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Channel estimation in wireless communication systems is usually accomplished by inserting, along with the information, a series
of known symbols, whose analysis is used to define the parameters of the filters that remove the distortion of the data. Nevertheless,
a part of the available bandwidth has to be destined to these symbols. Until now, no alternative solution has demonstrated
to be fully satisfying for commercial use, but one technique that looks promising is superimposed training (ST). This work
describes a hybrid software-hardware FPGA implementation of a recent algorithm that belongs to the ST family, known as Data-
dependent Superimposed Training (DDST), which does not need extra bandwidth for its training sequences (TS) as it adds them
arithmetically to the data. DDST also adds a third sequence known as data-dependent sequence, that destroys the interference
caused by the data over the TS. As DDST’s computational burden is too high for the commercial processors used in mobile
systems, a System on a Programmable Chip (SOPC) approach is used in order to solve the problem.
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1. Introduction

The air is inherently noisy and its nature can contribute to the
presence of different kinds of interference, as the one known
as Intersymbol Interference or ISI, in which the energy of the
message symbols is spread in such way that a part of each
symbol overlaps with that of the neighboring symbols. The
ISI can, in fact, make almost impossible to the detector inside
the receiver to differentiate between a symbol and the spread
energy of consecutive ones. Nevertheless, this channel can be
modeled as a linear system, whose effects can be reverted
in the receiver, if one knows its parameters with enough
precision.

To obtain these parameters, the majority of the digital
wireless communication systems use sequences of known
symbols that are also called training sequences. These groups
of symbols, after a certain analysis, allow the estimation of
the communication channel. Once this has been performed,
the original information can be extracted, using well-
known mathematical formulas and DSP techniques for data
recovery.

The most extended technique to integrate the training
sequences to the information is known as time-division
multiplexed channel estimation or time-division multiplexed
training (TDMT), where some of the transmission slots are
used for the pilots or training symbols [1]. The performance
of this approach is very high, but it has the disadvantage of
needing part of the available bandwidth to accommodate the
extra data. Even though several options have been proposed,
none of them have demonstrated to be more feasible than the
usual training.

One of the most promising techniques that has not yet
been implemented physically is Superimposed Training (ST),
where the training sequence is arithmeticly added to the
information, saving the necessity of more bandwidth at the
expense of a little power loss on the information signal [2, 3].

The method named Data-dependent Superimposed Train-
ing goes beyond ST, adding another sequence (the data-
dependent training sequence) to the information. When
estimating the channel, what is analyzed is the training
sequence so, from this point of view, the original data can



be considered additive noise that distorts the object of study.
The data-dependent sequence cancels the contribution of
the input signal at the frequency bins at which the training
sequence has energy, improving the channel estimates over
ST [4].

The problem with DDST, talking about its possible
implementation, is its high computational complexity, that
renders the commercial mobile and low power demanding
processors useless for this purpose, at least taking into
account the performance demanded by the systems in which
it could be used. Even though simulations with the DDST
method show a performance that can compete with the
TDMT [4-6], the inherent computational burden of the
method has made, at the moment, impossible to implement
it in commercial digital communication systems, due to the
time, power, and space constraints imposed by the devices
used in this field. Until now, the only alternative solution has
been the use of a DSP architecture, with both fixed point and
simple precision floating point (32 bits) arithmetic. Resulting
speeds from these architectures (specially the floating point
one) are in the order of kHz, so, even when they are useful for
error comparison, it is impossible to use them in commercial
systems.

This work will describe a combined software/hardware
implementation of the DDST algorithm using an SOPC
approach, highlighting the most challenging issues that have
arisen, and the way in which they have been tackled. It is true
that obtaining a fast and functional DDST solution is a highly
complex task, but the promise of a larger available bandwidth
for the information is very attractive. Moreover, the method,
seen as a set of individual steps, presents challenges for which
an optimal solution has not yet been found, so the fact of,
at least getting closer to them, can be of use for other open
problems.

From an academic point of view, the DDST implemen-
tation has a special interest, as neither a full software nor
a hardware approach seems to be a satisfying solution. On
the one hand, a software alternative is, at this moment,
unfeasible, due to the time it would require for obtaining
a channel estimate and then using such estimate for the
equalization. On the other hand, a hardware architecture, for
example, using an FPGA thinking toward the construction of
an ASIC, presents several problems, caused by the enormous
amount of data that has to be operated constantly, the high
degree of data dependencies between stages of the process
(which make very difficult to use techniques as parallel
processing and pipelining) and the complex control required
by some of the mathematical operations that have to be
performed. It is true that some of the top branch FPGAs
available form Altera and Xilinx can accommodate a full
hardware architecture, and in fact a solution like this one is
the final goal of a DDST receptor, but actually, two problems
arise from this option: first, the transformation of the FPGA
prototype into an ASIC solution can be far from optimal, as
it would be neither cheap nor low power consuming, overall
because the architecture presents several DSP like structures,
that usually do not map very well to ASIC implementations
[7]. The second problem with this solution is the highly
complex control, that is, necessary to process the amount of
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FiGure 1: DDST general block diagram.

data that a digital receptor usually must handle. As this work
presents the first implementation of the DDST channel esti-
mation algorithm on an FPGA, a hybrid software/hardware
implementation presents the advantage of a simple control
through a series of software coded instruction and the power
of dedicated hardware coprocessors to perform the most time
and resources demanding tasks of the DDST receiver stages
for the obtaining of the estimate.

2. DDST Algorithm Review

Figure 1 shows a general block diagram of a digital commu-
nication receiver based on DDST.

Before describing each block, it is important to note that
they cannot be executed in a parallel fashion, that is, to start
the process of each block, it is absolutely necessary that all
the previous stages have already finished their own function.
The lines with the arrow markers indicate from where each
block receives its input and to where it feeds its output.

It is also important to mention that the DC-offset,
along with the two synchronization steps, and the channel
estimation itself, exploit the cyclostationarity, that is, induced
in the transmitted signal, when superimposed training is
employed [2, 3].

This work does not focus on the mathematical meaning
of the formulas used to solve the different steps of the DDST
approach, but in the computational burden that they present
and in the procedure followed to implement them in the
system.

2.1. Input Buffer. To begin with the steps of the algorithm,
it is necessary to store the input data samples as they are
being received, because it is not possible to correct them “on
the fly” As shown in Figure 1, the input data samples are
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FIGURE 2: Arithmetic mean from the input buffer.

corrected several times as the different stages of the DDST
channel estimation are fulfilled.

Before going further into the process, it is fair to mention
that all data samples are complex valued quantities, so all
operations performed in the following steps involve the
computation of both a real and an imaginary part of several
numbers.

2.2. DC-Offset Estimation and Correction. Practical systems
commonly face a physical problem resulting from the
building techniques used; their output, seen as voltage levels,
presents an unwanted constant value, that is, added to the
expected signal. Even though this value is almost always very
small, it must be considered as the method works with first
order statistics [2].

This block involves the reshaping of a vector formed by
an N size subset of the original input data into a matrix of size
[|P x (N/P)|l, whose rows are then summed to form a vector
of length P. Each element of the vector is then multiplied
by 1/(N/P) so, in fact, each element of the output vector
corresponds to the arithmetic mean of each of the rows of the
matrix mentioned above. This process is shown in Figure 2.

Once this vector has been obtained, the process reaches
an iterative phase that involves matrix multiplications, norm
of a vector (the square root of the sum of the squares of
the real and imaginary parts of each element of the vector),
several other multiplications, and a division. All of these
operations have a high computational complexity, where
the square root and the matrix multiplication are the more
challenging. Once the DC-offset has been obtained, it is
removed from the input data by simply subtracting it from
each input element.

2.3. Carry Frequency Offset (CFO) Estimation and Correc-
tion. Due to the lack of perfect oscillators and because
of Doppler shifts, receivers in practical pass-band systems
always experiment a carry frequency offset [8]. Among the
mathematical operations found in a DDST-based digital
communications receiver, CFO estimation has the more

complex of all, both in time and resource usage. This block
requires several summations, Fast Fourier Transforms and
vector norms, but even these operations result insignificant
when compared with the real problem of this stage: to obtain
a CFO estimate, a simulation run, for example, needed to
calculate 36864 complex exponentials. If they are solved
using the Euler’s Formula, 73728 trigonometric operations
have to be performed. As the CFO estimation is an iterative
process, the complexity is not the only problem, because low
data resolutions lead to fast growing errors, that in the end
can result in a very inaccurate estimate. Once this process
is complete, the CFO is removed from the input data by
multiplying each input sample by one complex exponential
term.

2.4. Training Sequence Synchronization Estimation. In practi-
cal applications, it is usually impossible to suppose a perfect
synchronization between the transmitter and the receiver
at the training sequence level, so channel estimation must
consider this issue.

When there is no perfect synchronization, the estimate is
just a circular shifted version of the real channel estimation
that would have been obtained under ideal conditions.
Using the cyclostationarity of the signal, one of the possible
permutations in the circular array is equal to the esti-
mate supposing perfect synchronization, so the problem is
reduced to obtain the knowledge of the correct permutation.
Mathematical operations in this stage are almost identical to
those performed for the dc-offset estimation [5].

2.5. Block Synchronization Estimation. As with the training
sequence estimation, block synchronization is also based on
the particular structure of the channel output’s cyclic mean
vector, and can be achieved even in the presence of a DC-
offset. Due to its special characteristics, in DDST it is not
enough to locate the start of a training sequence period,
because it is also necessary to find the start of each received
block. Only the vector encompassing a full DDST block will
provide a cyclostationary mean vector independent from the
data sequence, with a reduced “data” noise compared to the
rest of the estimates. This procedure is achieved through a
specific cost function, that will give a minimum value only
with the right version of the cyclostationary mean vector [5].
Even though this block is, in concept, very different from the
Training Sequence Synchronization estimation, the necessary
operations for the Block Synchronization Estimation also
include matrix multiplications, norm of a vector, and other
multiplications.

2.6. Channel Estimation. Once the two synchronization
estimations have been obtained, the channel estimation stage
can be tackled with very similar operations to those that
have already been used. In fact, this easy step only needs
a vector reshape, the mentioned vector obtained from the
arithmetic mean of that reshaped matrix, and a matrix
multiplication. At the end, what is obtained is a vector whose
complex elements correspond to the values of each tap of the
estimated channel.



TasLE 1: Computational complexity of the stages of the DDST
channel estimation algorithm.

Stage Complexity
Input buffer o(1)
DC offset O(n?)
Carry frequency offset O(n)
Training sequence synchronization O(n?)
Block synchronization O(n?)
Channel estimation O(n?)

2.7. Computational Complexity Review. To show the prob-
lems generated by each of the different stages of the DDST
channel estimation algorithm, from a different point of view,
Table 1 enlist their computational complexity. Nevertheless,
this approach is deceptive, as it supposes that the atomic
operations in the process consume the same amount of time.
For example, a matrix multiplication requires two nested
cycles, but the basic operation of the multiplication presents
an O(n) complexity, so, in fact, the full operation presents
an O(n*) complexity. Another example is the square root
operation, which presents an M(n) complexity, or the FFT
calculation, with O(nlog,n). Moreover, parameters as P and
N from the algorithm are variable, so it is very difficult
to give an idea of the real magnitude of the problem in
terms of computational complexity. Section 6 tackles this
issue by giving the results from the implementations in terms
of consumed time and necessary clock cycles to fulfill the
operations of each stage.

3. DDST and Its Hardware Implementation

As DDST is an experimental method for channel estimation,
there is not any commercial implementation nor a full
prototype receiver for it. Until now, the great majority of
the performed tests correspond to software simulations, in
which the main purpose is to compare the performance
of the superimposed methods with the one of techniques
like the TDMT, with respect to errors and noise toler-
ance.

At this point, it can be inferred that the difficulty for
implementing the algorithm in hardware is caused by two
main reasons: the complexity of the operations (square
root and trigonometric functions are far from an optimal
hardware solution), and the amount of data that is used,
transformed, and updated constantly. The first of these issues
leads to the generation of huge hardware components, that
usually need several multipliers, units that are scarce in
mid-range FPGAs. The second one requires a very complex
control unit and the need of a high amount of memory
accesses.

Moreover, the huge amount of data dependencies (oper-
ations that require several previous results from past stages)
makes it very difficult to use techniques such as parallel
processing and pipeline implementation. Even in those
few cases when it is possible to identify those stages of
the process in which either the parallel operations or the
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pipelining is feasible, their performance gain versus that
of a software only implementation can be small, and they
usually require a considerable FPGA area, due to the amount
of information that has to be operated in a concurrent
fashion.

This implementation tackles the problem by using a
hybrid software/hardware approach. A set of C language
programs running over an NIOS II soft processor spare the
need of a complex control, while dedicated hardware copro-
cessors perform the most time and resource demanding
operations (like the FFTs), also allowing operations with
nonstandard data lengths (e.g., 48 bits) that are hidden to
the C programs of the system, making it easier to control,
modify, and extend the software section of the SOPC. In
spite of the FPGA advantages, it is undeniable that they
cannot compete in many fields with the general purpose
microprocessors computer systems (like the PCs), due to
the huge amount of available memory and high speed
processing of these last ones. Nevertheless, the PCs are also
outperformed in applications where parallel or pipelined
processing of large amounts of data is required, or in those
where price, size, and power consumption constraints are
very strict. These are the reasons why the proposed solution
tries to take advantage from both approaches generating a
specific purpose SOPC as a proof-of-concept solution for the
DDST problem.

4. Hardware Architecture

Figure 3 depicts the DDST hardware architecture. It has been
designed to run in an Altera Stratix II FPGA as a system
controlled by an NIOS II. As it can be seen, the architecture
resembles that of a common computer system, with the
difference that it presents several dedicated memories for fast
data fetching and processing, and a set of special hardware
accelerators that interact directly with the rest of the system.
The processor only passes them certain parameters and
activates them (through the use of their slave ports), but
they execute its processing in a stand alone fashion. This
means that they can read and write, using the master ports,
all the memories in the system (although they almost always
interact with the dedicated ones) and, while one of them is
working, neither the processor nor do the other accelerators
need to be interrupted. The control necessary to avoid the
resource competition is performed by the software section of
the system.

4.1. NIOS II Soft-Core Embedded Processor. The NIOS II
from Altera is a soft-core microprocessor that, for the DDST
implementation, presents several advantages, like its low
power consumption and its small required FPGA area, along
with the ease to interact with custom hardware accelerator
modules.

Its main advantage over similar processors is its flexibility
and configurability capacity, that allows not only to use
a great variety of included peripherals, but also to create
custom peripherals that can then be easily interfaced to
the processor. NIOS II flexibility allows to even add new
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FIGURE 3: Hardware architecture of the system.

instructions to the instruction set. This is performed by
hardware modules that are connected directly to the NIOS
II ALU. Both the custom peripherals and the custom
instructions can be used through a relatively transparent
interface written in C language, or even in assembler.

4.2. Dedicated On-Chip Memories. The on-chip memories
are structures that allow the transparent management and
use of the memory blocks contained inside the FPGAs.
They have the smallest latency (1 cycle) of all the available
memories in the Altera boards. Low latency reduces the
number of cycles needed to obtain, operate, and store a
datum or a group of them. Fixed latency means that the
system does not need to access the memory sequentially to
achieve the highest throughput.

In the Altera NIOS II IDE, on-chip memories can be
used as if they were part of the general data memory by just
declaring a pointer to its assigned address, inside a typical
C language program, that then will be compiled for the
soft processor architecture. Dedicated memories DataRAM1,
DataRAM2, CosRAM, and SinRAM are used by the FFT
accelerator, while the N Samples Buffer and Y are accessed
by the other two coprocessors. The NIOS II can access all of
them.

5. Paradigm of the Architecture

A pure VHDL or Verilog implementation of the DDST
architecture results in a very complex control, and in a logic
that cannot fit on the majority of FPGAs without sacrificing
speed for resources usage. The alternative proposed in this
work is an SOPC that runs a series of C programs, but
leaves the most computer intensive or memory demanding
operations to special hardware accelerators.

Contrary to the majority of Systems on a Chip and
common computer systems, Altera does not use a conven-
tional bus scheme. The systems built on the manufacturer’s
programmable hardware feature a switch interconnect fabric
(Avalon) which bypasses bus contention in most applications
and gives a higher-performance pipe between processors
and peripherals. This improves the DDST implementation
execution time and prevents the necessity of extra control
in both the software and hardware parts of the SOPC.
The Avalon is a nonblocking interface, created by the
SOPC Builder tool, that interconnects all the components in
the system and permits multiple simultaneous master-slave
transactions, while still requiring minimal FPGA resources. It
replaces the traditional shared bus of usual electronic systems.

There are two kinds of ports that can access or be accessed
by the Avalon: the slave and the master. Slaves are used to



receive signals from other components of the system so they
can be controlled. Meanwhile, masters can manage other
components and perform actions like doing a memory read
or write. In SOPC builder, a master can read or write up
to 1024 bits on each memory access and not only can they
communicate with on-chip memories, but also with any
other memory device in the system. All that is needed is the
base address of such memory and the existence of a controller
for this last one. Those controllers are usually provided by
Altera, like in the case of the SDRAM.

The three accelerators in Figure 3 (that will be explained
in the following sections) are activated by the processor
through their slave ports. They can perform memory accesses
using their master ports and, after their work is finished, they
indicate it with a signal that can be read from the processor
using the slave port again. Their operation is hidden to the
user by a series of C functions that read from and write to
the slave port. The result of each of the accelerator processes
is stored in the on-chip memories DataRAM?2, Y, and RK.

At the moment, the only device outside the FPGA that is
used is the SDRAM, but to add ADCs to directly digitize the
received data is being studied.

5.1. FFT Accelerator. The FFT coprocessor is based on an
original design of Altera that uses a tool named C2H
to convert C language instructions to hardware elements
directly. There are other options (to use an IP core or a
custom hardware design) that can achieve a better perfor-
mance than this solution, but the C2H solution shows an
interesting capability of the system being built: if the DDST
algorithm is modified to have a better performance or to
reduce the computational complexity of a certain step, it is
possible to implement such change in the architecture by
just modifying some lines of code in a C program, instead
of redesigning a full hardware accelerator. As it is, the FFT
coprocessor executes its function with acceptable speed and
area consumption. This implementation uses a decimation
in time FFT algorithm known as decimation in time Cooley-
Turkey. Results are obtained through the use of a technique
of ping-pong buffering, in which two memories are used to
store the data. At the beginning, the source data are stored in
the first memory, and the processed result in the other one.
For the next iteration, the source data will be read from the
first memory, that is, the results of the past stage are now the
input of the next one, and the output will be stored in the first
memory. The process is repeated until the FFT is completed.

The Nios II C2H Compiler maps ANSI C constructs
directly to RTL. For example, an if construct will be mapped
directly to a multiplexer, and a multiplication will be mapped
to one of the available embedded multipliers.

The FFT module is different from the other hardware
accelerators programmed directly with VHDL, and has three
main advantages: first, modifications over the code are very
easy to perform, and even a programmer that does not know
anything about the system can perform them. Second, the
complex control that the algorithm requires is automatically
generated by the tool. This is important overall taking into
account that the optimizations of the method require several
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accesses to four different memories (two for the real part of
the data and another two for the imaginary one) in the ping-
pong buffering stage. Finally, changes in the original DDST
algorithm can be transformed into C code easily, reducing
drastically the time required to update this block of the
system.

The implementation of this kind of FFT algorithm
consumes significant FPGA memory resources, because of
the amount of data that have to be temporarily stored for the
ping-pong method. Moreover, two extra memories are nec-
essary to store the twiddle factors, that are basically two sets
of prestored values from sine and cosine calculations, that
are used to combine successive FFT results. Consequently,
to implement two FFT modules would consume resources
that could be used for other operations. Nonetheless, the
structure of the FFT of 2N points contains, implicitly, the
result of an N points one. The even elements of the 2N
FFT contain all the results of the N points version. In this
way, it can be said that the odd elements of the big FFT
only provide information, that is, useless for the following
calculations. Obviously, this approach takes twice the time
that would be used by a simple N point FFT module, but as
it is, even in the 2N case, this result is preferred to the extra
FPGA area that the FFT modules would consume for a faster
implementation.

5.2. Arithmetic Mean Accelerator. In the low complexity
blocks of the DDST SOPC, the most critical operations
to be performed are the matrices multiplications (basically
C71Y). Nevertheless, the hardware acceleration of such
multiplications is well studied, and the basic strategy is
always the same: to execute as many operations in parallel
as possible. This approach gives good performance, but
it consumes many resources, in logic elements, embedded
multipliers, and routing. As many other operations in the
receiver require the embedded multipliers, and because of
the space restrictions, it was decided not to accelerate this
operation, but to concentrate the efforts on the other steps
necessary for this kind of block (dc-offset, TSS, block syn-
chronization, and channel estimation). An operation, that is,
repeated several times in these blocks is the redimension and
average of the sample vector (which lead to the obtaining of
Y). This requires many memory accesses, several additions,
and P multiplications. As mentioned in Section 2, the
reshape operation is performed constantly along the DDST
execution, and then followed by the arithmetic mean of the
rows of the resulting matrix. At the end, the result is a vector
of P elements, where P is the length of the training sequence.

This coprocessor, whose block diagram is shown in
Figure 4, performs the summations over the vector to
reshape in parallel, sending the result to a dedicated memory
that corresponds to the vector of P elements. In this way the
step of the reshaping can be bypassed and the execution time
is reduced considerably.

As Np is a parameter that has to be known before
computing, then its inverse can also be previously calculated,
and the P necessary divisions can be performed as multipli-
cations by 1/Np, accelerating the process. In fact, many of
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the parameters used along the algorithm are also previously
known, so it is possible to reduce the time required by several
operations.

Summarizing, this coprocessor reads directly from the N
samples buffer dedicated on-chip memory, P data, each one
of 32 bits, accumulating their respective values to P registers
of 32 bits width. At the end of the process, they are multiplied
by 1/(N/P), so now they contain the arithmetic means of the
rows from the reshaped matrix. Finally, the results are stored
in another on-chip memory.

As it will be seen in the results section, this accelerator
outperforms a software only version by more than 30 times,
giving also a smaller error as it works with higher resolutions,
during the multiplication stage.

5.3. Norm or Magnitude Accelerator. There are several steps
of the algorithm in which it is necessary to work only with
the magnitude of the complex elements of a vector. The
high complexity of these operations comes not from the
two multiplications to obtain the squares of the real and
imaginary parts of a complex number, but from the necessity
to perform a square root. Sometimes, as in the DC-offset
estimation, it is possible to work with the square norm of
the complex samples, but this is not the case in steps like the
CFO estimation.

The norm of a complex number a + bi is calculated as in
(1) and it represents the magnitude of that number,

va? + b2, (1)

The computational burden of this operation is high, as
it does not only need to multiply the real and imaginary
part by themselves, but also to obtain a square root. This
last operation is difficult to implement with the required
speed both in software and hardware, and the algorithms
used for this computation are iterative, involving the use of
multiplications, substractions, and comparisons.

This problem is solved by using an accelerator that has
several advantages over the software-only version: it fetches
both the real and the imaginary part of the FFT elements
each time it performs a read operation; it works with 64
bits arithmetic, so there is no loss in the accuracy of the
result. In addition, it accumulates the calculated magnitudes

as it works, so at the end of the process this section of
the system will have the summation of all of the results, a
parameter needed for the iterative part of the CFO block.
Finally, it is possible to assign an “offset” so, for example, the
module can obtain only the norm of the complex samples
in positions 0,4,8,..., and so forth, and not from every
sample in the input vector. Figure 5 shows the block diagram
of the accelerator. The operation of the square root block
will be explained in the following section. The magnitude
accelerator calculates all the norms of the complex samples
in a vector V of n elements (as shown in (2)),

Vvt (k) +vit (k), (2)

with V = {v,(k) +vi(k) xie C| Vk from 0 to n — 1}.

As it can be seen, it is possible to send to the N Samples
Buffer the result of each of the magnitudes as they are
obtained, or their total summation. These decisions are fed to
the module by the software program, along with the address
of the memory and the amount of complex numbers to
process (e.g., 1024 numbers resulting from the FFT).

5.3.1. Square Root Hardware Submodule. The square root
is solved by a submodule with an operation based on the
nonrestoring algorithm implementation, like the one of [9],
but with two main differences: first, the 8 more significant
bits of the root are obtained from a look-up table. This
could be considered an approximated root, that then can be
adjusted. For example, the square root of 5 is =2.236. A value
of 2 would be obtained from the look-up table, so only the
decimal part of the result would have to be calculated. This
increases the speed of the coprocessor drasticly while still
using very little FPGA area. Second, each iteration calculates,
in parallel, 4 bits of the root, and not only one. This system is
depicted in Figure 6.

The approximated root is obtained from the look-up
table using as index the most significant bits of the radicand.
Then, this value is appended to a set of possible roots
that are squared and compared to the original radicand. A
comparator tree evaluates all the results and decides which of
the possible roots gave the smallest error. This value is then
updated as the new approximated root and the next four bits
are calculated. With each iteration, the approximated root of
the possible set of roots grows four bits, until it reaches the
least significant bit.

Another advantage of the coprocessor is that it stops its
operation as soon as it finds an exact root of an introduced
number, so not all the entries take the same amount of cycles
to be calculated. For example, if we try to find the root of
14.0625, the process will stop as soon as it realizes that 3.75
is its exact square root (on the first iteration), even if the
original number is represented as a 64 bits array, that usually
requires 6 iterations for full resolution or 5 iterations for a
maximum error of ~7.15 X 1077.

It is important to consider the bit length of the look-up
table memory. As more bits are added to this structure, the
number of iterations necessary to have the best square root
calculation will decrease. Nonetheless, as this length grows,
the necessary size of the memory to store it also increases
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significantly, to the point that it is impossible to implement TaBLE 2: Synthesis summary.
it using the FPGA memory blocks and even the external -
memories available in the board, like the SDRAM. The size Implementation Software Hardware
of the look-up table involves a tradeoff, that is, particularly Max. frequency 238.72 MHz 238.72 MHz
important in the case of architectures based on FPGAs. Space (total) 29% 68%

ALUTs 15% 60%

Registers 13% 24%
6. Results DSP blocks 10% 100%

The hybrid architecture was compared against an optimized
software-only version of the DDST algorithm implemen-
tation. The system for this nonhardware implementation
is similar to the accelerated version, but it does not have
the coprocessors or the dedicated on-chip memories. The
reason for this decision is that a commercial implementation
of the algorithm would run in a microprocessor built for
mobile devices, with characteristics very similar to those of
the NIOS I1.

Both systems were tested with a set of 3765 complex data,
with 32 bits for the real and imaginary part, respectively. In
fact, lower resolutions (e.g., 16 bits) degrade the performance
so drasticly that the obtained results are far too different
from the expected ones (obtained from a Matlab simulation

using double precision floating data). Execution time was
measured using the Altera module performance counter, that
physically times a group of code lines and outputs both
seconds consumed and cycles taken for the operation to
finish.

Table 2 shows an abstract of the synthesis report for the
software-only and hybrid systems. Space percentages refer to
an estimate that the synthesizer makes according to the total
available resources. The equal frequencies are expected as all
the coprocessors would run at higher speeds than the NIOS
IT if working in a standalone way. When functioning together,
the slowest device (the NIOS II microprocessor) determines
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TaBLE 3: Comparisons between software-only and hardware optimized operations.

Implementation .
. Performance increment
Operation Software only Hardware accelerated
Cycles Time [ms] Cycles Time [ms]

Vector reshape and arithmetic mean 74824 0.75 2238 0.02 37.5x
1024 points FFT 1591929 15.92 56743 0.57 27.92x
Norm of all the output data from the FFT 3144061 31.44 138511 1.39 22.61x
CFO iterative process 354248859 3.54249 319750003 3.1975 1.1x

the maximum performance of both designs. Because of
the large amount of performed multiplications along the
algorithm, it can be seen from the table that the total of
available DSP blocks were used by the hardware accelerated
implementation.

On the other hand, Table 3 reports the time and cycles
taken to complete some specific operations in the software
program and its hybrid architecture counterpart.

All the arithmetic and manipulation operations of the
accelerated SOPC outperform their software-only version,
not only in speed, but also in precision, thanks to the non
standard data lengths that are used in the intermediate
results. This cannot be done, with such efficiency, in a
common program, due to the fixed data lengths that have
to be used. For example, a series of 14 bits wide data have to
be stored in 16 bits wide variables, and their multiplication
in variables of 32 bits, unless a data resolution loss can be
tolerated. On the other hand, the hardware solution can take
registers of 14 bits, and store the products in 28 bits wide
structures, both if they are send to general purpose memories
or to registers inside the FPGA. If the fact that the input data
of the system are 32 bits wide is considered, this characteristic
gets more importance, as a 64 bit resolution in the software-
only program is more difficult to use, and it would be a
necessity from the first performed multiplication.

As it can be seen in Table 3, the only operation in the
system that still needs to be optimized is the CFO iterative
section. This is expected as both the hybrid implementation
and the software-only one use the sin f and cos f functions
from the Altera version of the math.h library, that calculates
the sine and cosine functions of simple precision floating
point inputs. To find a way to accelerate these sine and cosine
calculations, used for the complex exponential operations,
the use of look-up tables and a CORDIC generator [10],
are being tested. These experiments consider the tradeoffs
between precision (so the final estimate has enough accu-
racy), speed (for a solution that can equal the performance
of the other coprocessors), and occupied FPGA area.

7. Conclusions

An alternative solution that uses both a hardware and a soft-
ware approach was developed to allow the implementation
of a digital communications receiver based on the Data-
dependent Superimposed Training algorithm for channel
estimation. It was shown that it is possible to analyze

a software-only code to detect the critical sections that
can be translated into faster and more accurate hardware
coprocessors, which can both be managed by the central
microprocessor and operate independently, accessing the
memories in the system without the necessity of interrupting
the other components. The problem of the complex expo-
nentials has yet to be solved. As a solution using common
mathematical series is not suitable for FPGAs, a cordic
generator and a hybrid approach using small look-up tables
is being analyzed. In addition, to improve the performance
of the whole system, the use of a DMA module is also under
study, in order to reduce the time consumed in memory
accesses.

It can be also concluded that, in communications
algorithms in which operations like FFTs, matrices multipli-
cations, averages, and norms, among others, are needed, DSP
blocks and, overall, embedded multipliers are a very valuable
resource, as it is not possible to expect the same speed
from a multiplier that has been implemented with logic
blocks available in the FPGA; as the dedicated multipliers
are assigned to some of the built accelerators, the synthesis
tool has to use the logic blocks to implement the rest of such
multipliers, an issue that impacts the maximum frequency of
the system directly. This situation is very different from that
of the memory, due to the multiple options that can be found
nowadays in FPGA boards. It is true that the memory blocks
inside the reconfigurable chip present the smallest latency,
but a reduction in the access speed of off-chip memories
(SRAM, SDRAM) can be tolerated if it allows the storage
of a significantly bigger amount of data. Furthermore,
experimental results show that the difference of maximum
frequencies between on-chip and off-chip memories are not
very significant, if techniques as the fetching of several data
at the same time (like in the case of the arithmetic mean
accelerator) are used.

With this work, it was possible to detect the most prob-
lematic stage of a receiver based on DDST: the Carry Fre-
quency Offset Estimation. Nevertheless, the use of FFTs and
a look-up table/parallel/iterative norm accelerators make the
calculation of trigonometric functions (sines and cosines)
the only obstacle left in order to obtain a practical system
for DDST.

The hybrid software-hardware approach demonstrated
to be very versatile and flexible, allowing fast implementation
of several kinds of algorithms and their fast modification,
from a small change in the input parameters values to
the alteration of a full stage of the process. In fact, the
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built prototype fits perfectly into the study of the DDST
algorithm, as this algorithm is still under study and constant
modifications and improvements have been made over it. For
example, the first versions of superimposed training worked
under the time domain, so operations like the FFT were
not necessary. If future changes in the algorithm require a
significant modification of any of the accelerators, it will be
very easy to adapt the whole system.
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