector for indicating an execution order across the 
polyhedron as hyperplanes orthogonal to it. Aditionally to 
the scheduler vector, a second vector has to be proposed for 
indicating where (in which physical resource) the 

calculations will be executed [8-9], [11]. This second vector 
is called allocator vector; it provides a direction which is 
used as base in order to project points inside the polyhedron 
on physical processor elements generating a relationship 
between points and processor elements. The allocator vector 
is carefully selected since a bad decision could generate a 
final processor array extremely complex or to be prejudicial 
to the final performance. Despite the importance of the 
allocator vector, it is traditionally proposed by hand as in 
[12-13]. 

 
 

 

II. METHODOLOGY 
The Polytope model [2], [14] is a mathematical tool that 

allows to generate efficient processor arrays for a specific 
algorithm. In the Polytope model, a program is modeled by 
a polytope, which is a finite convex set of some 
dimensionality with flat surfaces where every iteration in the 
original loop code is represented by one point (node) inside 
the polytope. The iterations set is called Iteration Space (IS). 
Figure 1 shows a characteristic polytope which represents an 
IS of two dimensions (i and j) including a data dependence 
between iterations [15-17]. Such dependence indicates that 
there exists some specific result in iteration 1,1 that will be 
required in iteration 2,1 and so on. This vector generates 
execution hyperplanes which are orthogonal to it and 
indicates that all nodes in the same hyperplane can be 
executed in parallel without affecting the normal behavior of 
the algorithm. Figure 1 shows the best possible scheduler 
(1,0) for this example.  

 
 

 
  

Figure 1.  Polytope and data dependencies 
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The full set of data dependencies is represented by a 
dependence matrix D as in (1).  

 

1 2, ,..., iD d d d⎡= ⎣ ⎤⎦     (1) 

 

Where,  is the i-dependency in the dependence set. In 

case of Fig. 1, matrix  is composed by only one vector.  
id

D
Using data dependencies and IS characteristics, it is possible 
to find an optimum execution time for each node I in the IS, 
i.e. an optimum execution order by using a linear integer 
program approach [6], [12], [18]. The result of the linear 
integer programming approach is a linear scheduler vector 

 or equivalently expressed as a function1 n×Λ∈Z ( )Iφ , 
which assigns an execution time to every point in the IS  
Always that it is possible to express the scheduler vector as 
a function ( )Iφ  as shown in (2), the scheduler is called 
linear. 

 
 ( )I I Iφ = Λ ∀ ∈⎢ ⎥⎣ ⎦ IS  (2) 

 
In (2), the linear scheduler vector  is such that 

 for all . This condition [19] is enough to 
ensure that all data dependencies are preserved and could be 
expressed as in (3). 

1 n×Λ∈Z
1idΛ id D∈

 
  (3) 2 1( ) ( ) 1di diI Iφ φ−

 
where 2

diI  and 1
diI  are the destiny and the source nodes in 

IS of the data dependence . In other words, if there exists 

a data dependence between nodes 
id

2
diI  and 1

diI , the 

condition in (3) ensures that the node 2
diI  will be not 

executed before the node 1
diI  using the scheduler Λ . 

After getting the scheduler vector we have to decide where 
iterations will be computed (allocation) [12], [18]. The first 
choice for allocating iterations to physical processors is to 
perform a projection [20-21]. Such projection should be 
carefully selected since a bad choice could be unfavorable to 
the final throughput. A bad decision could generate a final 
processor array requiring more communication lines of the 
strictly necessaries or in the worst scenario a waste of 
physical resources. Allocator vector is generally proposed 
by hand and it is necessary to perform multiple tests in order 
to select the best option in terms of performance and 
implementation area [12-13]. 
In this work, the proposal is to get a first vector using the 
before mentioned methodology which is based on [18] and 
to generate a second vector by artificially including one data 
dependence into the original data dependence set to 
reformulate the linear programming problem using the 
modified information. This ensures an optimized allocation 
and congruence between scheduling and allocator vectors as 
well as fulfillment of the original data dependence set. 
Additionally, three criteria are proposed in order to select 
the best option as scheduler and allocator. 

Once the first vector is obtained by using the methodology 
described in [18], the artificial data dependence is forced to 
be orthogonal to the first obtained vector [20] to be 
congruent with the flow direction proposed by the first 
vector. This is performed by using (4). 
 

  (4) 1( )T TV I V V V V⊥ = − × −

 
Where V ⊥  is an orthogonal vector to V ,  is the 
transposed matrix of V and 

TV
I  is the identity matrix. 

Adding the artificial data dependence to the original data 
dependence set ensures that: 
• The original data dependence will be preserved. 
• The second obtained vector is linearly independent with 

respect to the first vector. This means that the second 
vector will be congruent with the direction provided by the 
first vector and vice versa. 

Now we have two vectors with different characteristics. 
Both vectors fulfill the original data dependence and are 
congruent with the natural data flow of the original problem. 
For deciding which one will be used as scheduler and which 
one as allocator, we propose the next considerations: 
 
1. Communication resources. 

 
Communication between processors is an important aspect 
of the hardware architecture since it could be as expensive 
as the processors itself. Different vectors used as allocator or 
scheduler will require different number of communication 
lines. Since processor arrays present a high regularity level, 
it is enough to analyze one node and its relations with the 
neighbors to extrapolate the findings to all elements in the 
array. 
 
2. Number of processors and total execution time. 

 
The most important premises when designing hardware 
architectures are the total execution time and number of 
processors. As in point number 1, each vector used as 
scheduler or allocator will produce different number of 
processors and different execution times. 
Details for points 1 and 2 are defined from the proposed 
methodology next. 
 
• Communication resources 

 
As mentioned in Section II, (3) could be used to 
determine if one specific data dependence is fulfilled 
using a scheduler vector. Additionally, (3) represents the 
time ( ) when a datum will be transmitted from the 
execution point 

w
1I  to the destiny 2I  [22] as shown in 

(5). 
 

 2 1( ) ( )di di
iI Iφ φ w− =  (5)  

 
Where super index  indicates the transmitted datum 
fulfills the data dependence i. Eq. (5) is important 
because in case of multiple data dependencies between 
nodes, for example i  and 

id

j , the best approach for 
improving the use of communication resources is to use 
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the same communication channel for transmitting all the 
required information. This is only possible if all the 
information have to be transmitted in different times 
which are defined by the scheduler vector. 
As mentioned in Section II, we propose to modify the 
original data dependence set in order to generate a 
second vector as new candidate to scheduler vector. 
Multiple options for selecting the scheduler vector allow 
selecting the best option in terms of use of 
communication resources.  
The vector that allows sending datum for each data 
dependence at different moments allows simplifying the 
communication network between processors by reusing 
the communication channels. Such vector could improve 
the use of pipeline stages in the final hardware 
implementation. 
In case of Fig. 1, applying (5), using the vector (0,1) as 
scheduler vector and the only data dependence, the result 
is 1, which indicates that the datum will be required in 
the execution of the next hyper plane so, it has to be sent 
at the end of the actual hyperplane execution. 
 

• Total execution time 
 
Scheduling function (2) indicates when every node in the 
IS should be processed by assigning an execution time to 
each node. By calculating the execution time of the first 
and the last nodes it is possible to know the total 
execution time by using (6).  
 

 _ ( ) ( )last firstExecution time I I 1φ φ= − +

N

≤

⎥
 (6) 

 
With reference to Fig. 1, the last hyperplane will be 
executed at time 4 and the first hyperplane will be 
executed at time 1, using (6) it is possible to calculate the 
total execution time under the proposed scheduler in 4 
time units. 
 

• Number of processor elements 
 
The size of the processor array is a key point to be 
considered since it has a direct relation with power 
consumption. For mapping some nodes of the IS point to 
the corresponding processor element under the allocator 
vector it is possible to use (6). However, in this case 
results are interpreted as processor IDs instead of 
execution times. In case of Fig. 1, the higher index for an 
PE is 4 and the lowest index for a PE is 1 then, the total 
number of required processors according to (6) is 4. It is 
important to note that the scheduler and the allocator 
could be different. 

III. EXAMPLE. MATRIX-VECTOR MULTIPLICATION 
 

In order to show the proposed methodology, we present 
an example using the matrix-vector multiplication. For 
representing the algorithm we propose to use a set of 
recurrence equations which allows a cleaner representation 
avoiding the overhead of a C representation as in [23][24]. 
Additionally, a C representation imposes an a priori 
execution order which is avoided by using the recurrence 
equations representation. Equations set (7) shows the 

proposed representation using a set of recurrence equations 
[25] corresponding to the matrix-vector multiplication 
example.  

 

 (7) 

,1. ( , ) 1 , ;

1,1 ;
2. ( , )

( 1, ) 1 ,1 ;

3. ( , ) ( , )• ( , ) 1 , ;

4. ( , ) ( , 1) ( , ) 1 , ;

5. ( ) ( , ) ;

i j

j

a i j A i j N

b i j
b i j

b i j i N j N

z i j a i j b i j i j N

c i j c i j z i j i j N

C i c i j j N

= ≤ ≤

= ≤ ≤
=

− < ≤ ≤

= ≤ ≤

= − + ≤ ≤

= =

⎧
⎨
⎩

 
Where a(i, j) is the input variable for values of the matrix 

A and b(i, j) is used as the input variable for values of the 
vector B and as temporal variable to propagate the values of 
the vector B. The temporal variable z(i, j) stores the result of 
intermediate multiplications, c(i, j) is used as accumulator 
and finally, C(i) is the vector result of the multiplication. 
Fig. 2 shows how all of these variables are related using 
N=4. Fig. 2 shows the data dependencies as connections 
between nodes too. 
Equations set (7) includes two data dependencies, the first in 
line 2 and the second in line 4 which correspond to the two 
column components of the dependence matrix D, shown in 
(8).  
 

 
1 0
0 1x yD d d ⎡ ⎤⎡ ⎤= = ⎢⎣ ⎦ ⎣ ⎦

 (8) 

 
  From (7) we can get the dimensionality of 2 (i and j) of 

the IS. Finally the size of each dimension corresponds to the 
interval where every dimension (i and j) is defined, in this 
case N. 

Linear programming problem requires conditions for the 
objective function. In this case the only condition is to 
respect data dependencies [3]. Such condition is represented 
by (3) which indicate that for any possible solution to the 
linear programming problem is not possible to execute 
calculations in node (1,2) before or even in parallel with 
calculations in node (1,1) if there is a data dependence from 
node (1,1) to node (1,2). 

Solving the linear programming approach on the 
dependence matrix and the IS information we get the first 
proposed vector (1, 1). As previously mentioned, the next 
step is to include one new data dependence to the original 
data dependence set. The new data dependence has to be 
orthogonal to the first obtained vector. Eq. (2) is used to get 
the (-1, 1) vector which is included in the original data 
dependence set. Basically we transform the original IS 
shown in Fig. 2 into the shown in Fig. 3.  

The linear programming approach is solved on the new 
data dependence set to get the vector (2, 1). Now, we have 
two different vectors (1, 1) and (2, 1). Both vectors fulfill 
the original data dependencies and are congruent with the 
data flow. This means that any of both vectors could be used 
as scheduler vector or as allocator vector without affecting 
the normal behavior of the algorithm. 
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The second vector was generated using an extra 
component orthogonal to the first vector and finally they 
present different characteristics. We propose that the final 
decision about which one will be used as scheduler and 
which one as allocator depends on the following three 
aspects: Communication resources, number of processor 
elements and total execution time that are discussed next. 

 

 
Figure 2. Original polytope of the matrix-vector multiplication. 

 
 

 
Figure 3. Polytope of the matrix-vector example with modified data 
dependencies. 
 
• Communication resources 

 
According to (3), every data dependence is evaluated 

using both vectors. Results are shown in Table I. 
 

TABLE I. SENDING TIME FOR DATA DEPENDENCIES ON DIFFERENT 
SCHEDULER VECTORS 

Data 
dependencies 

Sending time using 
vector (1,1) 

Sending time using 
vector (2,1) 

1,0 1 2 
0,1 1 1 

 

From Table I, values in column 2 indicate that using the 
vector (1, 1) as scheduler requires sending both data at the 
same time however,  from column 2 using the vector (2, 1) 
as scheduler vector, data could be sent at different moments. 
At this point, it is better to select the vector (2, 1) as 
scheduler since such vector allows saving communication 
resources by reusing communication channels or even 
implementing pipeline stages. However, it is important to 
consider other aspects such as area and execution time 
which are revised next. 

 
• Number of processor elements 

 
Area resources are, in general, a key target when 

implementing some algorithms in hardware platforms 
because the available resources are limited. Fig. 4 shows the 
number of required processors by using as allocator the 
vector (1, 1) and the vector (2, 1) on different IS sizes. Using 
the vector (1, 1) as allocator requires less processors by a 
factor close to 1/3. According to Fig. 4 this factor is a 
constant, independently of the IS size in this specific 
problem. 

 

 
 

Figure 4. Polytope of the matrix-vector example with modified data 
dependencies. 
 
• Total execution time 

 
As mentioned in Section II, (2) provides a practical way 

for knowing the execution time of each node in the IS as 
well as the number of required physical processors. Since  
the IS of the proposed example is square, it is possible to 
reinterpret Fig. 4 as a time graphic which means that using 
vector (1, 1) as scheduler vector implies a faster processing 
time than using vector (2, 1) as scheduler vector. In this 
case, the difference between total execution times between 
both vectors is the same constant factor close to 1/3.  
Fig. 5 shows the final projection vector (1,1) and the 
scheduler vector (2,1). In this case, a compact 
implementation is preferred even at the expense of the 
required processing time which as before mentioned is 
greater by a constant factor close to 1/3. Using the vector (1, 
1) as scheduler vector, the number of processor elements is 
minimal. Fig. 5 shows a graphical representation of the 
scheduler vector and the generated hyperplanes. As 
mentioned in Section I, all the nodes in the same hyperplane 
are executed in parallel. The time used in each hyperplane is 
the required time to complete the calculations in a single 
node.  
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Figure 5. Final processor array for matrix-vector multiplication example 
with allocator vector (1,1) 

 
If the interest is focused on reducing the execution time, it 

is possible to select the vector (2,1) as projection vector and 
the vector (1,1) as scheduler vector. Such approach provides 
a higher throughput at the expense of increased number of 
physical processors. Final processor array is shown in Fig. 6 
Here, execution time is the smallest possible execution time 
limited only by data dependences however the 
communication is more complex when compared with using 
the vector (2, 1) as scheduler vector. More complex 
communication network requires a more complex control 
system. 

 
 

Figure 6. Final processor array for matrix-vector multiplication example 
with allocator vector (2,1) 

 
As an example, Table II indicates in the second column, 

the number of processor elements and, in the third column 
the processing time expressed in hyperplanes, all of this 
calculated on an IS with N=100. Values are calculated using 
(6). Table II presents symmetry since the data dependences 
in the IS presents the same characteristic.  

 
 

TABLE II. PROCESSOR ELEMENTS AND PROCESSING TIME UNDER 
DIFFERENT SCHEDULER VECTORS. N=100 

Scheduler 
Vector 

Number of processor 
elements Processing time 

1,1 199 299 
2,1 299 199 

 
No matter the case, the proposed methodology prevents 

the manual selection of the projection vector as in [12][20]  
generating an optimized second vector which is congruent 
with the data flow. Having multiple choices for selecting the 
scheduler vector provides flexibility in defining the best 
projection vectors under certain criteria. Proposed aspects 
for selecting scheduler and allocator vectors are easily 
evaluated using (2). Methodology starts with a recurrence 
equations representation which avoids the overhead and the 
a priori order of a C representation. 

IV. CONCLUSIONS 
 

In this work, a parallelization methodology based on a 
multiprojection approach is proposed. The methodology 
provides two vectors and three criteria for deciding which 
vector is used as scheduler vector and which is used as 
allocator vector. The allocator vector is obtained according 
to an optimization process with a linear programming 
approach instead of using manual selection as in previous 
works. In this work, the original algorithm is represented as 
recurrence equations which avoids the overhead of using a C 
representation. The entire process could be fully automated 
since user intervention is not required. In order to 
demonstrate the proposed methodology, in the second part 
of the paper, the methodology was applied on the matrix 
vector multiplication example. Results on the proposed 
example demonstrate that the proposed methodology is 
successfully implemented allowing flexibility in design time 
and optimizing the execution time or the number of 
processor elements in the processor array.  

REFERENCES 
 
[1] S. Y. Kung. “VLSI Array Processors”. Printice Hall, Englewood 

Cliffs, New Jersey, 1988. 
[2] Christian Lengauer. “Loop Parallelization in the Polytope Model”. In 

Eike Best, editor, Proceedings of the 4th International Conference on 
Concurrency Theory (CONCUR), volume 715 of Lecture Notes in 
Computer Science (LNCS), pages 398–416, Hildesheim, Germany, 
August 1993. 

[3] Alain Darte. “Mathematical tools for loop transformations: From 
systems of uniform recurrence equations to the polytope model”. In 
M. H. Heath, A. Ranade, and R. S. Schreiber, editors, Algorithms for 
Parallel Processing, volume 105 of IMA. Volumes in Mathematics 
and its Applications, pages 147–183. Springer Verlag, 1998. 

[4] S.P.K. Nookala and Tanguy Risset. “A library for Z-polyhedral 
operations”. Technical Report PI 1330, IRISA, Rennes, France, 
2000. 

[5] Gautam Gupta and Sanjay Rajopadhye. “The z-polyhedral model”. 
In ACM SIGPLAN symposium on Principles and Practice of Parallel 
Programming, pages 237–248, 2007. 

[6] P. Feautrier. “Some efficient solutions to the affine scheduling 
problem: Part I, one-dimensional time”. International Journal of 
Parallel Programming, 21(5):313–348, 1992. Available: 
http://dx.doi.org/10.1007/BF01407835. 

[7] P. Feautrier. “Some efficient solutions to the affine scheduling 
problem: Part II, multidimensional time”. International Journal of 
Parallel Programming, 21(6):389–420, 1992. Available: 
http://dx.doi.org/10.1007/BF01379404.  

       91

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]



Advances in Electrical and Computer Engineering                                                                      Volume 12, Number 4, 2012 

[8] P. Feautrier. “Toward automatic distribution”. Parallel Processing 
Letters, 4:233–244, 1994. Available: 
http://dx.doi.org/10.1142/S0129626494000235. 

[9] Michele Dion and Yves Robert. “Mapping affine loop nests”. 
Parallel Computing, 22(10):1373–1397, 1996. Available: 
http://dx.doi.org/10.1016/S0167-8191(96)00049-X. 

[10] Martin Griebl. “Automatic Parallelization of Loop Programs for 
Distributed Memory Architectures”. University of Passau, 2004. 
Habilitation thesis. 

[11] Martin Griebl, Paul Feautrier, and Armin Großlinger. “Forward 
communication only placements and their use for parallel program 
construction”. In Languages and Compilers for Parallel Computing, 
pages 16–30. Springer- Verlag, 2005. Available: 
http://dx.doi.org/10.1007/11596110_2. 

[12] Frank Hannig. “Scheduling Techniques for High Throughput Loop 
Accelerators”. Dissertation, University of Erlangen Nuremberg, 
Germany, August 2009. Verlag Dr. Hut, Munich, Germany. 

[13] Fabien Quilleré, Sanjay Vishnu Rajopadhye, and Doran Wilde. 
“Generation of Efficient Nested Loops from Polyhedra”. 
International Journal of Parallel Programming, 28(5):469–498, 2000. 
Available: http://dx.doi.org/10.1023/A:1007554627716. 

[14] Paul Feautrier. “Automatic Parallelization in the Polytope Model”. 
Technical Report 8, Laboratoire PRiSM, Université des Versailles 
St- Quentin en Yvelines, 45, avenue des États-Unis, 78035 Versailles 
Cedex, France, June 1996. 

[15] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler, Olivier 
Temam, and Nicolas Vasilache. “Facilitating the search for 
compositions of program transformations”. In ACM International 
conference on Supercomputing, pages 151–160, June 2005. 

 [16]  Nicolas Vasilache, Cedric Bastoul, Sylvain Girbal, and Albert 
Cohen. “Violated dependence analysis”. In ACM International 
conference on Supercomputing, June 2006.  

[17] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. “Iterative 
optimization in the polyhedral model: Part I, one-dimensional time”. 
In International symposium on Code Generation and Optimization, 
March 2007. [Online]. Available: 
http://dx.doi.org/10.1109/CGO.2007.21. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[18] Alain Darte, Leonid Khachiyan, and Yves Robert. “Linear 
Scheduling is Close to Optimality”. In Proceedings of the 
International Conference on Application Specific Array Processors 
(ASAP), pages 37–46, Berkeley, CA, USA, August 1992. [Online]. 
Available: http://dx.doi.org/10.1109/ASAP.1992.218583. 

[19] Leslie Lamport. “The parallel execution of do loops”. 
Communications of the ACM, 17(2):83–93, 1974. [Online]. 
Available: http://dx.doi.org/10.1145/360827.360844. 

[20] Kittitornkun Surin, Yu Hen Hu. “Processor Array Synthesis from 
Shift-Variant Deep Nested Do Loops”. The Journal of 
Supercomputing, 24(3):229-249, 2003. [Online]. Available: 
http://dx.doi.org/10.1023/A:1022028729196. 

[21] Robert H. Kuhn. “Transforming Algorithms for Single-Stage and 
VLSI Architectures”. In Workshop on Interconnection Networks for 
Parallel and Distributed Processing, pages 11–19, West Layfaette, 
IN, USA, April 1980. 

[22] Michael Wolfe. “High Performance Compilers for Parallel 
Computing”. Addison-Wesley Longman Publishing Co., Inc., 
Boston, MA, USA, 1995. 

[23] Nicolas Vasilache, Albert Cohen, and Louis-Noel Pouchet. 2007. 
“Automatic Correction of Loop Transformations”. In Proceedings of 
the 16th International Conference on Parallel Architecture and 
Compilation Techniques (PACT '07). IEEE Computer Society, 
Washington, DC, USA. 

[24] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007. 
“Automatic mapping of nested loops to FPGAS”. In Proceedings of 
the 12th ACM SIGPLAN symposium on Principles and practice of 
parallel programming (PPoPP '07). ACM, New York, NY, USA, 
101-111. 

[25] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The 
Organization of Computations for Uniform Recurrence Equations”. 
Journal of the Association for Computing Machinery, 14(3):563–
590, 1967. [Online]. Available: 
http://dx.doi.org/10.1145/321406.321418. 

 
 

 92

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]


