
Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

1Abstract—Parallelization methodologies allow to automate

the process of designing optimal processor arrays based on
mathematical representations of the algorithm to be
implemented. In this work, an optimized multiprojection
approach based on the Polytope model is proposed as well as
an automated way for getting the scheduler and the allocator
vectors. Using a recurrence equations representation, three key
criteria for choosing the characteristics of the final
implementation are also proposed. As a case of study, the
methodology is applied on a matrix-vector multiplication
example. Results and relevance of the proposed methodology
are finally discussed.

Index Terms—Data flow computing, Parallel architectures,
Parallel machines, Parallel processing, Systolic arrays.

I. INTRODUCTION
Implementation of algorithms on hardware platforms

presents multiple interesting points because the inherent
capacity of hardware devices (FPGA, ASIC, etc) for parallel
processing. One of the most important challenges when
designing hardware architectures is to identify and to exploit
the parallelism in the algorithm to be implemented. Such
parallelism is limited by the data dependencies which have
to be preserved in order to maintain the original behavior of
the algorithm. Traditionally, design decisions are based on
the experience of the designer, however, using a modeling
technique it makes possible to explore the design space
before the final implementation to improve some specific
characteristic in design time, for instance: implementation
area or throughput.

A modeling technique allows generating a processor array
[1] from an algorithmic representation. Such techniques are
in particular useful when the algorithm to be parallelized
includes loops since loop elements are represented as points
inside polyhedra [2-5]. It is possible to apply multiple
transformations to the polyhedral representation in order to
obtain an optimal execution time for each loop and even
more, an optimal mapping between loops and processor
elements to perform the original algorithm by using a design
methodology.
A design methodology provides a direction vector called
scheduler vector which indicates when each calculation
should be performed [6-10]. Scheduler vector is a direction
vector for indicating an execution order across the
polyhedron as hyperplanes orthogonal to it. Aditionally to
the scheduler vector, a second vector has to be proposed for
indicating where (in which physical resource) the

calculations will be executed [8-9], [11]. This second vector
is called allocator vector; it provides a direction which is
used as base in order to project points inside the polyhedron
on physical processor elements generating a relationship
between points and processor elements. The allocator vector
is carefully selected since a bad decision could generate a
final processor array extremely complex or to be prejudicial
to the final performance. Despite the importance of the
allocator vector, it is traditionally proposed by hand as in
[12-13].

II. METHODOLOGY
The Polytope model [2], [14] is a mathematical tool that

allows to generate efficient processor arrays for a specific
algorithm. In the Polytope model, a program is modeled by
a polytope, which is a finite convex set of some
dimensionality with flat surfaces where every iteration in the
original loop code is represented by one point (node) inside
the polytope. The iterations set is called Iteration Space (IS).
Figure 1 shows a characteristic polytope which represents an
IS of two dimensions (i and j) including a data dependence
between iterations [15-17]. Such dependence indicates that
there exists some specific result in iteration 1,1 that will be
required in iteration 2,1 and so on. This vector generates
execution hyperplanes which are orthogonal to it and
indicates that all nodes in the same hyperplane can be
executed in parallel without affecting the normal behavior of
the algorithm. Figure 1 shows the best possible scheduler
(1,0) for this example.

Figure 1. Polytope and data dependencies

Design of Processor Array Based on an
Optimized Multiprojection Approach

Juan M. CAMPOS, Rene CUMPLIDO
National Institute of Astrophysics Optics and Electronics

Luis Enrique Erro No 1, Sta. Ma. Tonantzintla, 72840, Puebla, Mexico
jcampos@inaoep.mx

 87
1582-7445 © 2012 AECE

Digital Object Identifier 10.4316/AECE.2012.04014

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

The full set of data dependencies is represented by a
dependence matrix D as in (1).

1 2, ,..., iD d d d⎡= ⎣ ⎤⎦ (1)

Where, is the i-dependency in the dependence set. In

case of Fig. 1, matrix is composed by only one vector.
id

D
Using data dependencies and IS characteristics, it is possible
to find an optimum execution time for each node I in the IS,
i.e. an optimum execution order by using a linear integer
program approach [6], [12], [18]. The result of the linear
integer programming approach is a linear scheduler vector

 or equivalently expressed as a function1 n×Λ∈Z ()Iφ ,
which assigns an execution time to every point in the IS
Always that it is possible to express the scheduler vector as
a function ()Iφ as shown in (2), the scheduler is called
linear.

 ()I I Iφ = Λ ∀ ∈⎢ ⎥⎣ ⎦ IS (2)

In (2), the linear scheduler vector is such that

 for all . This condition [19] is enough to
ensure that all data dependencies are preserved and could be
expressed as in (3).

1 n×Λ∈Z
1idΛ id D∈

 (3) 2 1() () 1di diI Iφ φ−

where 2

diI and 1
diI are the destiny and the source nodes in

IS of the data dependence . In other words, if there exists

a data dependence between nodes
id

2
diI and 1

diI , the

condition in (3) ensures that the node 2
diI will be not

executed before the node 1
diI using the scheduler Λ .

After getting the scheduler vector we have to decide where
iterations will be computed (allocation) [12], [18]. The first
choice for allocating iterations to physical processors is to
perform a projection [20-21]. Such projection should be
carefully selected since a bad choice could be unfavorable to
the final throughput. A bad decision could generate a final
processor array requiring more communication lines of the
strictly necessaries or in the worst scenario a waste of
physical resources. Allocator vector is generally proposed
by hand and it is necessary to perform multiple tests in order
to select the best option in terms of performance and
implementation area [12-13].
In this work, the proposal is to get a first vector using the
before mentioned methodology which is based on [18] and
to generate a second vector by artificially including one data
dependence into the original data dependence set to
reformulate the linear programming problem using the
modified information. This ensures an optimized allocation
and congruence between scheduling and allocator vectors as
well as fulfillment of the original data dependence set.
Additionally, three criteria are proposed in order to select
the best option as scheduler and allocator.

Once the first vector is obtained by using the methodology
described in [18], the artificial data dependence is forced to
be orthogonal to the first obtained vector [20] to be
congruent with the flow direction proposed by the first
vector. This is performed by using (4).

 (4) 1()T TV I V V V V⊥ = − × −

Where V ⊥ is an orthogonal vector to V , is the
transposed matrix of V and

TV
I is the identity matrix.

Adding the artificial data dependence to the original data
dependence set ensures that:
• The original data dependence will be preserved.
• The second obtained vector is linearly independent with

respect to the first vector. This means that the second
vector will be congruent with the direction provided by the
first vector and vice versa.

Now we have two vectors with different characteristics.
Both vectors fulfill the original data dependence and are
congruent with the natural data flow of the original problem.
For deciding which one will be used as scheduler and which
one as allocator, we propose the next considerations:

1. Communication resources.

Communication between processors is an important aspect
of the hardware architecture since it could be as expensive
as the processors itself. Different vectors used as allocator or
scheduler will require different number of communication
lines. Since processor arrays present a high regularity level,
it is enough to analyze one node and its relations with the
neighbors to extrapolate the findings to all elements in the
array.

2. Number of processors and total execution time.

The most important premises when designing hardware
architectures are the total execution time and number of
processors. As in point number 1, each vector used as
scheduler or allocator will produce different number of
processors and different execution times.
Details for points 1 and 2 are defined from the proposed
methodology next.

• Communication resources

As mentioned in Section II, (3) could be used to
determine if one specific data dependence is fulfilled
using a scheduler vector. Additionally, (3) represents the
time () when a datum will be transmitted from the
execution point

w
1I to the destiny 2I [22] as shown in

(5).

 2 1() ()di di
iI Iφ φ w− = (5)

Where super index indicates the transmitted datum
fulfills the data dependence i. Eq. (5) is important
because in case of multiple data dependencies between
nodes, for example i and

id

j , the best approach for
improving the use of communication resources is to use

 88

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

the same communication channel for transmitting all the
required information. This is only possible if all the
information have to be transmitted in different times
which are defined by the scheduler vector.
As mentioned in Section II, we propose to modify the
original data dependence set in order to generate a
second vector as new candidate to scheduler vector.
Multiple options for selecting the scheduler vector allow
selecting the best option in terms of use of
communication resources.
The vector that allows sending datum for each data
dependence at different moments allows simplifying the
communication network between processors by reusing
the communication channels. Such vector could improve
the use of pipeline stages in the final hardware
implementation.
In case of Fig. 1, applying (5), using the vector (0,1) as
scheduler vector and the only data dependence, the result
is 1, which indicates that the datum will be required in
the execution of the next hyper plane so, it has to be sent
at the end of the actual hyperplane execution.

• Total execution time

Scheduling function (2) indicates when every node in the
IS should be processed by assigning an execution time to
each node. By calculating the execution time of the first
and the last nodes it is possible to know the total
execution time by using (6).

 _ () ()last firstExecution time I I 1φ φ= − +

N

≤

⎥
 (6)

With reference to Fig. 1, the last hyperplane will be
executed at time 4 and the first hyperplane will be
executed at time 1, using (6) it is possible to calculate the
total execution time under the proposed scheduler in 4
time units.

• Number of processor elements

The size of the processor array is a key point to be
considered since it has a direct relation with power
consumption. For mapping some nodes of the IS point to
the corresponding processor element under the allocator
vector it is possible to use (6). However, in this case
results are interpreted as processor IDs instead of
execution times. In case of Fig. 1, the higher index for an
PE is 4 and the lowest index for a PE is 1 then, the total
number of required processors according to (6) is 4. It is
important to note that the scheduler and the allocator
could be different.

III. EXAMPLE. MATRIX-VECTOR MULTIPLICATION

In order to show the proposed methodology, we present
an example using the matrix-vector multiplication. For
representing the algorithm we propose to use a set of
recurrence equations which allows a cleaner representation
avoiding the overhead of a C representation as in [23][24].
Additionally, a C representation imposes an a priori
execution order which is avoided by using the recurrence
equations representation. Equations set (7) shows the

proposed representation using a set of recurrence equations
[25] corresponding to the matrix-vector multiplication
example.

 (7)

,1. (,) 1 , ;

1,1 ;
2. (,)

(1,) 1 ,1 ;

3. (,) (,)• (,) 1 , ;

4. (,) (, 1) (,) 1 , ;

5. () (,) ;

i j

j

a i j A i j N

b i j
b i j

b i j i N j N

z i j a i j b i j i j N

c i j c i j z i j i j N

C i c i j j N

= ≤ ≤

= ≤ ≤
=

− < ≤ ≤

= ≤ ≤

= − + ≤ ≤

= =

⎧
⎨
⎩

Where a(i, j) is the input variable for values of the matrix

A and b(i, j) is used as the input variable for values of the
vector B and as temporal variable to propagate the values of
the vector B. The temporal variable z(i, j) stores the result of
intermediate multiplications, c(i, j) is used as accumulator
and finally, C(i) is the vector result of the multiplication.
Fig. 2 shows how all of these variables are related using
N=4. Fig. 2 shows the data dependencies as connections
between nodes too.
Equations set (7) includes two data dependencies, the first in
line 2 and the second in line 4 which correspond to the two
column components of the dependence matrix D, shown in
(8).

1 0
0 1x yD d d ⎡ ⎤⎡ ⎤= = ⎢⎣ ⎦ ⎣ ⎦

 (8)

 From (7) we can get the dimensionality of 2 (i and j) of

the IS. Finally the size of each dimension corresponds to the
interval where every dimension (i and j) is defined, in this
case N.

Linear programming problem requires conditions for the
objective function. In this case the only condition is to
respect data dependencies [3]. Such condition is represented
by (3) which indicate that for any possible solution to the
linear programming problem is not possible to execute
calculations in node (1,2) before or even in parallel with
calculations in node (1,1) if there is a data dependence from
node (1,1) to node (1,2).

Solving the linear programming approach on the
dependence matrix and the IS information we get the first
proposed vector (1, 1). As previously mentioned, the next
step is to include one new data dependence to the original
data dependence set. The new data dependence has to be
orthogonal to the first obtained vector. Eq. (2) is used to get
the (-1, 1) vector which is included in the original data
dependence set. Basically we transform the original IS
shown in Fig. 2 into the shown in Fig. 3.

The linear programming approach is solved on the new
data dependence set to get the vector (2, 1). Now, we have
two different vectors (1, 1) and (2, 1). Both vectors fulfill
the original data dependencies and are congruent with the
data flow. This means that any of both vectors could be used
as scheduler vector or as allocator vector without affecting
the normal behavior of the algorithm.

 89

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

The second vector was generated using an extra
component orthogonal to the first vector and finally they
present different characteristics. We propose that the final
decision about which one will be used as scheduler and
which one as allocator depends on the following three
aspects: Communication resources, number of processor
elements and total execution time that are discussed next.

Figure 2. Original polytope of the matrix-vector multiplication.

Figure 3. Polytope of the matrix-vector example with modified data
dependencies.

• Communication resources

According to (3), every data dependence is evaluated

using both vectors. Results are shown in Table I.

TABLE I. SENDING TIME FOR DATA DEPENDENCIES ON DIFFERENT
SCHEDULER VECTORS

Data
dependencies

Sending time using
vector (1,1)

Sending time using
vector (2,1)

1,0 1 2
0,1 1 1

From Table I, values in column 2 indicate that using the
vector (1, 1) as scheduler requires sending both data at the
same time however, from column 2 using the vector (2, 1)
as scheduler vector, data could be sent at different moments.
At this point, it is better to select the vector (2, 1) as
scheduler since such vector allows saving communication
resources by reusing communication channels or even
implementing pipeline stages. However, it is important to
consider other aspects such as area and execution time
which are revised next.

• Number of processor elements

Area resources are, in general, a key target when

implementing some algorithms in hardware platforms
because the available resources are limited. Fig. 4 shows the
number of required processors by using as allocator the
vector (1, 1) and the vector (2, 1) on different IS sizes. Using
the vector (1, 1) as allocator requires less processors by a
factor close to 1/3. According to Fig. 4 this factor is a
constant, independently of the IS size in this specific
problem.

Figure 4. Polytope of the matrix-vector example with modified data
dependencies.

• Total execution time

As mentioned in Section II, (2) provides a practical way

for knowing the execution time of each node in the IS as
well as the number of required physical processors. Since
the IS of the proposed example is square, it is possible to
reinterpret Fig. 4 as a time graphic which means that using
vector (1, 1) as scheduler vector implies a faster processing
time than using vector (2, 1) as scheduler vector. In this
case, the difference between total execution times between
both vectors is the same constant factor close to 1/3.
Fig. 5 shows the final projection vector (1,1) and the
scheduler vector (2,1). In this case, a compact
implementation is preferred even at the expense of the
required processing time which as before mentioned is
greater by a constant factor close to 1/3. Using the vector (1,
1) as scheduler vector, the number of processor elements is
minimal. Fig. 5 shows a graphical representation of the
scheduler vector and the generated hyperplanes. As
mentioned in Section I, all the nodes in the same hyperplane
are executed in parallel. The time used in each hyperplane is
the required time to complete the calculations in a single
node.

 90

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

Figure 5. Final processor array for matrix-vector multiplication example
with allocator vector (1,1)

If the interest is focused on reducing the execution time, it

is possible to select the vector (2,1) as projection vector and
the vector (1,1) as scheduler vector. Such approach provides
a higher throughput at the expense of increased number of
physical processors. Final processor array is shown in Fig. 6
Here, execution time is the smallest possible execution time
limited only by data dependences however the
communication is more complex when compared with using
the vector (2, 1) as scheduler vector. More complex
communication network requires a more complex control
system.

Figure 6. Final processor array for matrix-vector multiplication example
with allocator vector (2,1)

As an example, Table II indicates in the second column,

the number of processor elements and, in the third column
the processing time expressed in hyperplanes, all of this
calculated on an IS with N=100. Values are calculated using
(6). Table II presents symmetry since the data dependences
in the IS presents the same characteristic.

TABLE II. PROCESSOR ELEMENTS AND PROCESSING TIME UNDER
DIFFERENT SCHEDULER VECTORS. N=100

Scheduler
Vector

Number of processor
elements Processing time

1,1 199 299
2,1 299 199

No matter the case, the proposed methodology prevents

the manual selection of the projection vector as in [12][20]
generating an optimized second vector which is congruent
with the data flow. Having multiple choices for selecting the
scheduler vector provides flexibility in defining the best
projection vectors under certain criteria. Proposed aspects
for selecting scheduler and allocator vectors are easily
evaluated using (2). Methodology starts with a recurrence
equations representation which avoids the overhead and the
a priori order of a C representation.

IV. CONCLUSIONS

In this work, a parallelization methodology based on a
multiprojection approach is proposed. The methodology
provides two vectors and three criteria for deciding which
vector is used as scheduler vector and which is used as
allocator vector. The allocator vector is obtained according
to an optimization process with a linear programming
approach instead of using manual selection as in previous
works. In this work, the original algorithm is represented as
recurrence equations which avoids the overhead of using a C
representation. The entire process could be fully automated
since user intervention is not required. In order to
demonstrate the proposed methodology, in the second part
of the paper, the methodology was applied on the matrix
vector multiplication example. Results on the proposed
example demonstrate that the proposed methodology is
successfully implemented allowing flexibility in design time
and optimizing the execution time or the number of
processor elements in the processor array.

REFERENCES

[1] S. Y. Kung. “VLSI Array Processors”. Printice Hall, Englewood

Cliffs, New Jersey, 1988.
[2] Christian Lengauer. “Loop Parallelization in the Polytope Model”. In

Eike Best, editor, Proceedings of the 4th International Conference on
Concurrency Theory (CONCUR), volume 715 of Lecture Notes in
Computer Science (LNCS), pages 398–416, Hildesheim, Germany,
August 1993.

[3] Alain Darte. “Mathematical tools for loop transformations: From
systems of uniform recurrence equations to the polytope model”. In
M. H. Heath, A. Ranade, and R. S. Schreiber, editors, Algorithms for
Parallel Processing, volume 105 of IMA. Volumes in Mathematics
and its Applications, pages 147–183. Springer Verlag, 1998.

[4] S.P.K. Nookala and Tanguy Risset. “A library for Z-polyhedral
operations”. Technical Report PI 1330, IRISA, Rennes, France,
2000.

[5] Gautam Gupta and Sanjay Rajopadhye. “The z-polyhedral model”.
In ACM SIGPLAN symposium on Principles and Practice of Parallel
Programming, pages 237–248, 2007.

[6] P. Feautrier. “Some efficient solutions to the affine scheduling
problem: Part I, one-dimensional time”. International Journal of
Parallel Programming, 21(5):313–348, 1992. Available:
http://dx.doi.org/10.1007/BF01407835.

[7] P. Feautrier. “Some efficient solutions to the affine scheduling
problem: Part II, multidimensional time”. International Journal of
Parallel Programming, 21(6):389–420, 1992. Available:
http://dx.doi.org/10.1007/BF01379404.

 91

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

Advances in Electrical and Computer Engineering Volume 12, Number 4, 2012

[8] P. Feautrier. “Toward automatic distribution”. Parallel Processing
Letters, 4:233–244, 1994. Available:
http://dx.doi.org/10.1142/S0129626494000235.

[9] Michele Dion and Yves Robert. “Mapping affine loop nests”.
Parallel Computing, 22(10):1373–1397, 1996. Available:
http://dx.doi.org/10.1016/S0167-8191(96)00049-X.

[10] Martin Griebl. “Automatic Parallelization of Loop Programs for
Distributed Memory Architectures”. University of Passau, 2004.
Habilitation thesis.

[11] Martin Griebl, Paul Feautrier, and Armin Großlinger. “Forward
communication only placements and their use for parallel program
construction”. In Languages and Compilers for Parallel Computing,
pages 16–30. Springer- Verlag, 2005. Available:
http://dx.doi.org/10.1007/11596110_2.

[12] Frank Hannig. “Scheduling Techniques for High Throughput Loop
Accelerators”. Dissertation, University of Erlangen Nuremberg,
Germany, August 2009. Verlag Dr. Hut, Munich, Germany.

[13] Fabien Quilleré, Sanjay Vishnu Rajopadhye, and Doran Wilde.
“Generation of Efficient Nested Loops from Polyhedra”.
International Journal of Parallel Programming, 28(5):469–498, 2000.
Available: http://dx.doi.org/10.1023/A:1007554627716.

[14] Paul Feautrier. “Automatic Parallelization in the Polytope Model”.
Technical Report 8, Laboratoire PRiSM, Université des Versailles
St- Quentin en Yvelines, 45, avenue des États-Unis, 78035 Versailles
Cedex, France, June 1996.

[15] Albert Cohen, Sylvain Girbal, David Parello, M. Sigler, Olivier
Temam, and Nicolas Vasilache. “Facilitating the search for
compositions of program transformations”. In ACM International
conference on Supercomputing, pages 151–160, June 2005.

 [16] Nicolas Vasilache, Cedric Bastoul, Sylvain Girbal, and Albert
Cohen. “Violated dependence analysis”. In ACM International
conference on Supercomputing, June 2006.

[17] L.-N. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. “Iterative
optimization in the polyhedral model: Part I, one-dimensional time”.
In International symposium on Code Generation and Optimization,
March 2007. [Online]. Available:
http://dx.doi.org/10.1109/CGO.2007.21.

[18] Alain Darte, Leonid Khachiyan, and Yves Robert. “Linear
Scheduling is Close to Optimality”. In Proceedings of the
International Conference on Application Specific Array Processors
(ASAP), pages 37–46, Berkeley, CA, USA, August 1992. [Online].
Available: http://dx.doi.org/10.1109/ASAP.1992.218583.

[19] Leslie Lamport. “The parallel execution of do loops”.
Communications of the ACM, 17(2):83–93, 1974. [Online].
Available: http://dx.doi.org/10.1145/360827.360844.

[20] Kittitornkun Surin, Yu Hen Hu. “Processor Array Synthesis from
Shift-Variant Deep Nested Do Loops”. The Journal of
Supercomputing, 24(3):229-249, 2003. [Online]. Available:
http://dx.doi.org/10.1023/A:1022028729196.

[21] Robert H. Kuhn. “Transforming Algorithms for Single-Stage and
VLSI Architectures”. In Workshop on Interconnection Networks for
Parallel and Distributed Processing, pages 11–19, West Layfaette,
IN, USA, April 1980.

[22] Michael Wolfe. “High Performance Compilers for Parallel
Computing”. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995.

[23] Nicolas Vasilache, Albert Cohen, and Louis-Noel Pouchet. 2007.
“Automatic Correction of Loop Transformations”. In Proceedings of
the 16th International Conference on Parallel Architecture and
Compilation Techniques (PACT '07). IEEE Computer Society,
Washington, DC, USA.

[24] Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2007.
“Automatic mapping of nested loops to FPGAS”. In Proceedings of
the 12th ACM SIGPLAN symposium on Principles and practice of
parallel programming (PPoPP '07). ACM, New York, NY, USA,
101-111.

[25] Richard M. Karp, Raymond E. Miller, and Shmuel Winograd. “The
Organization of Computations for Uniform Recurrence Equations”.
Journal of the Association for Computing Machinery, 14(3):563–
590, 1967. [Online]. Available:
http://dx.doi.org/10.1145/321406.321418.

 92

[Downloaded from www.aece.ro on Wednesday, December 12, 2012 at 14:51:51 (UTC) by 200.23.5.195. Redistribution subject to AECE license or copyright. Online distribution is expressly prohibited.]

