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ABSTRACT 

 

The possibility of automatic and accurate prediction of heart failures from the 

analysis of electrocardiograms (ECG) could be a breakthrough in medicine, because 

cardiologists can sometimes identify diseases and foresee catastrophic events, but they are 

not always successful.  However, ECG, as many other biological rhythms, are the result of 

complex, non-linear dynamical systems, believed by many researches to be chaotic from a 

mathematical point of view.  Chaotic signals are extremely dependent on initial conditions; 

they look random or noisy, but they are the result of bounded, deterministic systems.  

Therefore, prediction of ECG is a real challenge.  

This research focused on the ambition of finding ways to model and predict 

electrocardiograms using artificial neural networks.  It is known that point-by-point 

prediction is impossible for chaotic time series.  However, we were looking for a  

predictability that could allow a network to model the attractor associated to ECG, rather 

than making it able to calculate accurately each value in the future.  A prediction with such 

capabilities could foresee bifurcations in the dynamics and hence, predict catastrophic 

events. 

We explored the use of  Lyapunov exponents  (an invariant measure of the 

divergence of several trajectories of a dynamical system) as an aid on the training of 

predictors based on complex neural networks (CNN). A CNN is a recurrent network built 

with harmonic generators, which are 3-node recurrent neural networks previously  trained to 

reproduce a specific sine wave.  Several predictors were designed training a feed-forward 

network to reproduce an ECG, using past signal values as external inputs;  harmonic 

generators trained to reproduce the harmonic components of the signal.  After that, these 

weights were embedded in a CNN, which trained until reaching a minimum.  All predictors 

trained using the algorithm back-propagation through time.    

We found that, embedding the Lyapunov exponents using the fashion described 

before is not enough to make the network fully capture the dynamics of the system, but it 

improved its short-term prediction.  Besides, we found that harmonic generators control 

oscillations of the trajectories in long-term predictions. None of these characteristics are 

present in feed-forward networks or plain recurrent neural networks. 

 vi
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CHAPTER I 
 

INTRODUCTION 
 

 Since the seventies, advances in the theory of non-linear dynamics have encouraged 

the construction of models and predictors of non-linear time series that were previously 

considered intractable.  At the same time, artificial neural networks have been widely used to 

model dynamic systems in applications of prediction, noise filtering and analysis of temporal 

sequences such as sunspot series, stock market data, disease behavior and speech signals.  

 Among other applications, the theory of non-linear dynamics has been recently used 

to model biological rhythms of the human body, such as blood pressure, heart beats and 

concentration of sugar in the blood.  From a mathematical point of view, many of these 

rhythms have been found to be chaotic (Glass 1988).  Chaotic signals are extremely 

dependent on initial conditions, and even though they look random or noisy, they are the 

result of deterministic systems, bounded and aperiodic.  Due to these characteristics, chaotic 

signals are very difficult to model and consequently, to predict. 

 A biological rhythm of our particular interest is the electrical activity of the human 

heart.  The electrocardiogram (ECG), a measure of this activity, is considered by several 

authors to be a chaotic signal (Glass 1987, 1991; Denton et al. 1990 (a); Albert 1990).  The 

need to model this dynamical system lies in the fact that, even when experienced 

cardiologists can identify diseases and foresee some catastrophic events from the behavior of 

electrocardiograms, they are not always successful in predicting when it is going to occur.  

Their success depends upon many factors not yet clearly identified.  Therefore, the 

possibility of an automatic and accurate prediction of heart failures from analysis of the 

ECG could be a breakthrough in medicine.  However, it is difficult to model an ECG due to 

its chaotic characteristics and the high-frequency peaks present in it  (points R and S at 

Figure 1.1). 

 The study of non-linear oscillations has been developed extensively since the 

contributions of Alekandrovech Andronov (1901-1952), who recognized observable 

oscillations using the abstract limit cycles defined by Poincaré (1854-1912).  Andronov’s 

main instrument was the two-dimensional phase space, a concept that led to the discovery of 

chaos.  Chaotic signals result in strange but well defined attractors, which are clearly 
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identified in the phase space embedding the system.  A return map is a representation of the 

phase space of the system (section 2.1).  Figure 1.2 shows the return map of an 

electrocardiogram.  A strange attractor with a dense injection region is noticed in the figure. 

Besides phase spaces and return maps,  new concepts have been developed lately in non-

linear dynamics:  Poincaré sections, Lyapunov exponents, correlation dimension, fractal 

dimension and Kolmogorov entropy, among others.   

One of the most popular tools to identify chaos is the calculation of Lyapunov 

exponents (section 2.7), which are an invariant quantitative measure of the divergence of 

several trajectories in a dynamic system.  A positive maximum Lyapunov exponent 

characterizes a system that is very dependent of initial conditions, that is, one that is most 

probably chaotic.  Lyapunov exponents are currently the standard metric used to identify 

chaos in time series generated by unknown dynamical systems.  Several numerical algorithms 

have been developed for calculating these numbers.   
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Figure 1.1.  Components of an ECG 

 

 Artificial recurrent neural networks (RNN) (Figure 1.3) have shown to be promising 

tools for modeling non-linear time series.  Appropriate topologies of RNN are believed to 

be able to acquire the dynamics imbedded in this kind of data.  Due to its internal feedback 

connections, RNN contain memory, which make them very powerful and suitable for 

applications where information is coupled with time.  Such a recurrence makes RNN to 

behave as complex non-linear systems, able to extract the invariant characteristics defining a 
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dynamical system.  Therefore, RNN are a promising tool for long-term prediction of chaotic 

signal,  an open problem at this time. 
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Figure 1.2.  A plot of the strange attractor generated  

by an electrocardiogram.  
 

 The ability of an artificial neural network to model a system is completely related to 

its topology, training algorithm and the data used for teaching it.  Therefore, to search for a 

solution using a neural network implies finding the appropriate topology, using the right 

training algorithm, with enough and adequate training data.  It is clear that, as more 

information about the characteristic of the problem is embedded in the topology of the 

network and in the training data, the network will have improved chances for solving the 

problem. 

This research focuses on the ambition of finding ways to model and predict 

electrocardiograms using both neural networks and the theory of non-linear dynamics.  This 

work is based upon several previous studies in areas of artificial neural networks, non-linear 

dynamic systems, chaos, forecasting of time series and digital signal processing. 

 It is known that long-term point-by-point prediction is not possible for chaotic time 

series, due to its divergence characteristics (Wang and Alkon 1993).  However, in this 

research we are looking for a kind of predictability that could allow a network to model the 

behavior of the attractor associated to electrocardiograms, rather than making it able to 

calculate accurately each value in the future of such a signal.  A predictor with such 
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capabilities could foresee bifurcations in the dynamic systems; consequently, many of the 

catastrophic failures of the heart that kill hundreds each year could be diagnosed.     

External Input
                                           w11

      w00       w01/w10                   w12/w21

                       w22

 
                                          w02/w20

 
Figure 1.3.  A small fully-connected recurrent neural network. 

 

The main objective of this research was to explore the use of information about the 

non-linear characteristic of the ECG signal as an aid on the training of recurrent neural 

networks, and to evaluate the prediction abilities of such networks.   

 With this ultimate goal in mind, we implemented and evaluated several network 

predictors, considering the concepts of Lyapunov exponents and harmonic generators.  We 

call a harmonic generator a 3-node recurrent neural network that has been trained to 

produce a sine wave with a specific frequency and amplitude (section 3.3.1.4).  Such a 

trajectory is generated without receiving any external inputs each time that a prediction is 

performed; the only external information given to the network for point-by-point prediction 

consists of the initial conditions of the system at time zero (section 3.1).  This kind of 

predictor is called autonomous.  A recurrent neural network using these harmonic 

generators, called the complex network, showed promising results in previous works 

(Oldham and Gómez 1997).  

The Lyapunov exponents were imbedded in the predictors designed in this research 

by training a feed-forward neural network to generate a signal with Lyapunov exponents 

similar to the original training signal.  After that, the weights of this network were used as 

initial weights of hybrid or recurrent neural networks constructed over this feed-forward 

network.  Several versions were tested, including the use of external inputs, feedback for 

prediction, and hybrid networks combined with harmonic generators.  In addition, we 

explored the impact of the use of the techniques of teacher forcing (William and Zipser 

1989) and constants weights (Pearlmutter 1990) when training the neural networks using the 
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algorithm back propagation through time.  Also the effect of filtering and decimation of the 

training signals was analyzed. 

 The main contribution of this work was the analysis and evaluation of the amalgam 

of two ideas:  the ability of Lyapunov exponents to characterize chaos and the ability of 

recurrent neural networks to represent complex systems.  Such a mixture was done in a 

search for improving the long-term capabilities of predictors built using complex networks.  

As a result of this research we found that the embedding of Lyapunov exponents in complex 

networks, using the version described before, is not enough to allow the network fully 

capture the dynamic of the chaotic system generating the heart activity,  and therefore, still 

not able to foresee catastrophic events.  However, it was found that the embedding of this 

invariant information does improve the short-term ability to predict, and that the harmonic 

generators are a powerful tool to control the oscillations of the trajectories in long-term 

prediction.   

 Additionally, we found the algorithm back-propagation through time a versatile tool 

for training networks composed of a mixture of recurrent and feed-forward connections. 

However, we also discovered a few practical problems in the implementation described by 

Pearlmutter (1990), particularly with the definition of the integration step required for such 

implementation.  Other interesting results of this work included finding that adjustable time-

constants (section 5.1.3) proved to improve the performance of these predictors, and that 

the application of teacher forcing (section 3.3.1.2) did not generate any improvement in the 

training of the complex network.   

 This document is divided as follows:  Chapter II presents the basic concepts related 

to non-linear dynamic systems.  It contains the background needed to fully understand the 

ideas and terminology used during the rest of the document.  Chapter III describes the state 

of the art of recurrent neural networks when applied to chaos and oscillatory systems.  It 

also contains basic definitions related to forecasting, and a description of linear and non-

linear predictors.  This chapter also includes a detailed description of the recurrent neural 

network called the complex model, which was used as the starting point of some of the 

predictors designed in this work.  Chapter IV enumerates the methodologies used in this 

research to evaluate the performance of the predictors, as well as the algorithms applied to 

pre-process the signals used to train the networks.  The performance metrics included the 
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Mean Square Error, the Lyapunov exponents and visual inspection of return maps. The pre-

processing of training signals involved filtering, sampling rate conversion and harmonic 

decomposition.  Chapter V presents the results obtained by nine predictors designed 

applying the concepts of Lyapunov exponents and harmonic generators in feed-forward, 

hybrid, and fully-recurrent neural networks.  The predictors are grouped as follows:  

modifications to the original complex model, predictors based on hybrid neural networks, 

predictors based in feed-forward networks and predictors based in hybrid networks using 

harmonic generators and external inputs.  Chapter VI presents a detailed discussion of our 

conclusions and some recommendations for future work.  Appendix A contains a numerical 

algorithm for the calculation of Lyapunov exponents from a time series.  Appendix B 

describes the training algorithm back-propagation through time.  Appendix C contains the 

connection matrices defining the topologies of the hybrid  neural networks used in the 

experiments reported in Chapter V.  Appendix D describes the electrocardiogram signals 

used for the experiments reported in this work.  

 

 

 



 

CHAPTER II 

NONLINEAR DYNAMICAL SYSTEMS 

 

 This chapter summarizes basic concepts of non-linear dynamical systems  that are 

needed to fully understand the context in which this thesis is developed.  For a complete 

review of this topic see:  Tong (1993), Parker and Chua (1998),  Epstein (1997), Glass and 

Mackey (1988), Denton (1990) (a). 

   

2.1 General Concepts 

A non-linear system may be described by a set of differential equations: 

.

))(()(

0yy

yyFy

  (0)                                        

 )],( ... ),(),([=)(    , 21

=

= tytytytt
dt

td
d            (2.1) 

where the vector field F is nonlinear.  Here d is the dimension of the system.  

Equation (2.1) describes the motion of a point in a d-dimensional state space known as 

phase space.  A trajectory or orbit of the system is a curve of )(ty  drawn in the phase space, 

showing the solution of (2.1) for a specific initial condition.  A family of trajectories for 

different initial conditions is called a phase portrait.  

 The behavior of a dynamical system can be visualized using a plot called return map, 

which is a representation of the state space of the system.  A return map shows the relation 

between a given point in a time series  with other points further away in time. Each point is 

plotted in a different coordinate.  The dimension of the plot depends on how many points are 

being related.  The temporal difference between the points being plotted is called the time lag.  

Figure 2.1 (b) shows a return map of the time series plotted at Figure 2.1(a).  

 

2.2 Fixed Points and Limit Cycles 

 The asymptotic behavior of a dynamical system as ∞→t  is known as its steady state. 

An steady state y*  is a set of values of the variables of a system for which the system does not 

change as time proceeds.  That is: 

0=
dt

td )(y .             (2.2) 
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Figure 2.1.  The concept of return map. (a) A quasi-periodic time series.  
(b) Its return map for a time lag = 5 

 

When the steady state is a point, it is called a fixed point or equilibrium point.  For 

example, consider the system (Greenberg 78): 

ayaxyyaxx −−=+−= &&       , .          (2.3) 

Changing to polar form θθ sin ,cos == yx , it reduces to  whose 

trajectories are logarithmic spirals that approach a singular point if a > 0 and depart from it if a 

< 0.  Figure 2.2 shows one of such trajectories for a > 0 in polar coordinates.  

1  , −=−= θ&& arr

 Some systems do not reach fixed points as ∞→t , rather they oscillate.  The solution 

to their differential equation is periodic, known as a limit cycle.  A limit set is defined as the set of 

points in the state space that a trajectory of the system repeatedly visits.  The points of the 

limit cycle form the limit set.  

 An example of an oscillator is the Duffing equation, defined as: 

03 =++ xxx βα&& .            (2.4) 

 The solution of this system is given by the family of curves: 

Cxxy =++
2

4
42 βα

0>

,            (2.5)  

β  are shown at Figure 2.3 where C is a constant.  Some trajectories of these curves for 

 An attractor  is a set of points toward which a trajectory approaches after its transient 

state dies out.  Equilibrium points or fixed point and limit cycles are attractors.  A basin of 



 

attraction is a set of initial conditions for which the system approaches the same attractor as 

∞→t . 
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Figure 2.2.  A trajectory of equation 2.3 traveling to a fixed point. 

 

 For example, the system: 

π,
dt
dΦ

rar
dt
dr

2

0>a     1

=

−= )(
            (2.6) 

 has a limit cycle at r = 1.  A two-dimensional radial symmetric differential equation like this  is 

called a Poincaré oscillator.  Any initial condition except r = 0 will approach the trajectory to a 

specific cycle.  See Figure 2.4, where two trajectories starting from different initial conditions 

will approach the circle of radius 1. 
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Figure 2.3.  Examples of limit cycles for Duffing equation. 
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Limit cycles are not possible in linear systems or in one-dimensional ordinary 

differential equations. 
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Poincaré trajectory starting at r=0.1,tao=1.5
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Figure 2.4.  Two examples of stability in Poincaré oscillator. 

 

2.3 Chaos 

 The study of non-linear oscillations has been developed extensively since the 

contributions of Alekandrovech Andronov (1901-1952), who identified observable self-

sustained oscillations using the abstract limit cycles defined by Poincaré (1854-1912) (Tong 

1993).  Andronov’s main tool was the two-dimensional phase plane, a concept that led to the 

discovery of strange attractors or chaos.  

 When the steady state behavior of a system is bounded but not an equilibrium point or 

a limit cycle then the system is said to be chaotic.  The geometrical object  in state space to 



 

which chaotic trajectories are attracted is called a strange attractor.  The geometry of strange 

attractors normally is very complicated.  Strange attractors possess fractional dimension, that 

is, a dimension that is not integer.  The dimension of an attractor shows a lower bound on the 

number of state variables needed to describe its steady-state behavior (Parker and Chua 1989).  

An strange attractor presents one or more  injection regions, which  are zones of the phase space  

with an very large number of trajectories crossing along them. Such closeness in the 

trajectories make the system to “jump” from one trajectory to other, generating what is known 

as chaos.  

 For example, consider the Hennon map, given by the difference equations: 

.t

tt

bxy
yaxx

t

t

=
+−=

+

+

1

1

21
            (2.7) 

Figure 2.5 shows the variable x plotted as time goes on for a=1.4 and b=0.  For these 

values of a and b the Hennon map presents a chaotic behavior.  Its strange attractor can be 

visualized in the return map of Figure 2.6  

 Another example of a chaotic system is given by the Mackey-Glass equation (Glass 

1988), which has being widely used to model many biological rhythms.  It is given by the 

differential equation: 

)(
)(

)()( tbx
tx

tax
dt

tdx
−

−+
−

=
τ

τ
101

.           (2.8) 
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Figure 2.5.  Coordinate x of Hennon map for a =1.4, b = 0.3 and x(0) = 0.1 
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Figure 2.6.  A strange attractor of Hennon map for  

A = 1.4, b = 0.3 and x(0) = 0.1 
 

For a = 0.2, b = 0.1 and τ = 17, this equation results in chaotic behavior.  Figure 2.7 

shows  a numerical solution of the Mackey-Glass equation and Figure 2.8 is its corresponding 

return map. 
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Figure 2.7.  Mackey-Glass data.  Equation (2.8) 

 

  Through the years, the existence of chaos has been characterized in time series using 

several methods, among others:  analysis of Fourier spectra,  fractal power spectra,  entropy, 
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fractal dimension, and calculation of Lyapunov exponents.  However, several of these methods 

have proven not to be very efficient.  In recent years, the calculation of Lyapunov exponents 

has been a common way to determine if a time series resulting from a unknown dynamical 

system is chaotic.  Section 2.7 describes with detail Lyapunov exponents. 
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Figure 2.8.  A return map of data at Figure 2.7 with a lag = 5 

 

2.4 Stability 

 A system is said to be locally stable if after a small perturbation away from the steady 

state it returns to its steady state as t → ∞.  If a small perturbation induces a change in the 

dynamics so that the original dynamics is not reestablished, then the steady state or limit cycle 

is said to be unstable.  

For example, in the Poincaré oscillator (equation 2.5) r = 0 is a steady state; at that 

point 0=
dt
dx .  However, any small perturbation away from r = 0 will lead the path to the 

stable limit cycle at r = 1.  Therefore, the steady state at r=0 is unstable.  We can see at Figure 

2.4 two examples of such stability. 

To determine stability and asymptotic stability in nonlinear systems it is common to 

apply the direct method of Lyapunov.  This method is based on the two Lyapunov’s  theorems that 

state:   
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“Theorem 1:   The equilibrium state x  is stable if, in a small neighborhood of x , 

there exists a positive definite function V(x) such that its derivative with respect 

to time is negative semi-definite in that region” (Haykin 1994, pp. 547). 

“Theorem 2:   The equilibrium state x  is asymptotically stable if in a small 

neighborhood of x  there exists a positive definite function V(x) such that its 

derivative with respect to time is negative definite in that region” (Haykin 1994, 

pp. 547). 

A scalar function V(x) that satisfies these requirements is called a Lyapunov function for 

the equilibrium state x . Recall that a function V(x) is positive definite in the estate space L if for 

all x in L it satisfies the following requirements:  

1. The function V(x) has continuous partial derivatives with respect to the elements of the 

state vector x. 

2. V( x )=0. 

3. V(x)>0 if x x≠ . 

         Using this definition and according to Theorem 1, the equilibrium state x  is stable if: 

xxx −∈≤ UV
dt
d for      )( 0 ,  where U is a small neighborhood around x .  

According to Theorem 2, the equilibrium state x  is asymptotically stable if:  

d
dt

V U( )x x< ∈0     for x− . 

 It is important to point out that stability in the sense of Lyapunov, as described before, 

is applied only to fixed-point attractors, and  it cannot be applied to the particular cases of 

nonlinear dynamical systems exhibiting chaotic behavior (Haykin 94).  In fact for a chaotic 

dynamic, if perturbed, the system finds a new trajectory with new initial conditions.  

 

2.5 Bifurcation 

 Any value of a parameter in which the number and/or stability of steady states changes 

is called a bifurcation point, and the involved system is said to undergo a bifurcation.  At 

bifurcation points, systems are structurally unstable; that is, the main qualitative features of the 

system change.  For example, a biological system can be approximated by a quadratic map: 

40      11 ≤≤−=+ a xaxx iii )( .        (2.9) 
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Its steady state x* is a value for which xi = xi+1 = x* ; that is,  x* = 0 and x* = (a-1)/a. 

Figure 2.9 shows an example of a time series for the quadratic map with a = 2.5.  It converges 

to the fixed point (a-1)/a = 0.6.  As the value of parameter a increases in the range of 3.0<a< 

3.75,  successive period-doubling occurs in the time series (see Figures 2.10 and 2.10 ) and the 

steady states are limit cycles now.  

 Figure 2.12 shows the quadratic map for a = 4.0.  Now its behavior is chaotic. Notice 

that the time series seems to be random, however it was generated by a perfectly well defined 

equation. 

Kaplan and Cohen (1990) as well as others summarize the following as 

characterizations of deterministic chaos: 

• Chaotic trajectories  are aperiodic and deterministic. 

• Chaotic systems are extremely dependent on initial conditions. 

• The chaotic behavior is bounded and presents a strange attractor. 

• There is a particular pattern associated with chaotic behavior.  
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Figure 2.10.  Quadratic map for a = 3.25 Figure 2.9.  Quadratic map for a = 2.5 
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Figure 2.11.  Quadratic map for a = 3.5 
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Figure 2.12.  Quadratic map for a = 4.0 

 

2.6 Time Series and Phase-Space Reconstruction 

In most of the cases, the only information available of an unknown  non-linear,  d-

dimensional system is a  one-dimensional  time series ℜ∈…= T }, x(t), ,  x(t),  t 21{ . 

According to the embedding theory defined by Takens (1981), a space of dimension 

12 +≥ dM   can be reconstructed from these one-dimensional observations.  The properties 

of the attractor of the real system of dimension d may be observed in the reconstructed space 

of dimension M.  This can be done by defining the vector: 

)))1(()...2(),(),(()( τττ −+++= Mtxtxtxtxty ,        (2.10)   

for some set of time lag τ .  .         MRt ∈)(y

For 12 +≥ dM , the dynamical properties of a map  

)())(( 1+= tt yyΦ   ,          (2.11) MM RR →:Φ

are topologically the same as the unknown system.  M is called the embedding dimension 

(Kaashoek and Van Dijk 1994).  

There are several methods to calculate an appropriate value for the embedding 

dimension M.  Indeed, the value of the time lag τ  need to be selected.  Abarbanel et al., (1990) 

describe in detail a method to reconstruct the embedding space.  In their method they choose 

a value of τ  based on the auto-correlation function of the original scalar measurements.  The 

calculation of M is an iterative process involving the calculation of the correlation function for 

increasing values of M, starting at one.  They choose the value of M when the structure of the 

correlation dimension does not change with an increment of M. These methods are applicable 
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if the dimension is less or equal to seven.  At present, there is no technique for systems with 

larger dimensions.  

 

2.7 The Lyapunov Exponents 

Since the 1970’s, the study of non-linear dynamics has focused on concepts like the 

KAM theorem, Lyapunov exponents, Smale’s horseshoe, Feigenbaum constants and fractal 

dimensions (Tong 1993).  Several techniques have been developed to detect and analyze non-

linear behavior; among them are:  return maps, Poincaré sections, Lyapunov exponents, 

correlation dimension, fractal dimension, Kolmogorov entropy and spectral analysis. Probably 

today the most popular tool to detect chaos  in an unknown dynamical system from a time 

series are the Lyapunov exponents (LE for short).  

Given a system: 

d
dt

f
x

x= ( )          ,  dRt ∈)(x x o( )to x= ,         (2.12) 

    where f is a vector field that does not depend on time, i.e., autonomous, the Lyapunov 

exponents λ λ λ1 2, ... d  are the average rates of expansion ( λi > 0 ) or contraction ( λi < 0 ) near  a 

limit set of the dynamical system (Parker and Chua 1989).  In other words, the LE  are  a 

quantitative measure of the divergence of several trajectories in the system. The subscript “i” 

refers to the i-th direction of the d-dimensional phase space where the system is embedded.  

The variable d represents the Lyapunov dimension or phase space dimension.  The LE are 

invariant measures that characterize the attractors of a dynamical system; that is, LE do not 

change when the initial conditions of a trajectory are modified or if some perturbation occurs 

in the system.   

The values of the LE give us information about the type of a limit set because they 

measure the exponential attraction or separation in time of two adjacent trajectories in phase 

space with different initial conditions.  Table 2.1 summarizes the interpretations of LE for 

different kinds of systems (Parker and Chua 1989).  If at least one LE is positive, the system 

presents chaotic motion; hence it is very dependent on initial conditions.  If that is the case, 

the magnitude of the LE reflects the time scale on which  the dynamics of the system  become 

unpredictable.  
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 According to Brown et al. (1991), the Lyapunov exponents may be determined by 

observing the evolution of small deviations in an orbit w(k).  This orbit is defined in the phase 

space of the system, that is,  for   k = 1,2,…N.  It may be assumed that such an 

orbit is a map; that is, it is a discrete version of the system flow.  The orbit should satisfy: 

w(k) ∈Rd

w( ) ( (k f+ =1 w ))k .            (2.13) 

A perturbation in the orbit can be described as: 

δ δw f w( ) ( ( )) (k D k+ =1 w )k ,           (2.14) 

 where Df w( ) is the d x d Jacobian matrix evaluated along the orbit.  

The Lyapunov exponents are the logarithms of the eigenvalues of the matrix defined 

by: 

[ KKTK DD
K

Lim 21/)()( ff
∞→

],           (2.15) 

where  D D K D K DKf f f f= ⋅ − ⋅ ⋅⋅( ) ( ) ( )1 1  ,  and  D K D Kf f w( ) ( ( ))= . 

Normally, the LE are referred in order of their numerical size, that is:  λ λ1 2≥ ≥...  LE 

are expressed in terms of bits of information/s for continuos systems and bits/iteration for 

discrete systems.  

The Lyapunov spectrum is closely related to fractional dimensions associated with the 

attractor.  Examples of fractional dimension-like  quantities are:  fractal dimension, 

information dimension and correlation exponent.  For example, the information  dimension 

 is related to LE as:  fd

1

1

+

=
∑+

=
j

j

i
i

f

j
d

λ

λ
,   where j is defined by the condition:   .    (2.16) 0  and  0

1

11

<> ∑∑
+

==

j

i
i

j

i
i λλ ,

For chaotic systems, the magnitude of the LE reflects the time scale on which the 

system dynamics become unpredictable. 

 

 

 

 

Table 2.1.  Values of Lyapunov exponents for different 
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types of limit sets (Parker and Chua 1989) 
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2.7.1 Numerical Methods to Calculate Lyapunov Exponents 

A numerical method is needed to calculate the LE from a set of observations of the 

system when equations describing it are not available.  In 1985, Wolf et al., proposed one of 

the first practical methods to calculate the maximum LE from a time series.  Since then, many 

others have been proposed; examples are presented at Parker et al. (1989), Brown et al. (1991), 

Abarbanel et al. (1990), Rosenstein et al. (1993), Banbrook et al. (1997), Barna and Tsuda 

(1993), among others.  There are numerical methods available for both the calculation of the 

maximum LE or calculation of the LE spectra.  

Following is the description of two numerical methods for calculation of LE:  the one 

proposed by Wolf et al. (1985) which has historical importance, and the one proposed by 

Gencay and Dechert (1992) which is of fundamental importance in this research.  

  

2.7.1.1. The Method of Wolf et al.  

 This method can calculate non-negative LE.  The authors have published  versions of 

their method to calculate the LE spectra or only the largest positive exponent.  This algorithm 

is easy to use and requires fewer amounts of data than other methods available at the time that 

it was created.  However, as in most of these numerical methods, its reliability depends mainly 

on the good sense of the experimenter when choosing or calculating several parameters 

needed by the algorithm, as well as in the accuracy and size of the data set. Appendix A  shows 
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a structured version of the algorithm to calculate the maximum LE using fixed evolution time 

as described at (Wolf et al. 1985). 

 The main idea of this algorithm is to monitor the long-term evolution of a single pair 

of nearby orbits of the system in order to estimate 1λ , the largest LE.  The algorithm attempts 

to approximate the local tangent space about a fiducial orbit of the system.  The process starts 

calculating the time-delay reconstructed coordinates y as described at section 2.6.  After that, it 

finds the nearest neighbor in the reconstructed space to the first point in the orbit.  The 

magnitude of the difference vector is recorded.  Subsequently, the point evolves along its 

trajectory a given number of steps.  The magnitude of the final separations is determined, and 

a contribution to 1λ is calculated as the logarithm of the final separation divided by the initial 

separation.  All contributions are averaged over the length of the time series.  If the distance 

between neighbors becomes too large, the algorithm abandons this point and searches for a 

new neighbor.  

This algorithm requires the following input parameters: 

1. The number of points in the time series (N).  Wolf et al. (1985) suggest that at least 10d 

points are needed, but Abarbanel et al. (1991) suggest 20d as the right amount of data to 

use with this algorithm.  Greater accuracy requires a longer time series. 

2. The embedded dimension of the system (d).  The determination of this value requires the 

application of other numerical methods.  Wolf et al. (1985) and Abarbanel et al. (1991) 

suggest some ways to calculate it.  The behavior of the algorithm is very dependent on the 

accuracy of this value.  A too large value increments noise; a too short value produces loss 

of information. 

3. Reconstruction time delay ( dτ ).  This value is chosen in a way to make the d components 

of the system as “orthogonal” as possible.  A popular way to calculate it is finding the first 

zero of the auto-correlation function of the time series, but experimentation is sometimes 

needed to find a correct value.    

4. Time between successive measurements in the time series ( sT ).  This is the inverse of the 

sampling rate for the data.  
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5. Maximum distance that the algorithm will look for neighbors (Smax).  Making this variable 

smaller will increase accuracy. The authors suggest it should be less than 1% of the macro-

scale of the attractor, and to experiment with its value. 

6. Minimum distance that the algorithm will look for neighbors (Smin).  This variable is used to 

avoid noise.  

7. Evolution time ( ET ).  Given in time series steps, it is the time that a given pair of 

neighbors are allowed to evolve before replacement.  This variable affects greatly the 

accuracy of calculation.  Experimentation is required to find a correct value.  

 The well-known Lorenz system:  
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            (2.17) 

presents chaotic behavior when a = 16.0, b = 45.92, c =4.0.  Figure 2.13 (a) shows 500 points 

of a numerical solution to the Lorenz system, and (b) the return map for the same data 

showing the strange attractor of the system.  The maximum LE of this time series was 

calculated using the Wolf et al. algorithm with the following parameters:  number of points:  

4,500; embedded dimension:  3; time delay:  13; time period of data:  0.1; maximum distance to 

look for neighbors:  0.4; minimum distance to look for neighbors:  0.00001 and evolution time:  

20.  Figure 2.14 shows the convergence of LE , getting as the last result 1.315.  It is known that 

the true value of the maximum LE for the Lorenz system is 1.5.  

Wolf et al. suggest running the algorithm for different values of evolution time and  

choosing  the one where  1λ  presents some stationary.  Figure 2.14 plots the obtained values 

for the Lorenz system for evolution times between 2 and 60.  Notice that a plateau is around 

12 and 21.  The average  1λ  on this range is 1.3518.  
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Figure 2.13.  Lorenz system. (a) Data. (b) Return map with lag = 1. 
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Figure 2.14.  Convergence in the calculation of Lyapunov Exponent. 

  

 The main drawback of this algorithm is its strong dependence on the size of the data 

set and the accuracy of the input parameters, which by themselves are hard to determine in real 

life cases.  This is the case of electrocardiograms, which are believed to be chaotic signals.   

Figure 2.15 shows a sample of an electrocardiogram signal.  This is a fraction of record No. 

123 of the database produced by  Harvard (1992).  The signal was sampled at 360Hz.  The 

Wolf’s algorithm was used with 37,500 points of this record, an embedded dimension of 6 (as 

suggested by Babloyantz &  Destexhe [1988]), time delay of 15 points (calculated using the 

auto-correlation function),  time period of 0.028, a maximum distance to look for neighbors of 

0.008 and a minimum distance of 1.0e-5.  Figure 2.16 shows a plot of the convergence of 1λ  as 

the algorithm goes over the data (only the first 150 points are plotted).  Notice that the plot is 

rougher than that in Figure 2.14.   

Figure 2.17 shows the obtained values of 1λ  for evolution times from 80 to 384. 

Notice that 1λ  does not converge to a well-defined stable value.  Some stability is shown at the 

range  from 254 to 384, where the mean of 1λ   is 0.0931.  The true value of the maximum 

exponent of an ECG has not been determined.  Several numerical calculations, using different 

data sets of ECG signals, have being reported:  Babloyantz and Destexhe  (1988) obtained 

values of 080380 .. ±1 =λ  for ECG; Karanam (1996) obtained calculated lower limits of 1λ  
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from 0.11 to 0.27; Casaleggio et. al (1995) obtained values ranging from 7.6 to 29.1 for 

different samples of ECG.  
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Figure 2.15.  A fraction of file ecg123.dat 
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Figure 2.16.  Convergence of Wolf’s algorithm for ecg123.dat 
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LE for ecg123.dat for different evolution times
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Figure 2.17.  Maximum LE of the ECG signal  
for different evolution times  

 

2.7.1.2. Estimation of Lyapunov Exponents using  
Feed-forward Neural Networks 
 
 Gencay and Dechert (1992) developed an algorithm to estimate all the Lyapunov 

exponents of an unknown dynamical system using a technique based on a multivariate feed-

forward  neural network.  The same algorithm has been used by several authors (Sattin 1997, 

González et al. 1995, Kaashoek and Van Dijk 1994) for different applications.  The main idea 

of this algorithm is to estimate a function from the observations of the system that is  

topologically equivalent to the one describing the system, then calculate the LE of that 

function.  As stated by equations 2.13 to 2.15, the Lyapunov exponents of a dynamical system 

can be calculated by evaluating the Jacobian of  the function f  (see equations) that describes its 

trajectory.  Multi-layer feed-forward neural networks can approximate a function and its 

derivatives to any degree of accuracy; therefore, they are used  in this algorithm as a non-

parametric estimation technique.  The algorithm works as follows:   

Suppose a dynamical system  with a trajectory  nnf ℜ→ℜ:

 ... 0,1,2,   t1 ==+ ),( tt xfx  .            (2.18) 
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Associated with this system there is a measurement function that generates the 

sequence of observations { :  

ℜ→ℜnh :

}ty

)( tt xhy = .                 (2.19) 

The time series {  is all the information available about the system.  As described at 

section 2.3, a map of dimension m with equivalent properties to the original system can be 

constructed from the one-dimensional observations  as: 

}ty

ty

)( m
t

m
t ygy =+1 ,              (2.20) 

where  and . ),...,,( tmtmt
m
t yyyy 21 −+−+= ),...,,( 111 +−+++ = tmtmt

m
t yyyy

The dynamical properties of  f and g are the same.  The map g to be estimated can be 

represented as: 
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The function v can be estimated using a feed-forward network with one hidden layer (see 

Figure 2.17)  

∑ ∑
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),(),,;( ,, ββ          (2.22) 

where:  
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1
β ,           (2.23) 

the are weights from input nodes to hidden nodes, ijw jβ  are weights from hidden to output 

node, L is the number of hidden nodes, m it he number of inputs, corresponding to the 

imbedded dimension and x are external inputs to the network.  The optimization criteria 

consists on minimizing the square-error cost function over the whole trajectory of size T: 

  ∑
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tmtjij bwyvywE ),,;((),( , ββ .         (2.24) 
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The estimation of parameters can be carried out using the well-known algorithm back-

propagation (Rumelhart et al. 1986) or, as suggested by Gencay and Dechert, using the Polak-

Ribiere conjugate gradient method (Press et al. 1988).  The latter requires one to use the partial 

derivatives of the cost function which are: 
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for , Lkml ..),...( 1  11 =+=

where the substitutions  and jmj wb ,1+= 11 +=+mx , have been made to simplify the equations. 

Once that g is known, a method as the one described by Parker and Chua (1989) can 

be used to calculate the Lyapunov Exponents based on the Jacobian Matrix of g, which is 

given by: 
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where:  

,
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=
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dvv              (2.28) 

and the Lyapunov exponents iλ are computed as: 
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λ .           (2.29) 

The ability of equation (2.22) to approximate arbitrary functions has proven to be very 

good (Hornik et al. 1990), even for a chaotic series. Figure 2.19 shows the result of 

approximating a time series of a Hennon map (see equation 2.7) using 2 input nodes and 8 

hidden nodes. 
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Figure 2.18.  A feed-forward net with two external inputs. 

 

The network was trained using the standard back-propagation algorithm. This one-step 

prediction is so good that the plots of original and calculated series can not be distinguished at 

the resolution of Figure 2.19.  The Mean Square Error of the cost function after training of the 

network was 7.8E-4. Similar results were obtained when training the network using the Polak-

Ribiere conjugate gradient method, with the observation that even though  the convergence 

was much faster, the final value of the error was not better than with back-propagation.  
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Figure 2.19.  Aproximation of a Hennon series using a feed- 
forward net with 2 inputs and 6 hidden nodes. LE = 0.6064. 
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This kind of approximation or single-point prediction (see section 3.1) also works well 

for ECG signals. Figure 2.20 shows a plot of the first 1,000 points for the estimation of 3,978 

points of a series. For this example 5 input nodes  and 10 hidden nodes were used. The Mean 

Square Error was 3.29E-4. 
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Figure 2.20.  Approximation of an ECG signal using a feed-fordward  

net with 5 inputs and 10 hidden nodes.  LE = 0.1823 
 



CHAPTER III 

PREDICTION AND ARTIFICIAL NEURAL NETWORKS  

 

 The possibility to foresee future events has always been of great interest for all 

disciplines.  Tong (1993) identifies three basic activities in the construction of a forecasting 

model: first determine the main characteristics of the data, next construct a model using the 

available theory and such characteristics, and finally verify if the model is able to represent 

the features of the system.  Such activities may need to be executed several times.   

However, this is not an easy task, particularly for the cases where the unknown 

dynamical model is non-linear or chaotic, because the simple observation of the outputs 

gives few clues to determine the model that will represent the dynamics accurately.  

Despite the difficulties of forecasting, many  techniques to predict time series have 

been proposed.  According to Brockell (1991), the problem of forecasting consists of the 

evaluation of future values of a time series, , based on the observations of its 

past values .  In general, prediction may be seen as a function approximation 

problem (Príncipe et al. 1997) which consists of defining a complicated function 

1≥+ hx hT   ,

Txxx ..., 21

)(yf  using 

other function  that is a combination of simpler  functions:  )(~ yf

∑
=

=
N

i
iiaf

1
)()(~ yy ϕ .            (3.1) 

If the bases functions )(yiϕ  are a linear combination of past outputs and/or inputs, 

the model is said to be linear.  When the bases are nonlinear with respect to the past signal, 

the model is non-linear.  For many years linear models have been the most popular tools to 

predict, but obviously they are not able to represent accurately any non-linear dynamical 

system. 

 

3.1 Types of Prediction 

A predictor map defined by (3.1) can be written as: 

)),(() ayFy t(t =+1 .            (3.2) 

Single-step prediction  takes place when several observations of past values are used by 

the predictor to calculate the next point.  This is also called next-point prediction or one-point 
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prediction.  The predictor map is applied once: )),(() ayFy t(t =+1 .  This kind of prediction is 

normally carried out by non-autonomous predictors, where each prediction of time t  requires as 

external inputs observations at times t-1, t-2… t-d+1.  It is also possible to carry out single-

step prediction using an autonomous predictor, which is able to fully represent the solution to 

the dynamic of the system, and therefore it only requires as external input the initial 

conditions of the system.  From time t=0 the predictor  will calculate the output at any time t  

without any external inputs.   

Point-by-point prediction takes place when, in a iterative way, the predictor calculates 

outputs at times t, t+1 , t+2 … .  Here the predictor map is applied several times: 

.  A non-autonomous 

predictor will require feedback from its own predictions to calculate new values when the 

value to be predicted is such that there are no more available observations.  Point-by-point 

prediction is required for long-time prediction.  

)),((...)),),((()),(() ayFaayFFayFy tktktk(t k==−+=−+=+ 21

 

3.2 Linear Models for Prediction. 

 A linear predictor can be seen as a filter, as pictured at Figure 3.1 (Burrs 1991).  

Given a discrete time signal with unknown parameters, future outputs can be estimated as a 

linear combination of input values, output values, or both.  In its most general form, the 

estimation  is given by:  )(~ ny

∑ ∑
= =

−+−−=
N

i

M

j

ji jnxbinyany
1 1

)()()(ˆ ,          ( 3.3 ) 

where )(nx  and are inputs and outputs of the system respectively;  and  represent  

estimated values.  Normally the only known values are the outputs of the system. 

)(ny ia jb

This system can be described as: 

)()()()( zXzBzYzA = ,           (3.4) 

then: 
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        H(z)        x(n)    y(n)

unknown values
known value

 
Figure 3.1.  A linear prediction model 

 

The obtained parameters are estimations of the poles and zeroes of the system.  This 

pole-zeroes model is known as the ARMA model, initials standing for Auto-Regressive, Moving-

Average. 

 It is also possible to define simpler models which take in account only past inputs or 

past outputs. They are the all-zeroes model, defined as: 

∑
=

−=
M

j

j jnxbny
1

)()(ˆ ,            (3.6) 

also called  the MA model, initials standing for Moving Average, and the all-poles model, 

defined as: 

∑
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)()(ˆ ,            (3.7) 

also called the AR model, initials standing for Auto Regressive. 

 

3.2.1 Implementation of an AR Model 

 AR models are very popular because in most applications only the output values of 

the system are known.  Besides they are easy to implement, but they require heavy numerical 

calculations.  

 In this model, it is required to solve the equation:  

∑
=

−−=
M

i
i inyany

1
)()(ˆ , 

 in a way that the error defined by the function  is minimized.  >=< )(neE 2
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For any set , the error when estimating }{ ia )(ny  is given by: 
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where .   10 =a

 According to the orthogonal principle, the minimum error is obtained when  is 

chosen such that E is orthogonal to 

}{ ia

)( iny −  for all i=0..N, that is, 

 ... N, j=jnyne 210    )()( =− ,          (3.10) 

which is equivalent to: 
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 If  is a stationary signal, the auto-correlation function defined by: )(ny

)()( jnyinyr ji −−=− ,            (3.12) 

can by substituted in equation 3.11 which becomes: 
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The minimum-squared error is given by the equation: 
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Combining equations (3.13) and (3.14), the following equation system is 

obtained: 
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where , and p is the number of coefficients to calculate or degree of the predictor. 

 is the minimum error obtained when using p coefficients.  

iaia =)(

pE
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 There are many ways to solve this system.  For example, N. Levinson constructed a 

recursive algorithm to calculate the coefficients {  based on the fact that in a stationary 

signal the correlation matrix is symmetric  and “Toeplitz,” that is, its j-th. row counting from 

bottom is always the inverse of its j-th. row counting from the top.  For a detailed 

description of the Levinson method see Oppenheim (1989). 

}ia

 A non-autonomous, single-point predictor of degree 10 was trained using the 

Levinson method to learn the ECG signal given at Figure 3.2 (a).  Figure 3.2 (b) shows the 

results obtained when predicting the next point.  The predictor takes 10 past values of the 

original signal to predict the next point, obtaining satisfactory results.  However, it is 

important to point out that single-point prediction is neither very difficult nor useful in most 

cases.  Almost any kind of predictor could obtain satisfactory results for one-point 

prediction. 
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(a) Original Signal
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0

2

(b) Next-point prediction using p= 10  
Figure 3.2.  An example of next-point prediction of an ECG signal. 

 

 Figure 3.3 (b) shows the results obtained by the same predictor when working as a 

point-by-point predictor and trained with p=200.  Two hundred points of the original signal 

were given, and 50 points ahead were predicted.  To predict point 201, 200 original points 
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were given as external inputs.  Feedback of the calculated values was required to predict 

from point 202 ahead.  For prediction of the last point, 151 original points and 49 predicted 

values were used.  Point by point prediction was not successful after just a few points. 

 

3.3 Non-linear Prediction 

 A non-linear model can not be described by a transfer function, but a model 

equivalent to the linear case can be constructed for non-linear systems using the embedding 

theory of Takens (Príncipe 1997).  This model is designed by first reconstructing an 

embedding space from the time series with characteristics equivalent to the original system 

(see section 2.6) and then defining a map that transforms from the current reconstructed 

state of the trajectory to the next state.  
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(a) Original signal. Only 200 points were used
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(b) Prediction of 50 points after point 200

 
Figure 3.3.  An example of point-by-point prediction of an ECG signal 

 

 Given ))(()...(),(),(()( τττ 12 −+++= dnxnxnxnxny  (where )(nx is the time 

series, d is the embedding dimension, and τ  the time lag), a map  

parameterized by , can be constructed such that  

dF ℜ: ,d ℜ→

)...,,( paaaa 321=a

)),(()( ayFy nn =+1 .            (3.16) 
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As in the linear case, the estimation of coefficients is carried out such that a cost 

function like: 

ia
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is minimized. 

 The map F is required not only to produce accurately )( 1+ny  from )(ny , but also to 

produce  after two applications of the map to )( 2+ny )(ny , )( 3+ny  after three and so on. 

 As pointed out at section 2.7, data resulting from a non-linear dynamical system 

contain invariant information that is essential to describe the geometrical structure of its 

attractor.  A way to construct a predictor map is calculating such invariants from the data 

and then imposing them as constraints on the calculation of parameters,  in a way that the 

dynamical system defined by F has similar invariants to the unknown system.  Abarbanel et 

al. (1990) constructed a predictor for chaotic series based on this concept obtaining good 

results for data coming from the Hennon map and the Lorenz system.  They found that the 

parameter values that minimize the least-square criterion do not in general reproduce the 

invariants of the dynamical system, while the maps that reproduce the values of the 

invariants are not optimum in the least-square sense.  

 It is important to remark that reliable point-to-point prediction of chaotic systems 

with unknown dynamics is impossible (Wang and Alkon 1993).  Indeed, there is not a theory 

for recognizing whether a constructed predictor has been able to truly identify the original 

system. 

 

3.3.1 Neural Networks for Non-linear Prediction 
 Applications of artificial neural networks are countless.  Both feed-forward and 

recurrent neural networks have proved to be well suitable for many problems where 

approximations to functions are needed; also several models have been designed to emulate 

oscillations and other time-dependent sequences.  

There are several studies related to modeling and prediction of non-linear time series 

using neural networks.  Wang and Alkon (1993) present a good summary of some of these 

studies.  Recurrent neural networks have shown to be crucial for activities involving non-
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linear dynamics and specially for chaos.  Following is a brief description of some of these 

models.  

 

3.3.1.1. The Oscillatory Network of Hayashi 

 Hayashi (1994) analyzed the behavior of an oscillatory network with external inputs. 

His network is made of excitatory and inhibitory neural groups.  Each excitatory cell is 

connected to an inhibitory cell and to other excitatory cells.  The dynamic equations for the 

cells are: 
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where  and  are the averaged pulse density for excitatory and inhibitory cells, N 

represents the number of node groups, M is the number of memory patterns, 

are the training patterns and 

ix

1,2=

jy

 M)... (i αξ α δij  is the Kronecker’s delta.  Hayashi observed 

that, when the external inputs to the network were similar to a memory pattern, the network 

generated a limit cycle near such a pattern.  For an input far from the memory patterns, a 

chaotic orbit was generated. 

 

3.3.1.2 Real Time Recurrent Learning 
 Williams and Zipser (1989) proposed a network called Real Time Recurrent Learning 

(RTRL).  This learning algorithm is based on minimization of error, as in Back Propagation 

Through Time (BPTT).  The authors claim that the principal advantage of their algorithm 

over BPTT is that it does not require an epoch length.  The computation time of this 

algorithm is of O(n4).  The dynamics of their system is represented by the equations: 
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)]([)( tSftY kkk =+1 .           (3.23) 

There are n nodes and m external input lines per node. X t( ) is an m-tuple of external 

inputs at time t, Y t( ) is an n-tuple of outputs at time t, U represents the set of outputs and I 

represents the set of inputs.  The vector Z is defined as: 
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    if  

 .          (3.24) 

 William and Zipser also proposed the concept of teacher forcing, which basically 

consists of using the desired value of the signal, if available, instead of the actual output Yk(t) 

when computing the rest of the outputs of the network.  Teacher forcing has shown to 

improve learning in some applications but not in all cases. 

 

3.3.1.3 Time Delay Neural Network with Global Feedback Loop 

 Príncipe and Kuo (1994) studied a dynamic modeling of chaotic time series using a 

recurrent neural network with a global feedback loop.  Their network was trained using 

back- propagation through time.  They proposed to use dynamic invariants as a measure of 

the success of the predictor, instead of  a global error.  This network is called the Time 

Delay Neural Network with Global Feedback Loop (TDNNGFL).  The dynamic net is 

seeded with a set of input samples; next, the input is disconnected and the predicted sample 

is fed back to the input for k steps.  The mean square error between the predicted and true 

sample is used as a cost function.  Because the time series is chaotic, the authors weighted 

the error function according to the largest Lyapunov exponent of the signal.  The cost 

function used in this network is: 
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where r is the number of training sequences, m is the estimated dimension of the dynamic 

system, k is the length of the trajectory, q is the number of samples that overlap the 

sequences of length k, x is the real data and ~x  is the predicted data.  The function h is 

defined as: 
) ,           (3.26) (max )()( 12 −−−Δ= miteih λ
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where λ max  is the largest Lyapunov exponent and Δt is the sampling interval.  Using this cost 

function, the weighting of errors for later iterations has less credit than in former iterations.  
 

3.3.1.4 The Complex Network 

 A 3-node fully-connected recurrent neural network (RNN) is able to oscillate, hence 

it may capture the dynamics of sine waves and work as an autonomous predictor. Once 

trained, these kinds of networks can accurately predict point-by-point fairly well during long 

periods of time, using no external inputs except the initial point of the signal (Figure 3.4). 

We call this a harmonic generator.  

Based on this oscillation ability,  Oldham (1997) developed a predictor model which 

consists of  a fully-connected RNN pre-loaded with information about the Fourier 

components of the signal to be learned.  Such a model is known as the complex network. 

The frequency information of the signal is embedded in the network in the following 

fashion: the seven first sine harmonics of the signal to be modeled are used to train the 

weights of seven three-node recurrent networks, called “the sub-networks” or harmonic 

generators.  After training, these sub-networks are embedded in a bigger RNN, the complex 

network.  

Figure 3.5 shows a complex network with 3 harmonic generators, (named A, B and 

C).  No is the output node that produces the predicted signal.  The sub-networks are 

connected in a fully recurrent fashion to every other node in the complex network, but, for 

simplicity, not all connections are drawn in the figure.  The internal weights of the harmonic 

generators are held fixed during the training of the rest of the weights.  Bold lines in the 

figure represent these fixed weights.  There are no nodes with external inputs; therefore, the 

network acts as an autonomous predictor.  The signal is fed to the network during training as 

the desired value of node No.  The model also may include other  “output nodes,” which are 

trained to learn the value of the signal in delayed times ( and  in the figure).  These are 

called “pseudo-output” nodes.  The rest of the nodes are hidden nodes.  This network is 

trained using an implementation of the algorithm back-propagation through time developed 

by Pearlmutter (1989).  Appendix B contains a detailed description of this algorithm. 

0S 1S
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initial
value

sine wave

3-node RNN

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244

 
Figure 3.4.  A harmonic generator:  an autonomous  

predictor of sine waves.  

  
 Figure 3.6 shows the results obtained by a complex network trained to model an 

ECG signal.  The network has a total of 33 nodes; 4 of them are pseudo-output nodes, one 

is the output node and 21 correspond to 7 sub-networks trained to the first seven harmonics 

of the original signal.  This network has 1,026 modifiable weights out of 1,089 total. 

The training time series has 512 points corresponding to approximately 2 beats or 

cycles of the ECG.  The  point-by-point prediction is carried out up to point number 1,500.  

Both the original and predicted signals are shown in Figure 3.6; the original signal ends at 

point 512.  Figure 3.7 shows the corresponding return map. These results were obtained 

after 31,000 epochs, obtaining a final mean square error of 0.0071. More training did not 

result in any significant improvement in the error.  Notice that the highest output value 

obtained by the network is around 0.2 while the original signal has a maximum at 0.75. 

 Figure 3.8 shows the prediction obtained when the harmonic weights were allowed 

to be modified, and the network trained 15,000 more epochs.  The final mean square error 

by point was 0.0068.  These results are similar to the ones showed at Figure 3.6. 

 

 40



..

.
...

A B

No

G

So S1

 
Figure 3.5.  The complex network.  A, B and C  are 

harmonic generators; No. is the output node. 
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Figure 3.6.  A prediction obtained by a complex network after 

31,000 epochs. 
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Figure 3.7.  Return map generated by the prediction  

shown at Figure 3.6 
 

 Figure 3.9 shows a surface plot of the 33-by-33 weight matrix of the network after 

31,000 epochs.  This matrix 320  ...,  , == jiw jiW  contains the connections from node i to 

node j.  Nodes are ordered as follows: the first 21 nodes belong to sub-networks; the next 7 

are hidden nodes; the next 4 are pseudo-output nodes; and the last is the output node.  

Notice in the figure that most of the activity is found at the weights located in the inverted 

diagonal, which correnspond to the 3-node sub-networks.  Almost no activity is shown in 

the connections corresponding to recurrence among the hidden nodes.  

 Even though this point-to-point prediction is not satisfactory, the network shows an 

oscillatory, aperiodic output for large periods of time.  
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Figure 3.8.  Prediction after 46,000 epochs  

training all weights  
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Figure 3.9.  The weight matrix after 31,000 epochs. 
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CHAPTER IV 

PERFORMANCE METRICS AND 

PREPROCESSING OF TRAINING SIGNALS 

 

 This chapter presents the methodologies used to measure and compare the 

performance of the predictors constructed in this work.  It also includes a brief description of 

the pre-processing algorithms that were applied to the training signals before using them to 

feed the predictors.  See also Appendix D for a listing of these metric values for all the training 

signals used in this research.   

 

4.1 Methodologies to Evaluate the Predictors. 

 The performance of each predictor was measured using one or more of the following: 

the Mean Squared Error, the maximum Lyapunov exponent of the output signal and a visual 

inspection of the return maps generated by the output signal.  Next is a description of such 

metrics. 

 

4.1.1. Mean Squared Error. 

 The Mean Squared Error (MSE) generated by the a neural net predictor is calculated as: 

∑
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MSE ))()(( ,       (4.1) 

where S is the size of the trajectory being evaluated; )(tyn  is the output of the node predicting 

the signal; and )(tdn  is the desired output of the predictor.   

Even though MSE is a popular metric in approximation problems, it is not considered 

the best performance measure for modeling of chaotic systems (Príncipe & Kuo 1994, 

Abarbanel et al. 1990).  A chaotic system may generate an infinite number of trajectories 

depending upon its initial conditions; therefore, even when the predictor is learning the correct 

information about the dynamic system, it is possible that it is not reproducing the same 

trajectory that was used for training.  For this reason, this metric should be used with 

discretion. 

4.1.2.  Lyapunov Exponents 
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The Lyapunov exponents (LE) are invariant measures of non-linear systems; they do not 

change when the initial conditions of the trajectory are altered or due to small perturbations 

(see section 2.7 for a full description of Lyapunov Exponents).  It is expected that a predictor 

map, if getting the essential characteristics of a dynamic system, will reproduce signals with 

invariants similar to the training signal, even if its output signal does not look similar to the 

training signal.   

The method proposed by Wolf et al. (1985) was used in this work to calculate the 

maximum LE of the signals generated by the predictors (see section 2.7.1 and Appendix A for 

details).  As pointed out in section 2.7.1, this numerical method needs to be used with caution, 

because its correct convergence is very sensitive to input parameters, noise and the amount of 

data available.  This problem is a characteristic of most of the methods currently available to 

calculate LE from data. 

 

4.1.3 Return Maps 

A return map is a plot representing the state space of the system (section 2.1 for a 

detailed explication of return maps).  Chaotic signals generate return maps with well-defined 

but strange attractors, while random signals generate return maps without a defined shape.  

The return maps of chaotic signals show parts where trajectories are infinitely close to each 

other,  known as injection regions.  Return maps may be considered an invariant characteristic of 

chaotic time series, because different trajectories of the same dynamic system generate similar 

return maps. 

Figure 2.7 shows a time series generated with the Mackey-Glass equation (equation 

2.8), and Figure 2.8  shows its corresponding three-dimensional return map.  Figure 4.1 (a) 

shows an electrocardiogram and 4.1 (b) its corresponding return map. 

 

4.2 Preprocessing of Training Signals 

 The signals input to the predictors were modified for at least one of the following 

procedures:  normalization of their amplitudes to get a mean equal zero or a specific maximum 

and minimum value; filtering of the signals to a specific frequency bandwidth; and conversion 

of the signals to a smaller sampling rate.  All of these procedures were applied in order to 

simplify the work of the predictors.  Also, the harmonic components for some signals were 
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calculated in order to use this information in the design of some predictors.  Following is a 

brief explanation of how some of these procedures were carried out. 
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(b) 

Figure 4.1.  Return map of an electrocardiogram.  (a) An ECG and  
(b) its corresponding return map with a time lag = 10. 

 
 
 Appendix D contains the return maps of all the signals used to train the experiments 

described at Chapter 5.  All of these return maps were calculated using a time lag of 10.  

 

4.2.1 Filtering 
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 Filtering is the process of converting a signal to another signal where a range of 

frequencies has been removed.  Following the recommendations of Abarbanel et al. (1993), a 

band-pass filter with finite-duration impulse response (FIR filter) was applied to the signal in 

order to reduce noise (see Proakis and Manolakis (1996) for a detailed description of FIR 

filters).  

 Electrocardiograms are signals with a broadband Fourier spectrum.  Figure 4.3 shows 

the frequency spectrum of the ECG shown at Figure 4.2, which was sampled to 360 Hz.  This 

signal will be referred as ecg2.dat (see Appendix D for a full description of all signals referred to 

in this chapter). 

Ecg2.dat was filtered by a FIR filter of order 40 with cutoff frequencies lying at 0.5 and 

105 Hz.  This upper limit was chosen after observing that, in ecg2.dat,  the magnitude of 

frequencies above 100 Hz. is less than 0.5.  The filtered signal, called ecg2.fil, is shown at Figure 

4.4; Figure 4.5 shows its frequency spectrum.  The fundamental frequency of both ecg2.dat 

and ecg2.fil is 1.4062 Hz.  

 Figure 4.6 shows the signal ecg4.fil, which is the result of normalizing the magnitudes 

of  ecg2.fil to a minimum of –0.3122 and a maximum of 0.75.  
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Figure 4.2.  An electrocardiogram (ecg2.dat) . 
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Figure 4.3.  The frequency spectrum of ECG in Figure 4.2. 
 

4.2.2 Sampling Rate Conversion 

 Sampling Rate Conversion  is the process of changing a signal from a given sampling 

rate to another sampling rate .  The ratio xF yF
x

y

F
F  should be rational when using a digital 

method for the conversion.  If the sampling rate is reduced the process is called decimation. 
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Figure 4.4.  A filtered version of ecg2.dat (Ecg2.fil) 
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Figure 4.5.  The frequency spectrum of ecg2.fil  
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Figure 4.6 Ecg4.fil: the signal ecg2.fil normalized in magnitude 

 to the range [-0.3122,0.75] 
 

 

When decimating a signal x(n) with spectrum X(w) by an integer factor of D, the 

bandwidth of x(n) must first be reduced to: 

D
F

F x
MAX 2

= ,             (4.2) 

 to avoid the phenomenon of aliasing in the resulting signal (Proakis and Manolakis 1996).  

 49



To decimate by a factor of 4 the time series ecg2.dat (Figure 4.2) which was originally 

sampled to 360 Hz., the signal needs to be filtered to :  

45
4*2

360
2

===
D

F
F X

MAX  Hz., 

before the down sampling.  Figure 4.7 shows the resulting signal, called ecg6n.su4.  Ecg2.dat 

had 512 points; ecg6n.su4 contains 128 points.  
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Figure 4.7.  Ecg6n.su4:  ecg2.dat converted to a sampling frequency of 90 Hz. 

 

4.2.3. Harmonic Decomposition 

Spectral decomposition of a discrete-time aperiodic signal is carried out using the  

Discrete Fourier Transform (DFT), defined for a signal with N components as follows: )(nx

X k x n e
n

N
j kn N( ) ( ) /=

=

−
−∑

0

1
2π ,    for k=0, 1, 2,... N - 1.         (4.3) 

Its corresponding Inverse  (IDFT) is defined by: 

x n
N

X k e
k

N
j kn N( ) ( ) /=

=

−
−∑1

0

1
2π      n= 0, 1, 2,...N-1.         (4.4) 

The magnitude of X(k) is called the Power Spectrum Density  (PSD) of the signal.  
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Knowing the fundamental frequency of a signal, its harmonic components are defined 

as sine and cosine functions with their frequencies being a factor of the fundamental.  The 

amplitudes and phases can also be obtained from the PDS.  The addition of all harmonic 

components of a signal will lead to the exact signal if the number of frequency components is 

infinite.  Figures 4.8 shows the signal obtained when adding 30 harmonics of ecg2.fil.  Notice 

that this figure roughly  resembles the original signal; therefore, modeling ECG signals using 

harmonics is not accurate enough to allow any prediction, unless that the number of 

harmonics were large.    
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Figure 4.8.  Approximation of ecg4.fil using 30 harmonics. 
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CHAPTER V 

RESULTS  

 

This chapter describes the results obtained by several neural-net predictors built 

applying some of the ideas detailed in previous chapters.  Four kinds of predictors were 

analyzed:  modifications to the complex network model, predictors based on hybrid neural 

networks, predictors based on feed-forward networks with feedback, and predictors based 

on hybrid networks using harmonic generators and external inputs.  Other experiments were 

run, but these are used to summarize the results.    

All the neural networks (feed-forward, hybrid and recurrent types) were trained using 

an implementation of the algorithm back propagation through time described by Pearlmutter 

(1990); Appendix B contains a detailed description of this algorithm.  In all cases, the 

training processes were stopped when the decrement in the cost function during the last 100 

epochs became less than 1.0E-05.    

 All programs were implemented using the programming language C++.  Some of 

the pre-processing software was developed using MatLab™.   The electrocardiograms used 

in the experiments were taken from the database produced by the Harvard-MIT Division of 

Health Science and Technology Biomedical Engineering Center (Harvard 1992).  Appendix 

D contains a full description of all signals used in the experiments.  This includes values of 

their maximum Lyapunov Exponents, and plots of the time series, Fourier transforms and 

return maps. 

Table 5.1 describes at-a-glance each case; Table 5.2 contains a detailed description of 

the input parameters used for training each predictor;  Table 5.3 shows the calculations of 

the performance metrics maximum Lyapunov Exponent (LE) and Mean Squared Error 

(MSE) for most of the cases.  In that table, as well as in other places, the term segment  is used 

to refer a trajectory of predicted points with the same size as the trajectory used to train the 

network.  Appendix C contains the connection matrices that fully specify the topology of the 

hybrid and feed-forward networks used in some of the experiments.  The results obtained by 

the original complex model, described at section 3.3.1.4, will be referred to as Case C.0 in 

this and next chapters.  Case C.0 is used as a comparison point for some of the cases 

reported in this chapter. 
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Table 5.1 A summary of the cases analyzed in this work. 

 
CASE 
NUMBER 

DESCRIPTION 

C.0 The original complex network (section 3.3.1.4):  a fully 
recurrent network with harmonic generators.  No external 
inputs.  
 

C.1 The same complex network defined at C.0 but using a down- 
sampled signal (section 4.2.2) for training. 
 

C.2 The same complex network model defined at C.0, adding 
teacher forcing (section 3.3.1.2) during training.  
 

C.3  
A and B 

The complex network defined at C.0, adding time constants 
weights (section 4.3.3).  Part A used the same signal as C.0 for 
training; part B used a down-sampled version of the signal.  
 

H.1 A hybrid network using harmonic generators and pseudo-
output nodes, with no recurrent connections except in the 
harmonic generators.  The topology of this network is defined 
in appendix C by the connection matrix A. 
 

F.1 
A and B 

A feed-forward network that uses feedback during its 
prediction state.  Its topology is defined by connection matrix 
B in appendix C.  Part A  predicts a sine function; part B 
predicts an electrocardiogram.  
 

F.2 Addition of recurrent connections to the network used at case 
F.1. 
 

K.1  A hybrid network built with harmonic generators and external 
inputs, that uses feedback during prediction.  No hidden layer 
is included.  Connection matrix C defines its topology.  
 

K.2 
A and B 

A hybrid network built with harmonic generators and external 
inputs, that uses feedback during prediction.  A hidden layer is 
included.  Connection matrix D defines its topology.  Part A 
predicts an ECG; part B predicts Mackey-Glass data.  

  



Table 5.2 Specifications of the neural net predictors implemented for each case. 

 
 

CHARAC-TERISTIC 
CASE

C.0 

CASE

C.1 

CASE

C.2 

CASE C.3.A CASE C.3.B CASE

H.1 

Type of connections 
 

Fully recurrent Fully recurrent Fully recurrent Fully recurrent Fully recurrent Hybrid

I.D. of connection 
topology (appendix C) 

-- -- -- -- -- A

Total number of weights 
to modify. 

1,089 1,089 1,089 1,089+33= 
1,122 

1,089+33= 
1,122 

245+33
= 278 

Total number of nodes 
 

33 33 33 33 33 33

Number of input nodes 
 

0 0 0 0 0 0

Number of output 
nodes 

5 5 5 5 5 5

Sigmoid coefficient 
 

0.5 0.3 0.3 0.1 0.3 0.1

Delta t 
 

0.1 0.6 0.6 0.3 0.1 0.3

Training file 
 

Ecg4.fil Ecg6n.su4 Ecg6n.su4 Ecg4.fil Ecg6n.su4 Ecg4.fil

Size of trajectory 
 

512 128 128 512 128 512

Number of harmonics  
 

7 7 7 7 7 7

Total of epochs 
executed 

31,000 31,000 31,000 61,000 61,000 45,000

Final MSE 
 

7.1E-3 1.47E-2 1.51E-2 7.4E-3 1.59E-2 7.95E-3
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Table 5.2 (continuation).  Specifications of the neural net predictors implemented for each case. 
 

CHARAC-TERISTIC 
CASE

 F.1.A 

CASE 

F.1.B 

CASE 

F.2 

CASE 

K.1 

CASE 

K.2.A 

CASE 

K.2.B 

Type of connections Feed-forward 
with feedback 
 

Feed-forward 
with feedback 

Feed-forward, 
then recurrent 

Hybrid with 
external inputs 

Hybrid with 
external inputs 

Hybrid with 
external inputs 

I.D. of connection 
topology (appendix C) 

B B B C D D  

Total number of 
weights to modify. 

60 60 First 60; next 
256 

First 189+27 =
216; next 
729+27 = 
756 

First 154+34 =
188; next 
1,156+34 = 
1,190 

First 154+34 =
188; next 
1,156+34 = 
1,190 

Total number of 
nodes 

16 16 16 27 34 34

Number of input 
nodes 

5 5 5 5 5 5  

Number of output 
nodes 

1 1 1 1 1 1  

Sigmoid coefficient 
 

1.0 1.0 1.0 0.1 0.1 0.5

Delta t 
 

1.0 1.0 1.0 0.3 0.3 0.5

Training file H360_7_5.dat 
(Sine) 

A0310z.fil 
(ECG) 

A0310z.fil 
(ECG) 

Ecg4.fil Ecg4.fil Good8.
dat (Mackey) 

Size of trajectory 
 

104 475 475 512 512 210

Number of harmonics  
 

0 0 0 7 7 7  

Total of epochs 
executed 

10,000 50,000 100,000 50,000 30,000 31,000

Final MSE 
 

2.0E-3 1.4E-3 8.4E-4 3.10E-3 2.35E-3 8.82E-1
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Table 5.3 Performance metrics MSE and LE for selected cases. 

 

 

CHARAC-

TERISTIC 

CASE  

C.0 

CASE 

C.1 

CASE 

C.3. 

CASE 

H.1 

CASE  

F.1B 

CASE 

F.2 

CASE 

K.1 

CASE 

K.2.A 

CASE

K.2.B 

Training file Ecg4.fil 
 

Ecg6n.su4 Ecg4.fil Ecg4.fil A0310z.fil  A0310z.fil Ecg4.fil Ecg4.fil Good8.dat 
(Mackey-
Glass) 

Size of 
trajectory 

512 128 512 512 475 475 512 512 210 

MSE after 
Training 

7.1E-3 1.47E-2 7.4E-3 7.95E-3 1.4E-3 8.4E-4 3.10E-3 2.35E-3 8.8E-1 

LE of training 
signal 
 

3.23 
±0.27 

10.77 
±2.94 

3.23 
±0.27 

3.23 
±0.27 
 

19.34 
±5.25 
 

19.34 
±5.25 

3.23 
±0.27 

3.23 
±0.27 

0.0334 
±0.003 

LE of first 
predicted 
segment *  

6.53 
±4.54 

38.64 
±10.53 
 

7.76 
±2.09 

12.53 
±0.85 
 

19.7 
±5.12 
 

18.05 
±5.66 

4.47 
±0.33 

4.88 
±2.21 

0.0374 
±0.006 

LE of first 4 
predicted 
segments *  

1.63 
±0.75 

1.90 
±1.04 

3.92 
±1.11 

2.96 
±0.52 
 

INFINITE INFINITE 5.09 
±1.14 

7.52 
±1.95 

0.0845 
±0.005 

 

 
* A segment is a trajectory of predicted points with the same number of points as the trajectory used to train the signal  



5.1  Modifications to the Complex Model 

Several modifications were tried for Case 0, in an attempt to improve its learning 

speed and prediction ability.  These modifications include:  training the network with a 

down-sampled signal,  the use of teacher forcing during training, and adjusting the time-

constant weights.  Each case is described next.  

 

5.1.1. Case C.1. Down-sampling of the training signal 

 The training algorithm backpropagation through time has a complexity of , 

where n is the number of nodes in the network and s is the size of the training set 

(trajectory).  Therefore, a reduction in the size of the trajectory could lead to faster training, 

provided that no information is lost.  Besides, it was hoped that removing noise and 

retraining only the important features of the signal would make it easier for the network to 

learn.   

)( snO ⋅2

 Considering this, the training signal used at case C.0 (ecg4.fil) was down-sampled by 

a factor of 4 using the procedures described at section 4.2.  Then the experiment was 

repeated keeping the rest of parameters similar (see Table 5.2).   After 31,000 epochs the 

MSE was 1.47E-2.  This resulted in a value larger than the MSE obtained at case C.0    

(7.1E-3).   

Figure 5.1 shows the first segment of the predicted signal (128 points), obtained after 

that the training was stopped; and it compares it with the expected one.  Figure 5.2 shows a 

plot of the long-term, point-by-point prediction obtained at this case; Figure 5.3 shows a 

return map of such a prediction.   

The LE of the first predicted segment was 38.64 ± 10.53.  This value is far away of  

the LE of the corresponding segment in the training signal, which is 10.77.  The same 

difference is noticed with the LE of 4 segments of prediction, which was 1.90 ± 1.04.  

Therefore, comparing the MSE, the LE and the return maps of cases C.0 and C.1, no 

improvement is noticed due to down-sampling.  
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Figure 5.1.  First 128 points predicted after learning in case C.1,  

compared with training signal.  MSE = 7.1E-3. 
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Figure 5.2. Prediction of 520 points obtained at Case C.1., 

compared with training signal. 
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Figure 5.3. Return map of 4 segments of prediction 

 generated at case C.1. 
 

5.1.2 Case C.2.  Training Using Teacher Forcing 

 As described in Appendix B, the dynamic of the neurons used at the complex 

network is defined by: 

dy
dt

y xi
i i= − + +σ ( ) Ii ,                (5.1) 

where: 

j
j

iji ywx ∑= , .                    (5.2) 

Williams and Zipser (1989) (section 3.3.1.2) proposed that during training, the 

calculation of the total input to neuron i (equation 5.2) should be carried out using the 

desired value for node i, if available, instead of the actual output of such node.   

This change was implemented for the complex network described at case C.1 using 

the down-sampled signal ecg6n.su4 for training.  After 31,000 epochs, the MSE was 1.51E-2, 

slightly larger than in case C.1 (1.47E-2) where the same signal was used.   
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Figure 5.4 shows the prediction of the first segment after training; Figure 5.5 shows 

the long-term prediction of 4 segments; and Figure 5.6 shows the return map generated by 

this prediction. 

Comparing the MSE and return maps of cases C.1 and C.2, no improvement is 

noticed due to teacher forcing.    
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Figure 5.4. First 128 points predicted after learning for case C.2, 

compared with training signal.  MSE = 1.47E-2. 
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Figure 5.5. Prediction of 4 segments obtained at Case C.2, 

compared with training signal. 
 

-0.4
-0.2

0
0.2

0.4

-0.4
-0.2

0
0.2

0.4
-0.4

-0.2

0

0.2

0.4

Return map of case C.2.

x(i)x(i+ 10)

x(i+ 20)

 
Figure 5.6 A return map generated by the prediction of case C.2. 
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5.1.3. Case C.3. Time-Constant Weights 

Pearlmutter (1989) pointed out that the change of  a neuron  over time (equation 

5.1), can be driven by an adapting  parameter called time constant.  Equation (5.1) becomes: 

iy

iii
i

i Ixy
dt
dyT ++−= )(σ ,                   (5.3) 

which, solving for  and written in discrete form is: iy

i
i

i
i

i
i

i I
T

ttx
T

ttty
T

tty Δ
+

Δ
+Δ−⎥⎦

⎤
⎢⎣
⎡ Δ
−= ))(()()( σ1 .              (5.4) 

Using this dynamic, the equations to train the weights  and using back 

propagation through time (see Appendix B) are: 

jiw , iT

∑ ⎥⎦
⎤

⎢⎣
⎡

Δ
Δ−−Δ

−=
t t

ttiytiytiz
iT
tiTiT ]][[]][[*]][[
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⎢⎣
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∑ σ
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         (5.7) 

for all i, j = 0 to n-1; where n is number of neurons in the network. These changes were 

implemented for the complex network described at case C.0, using signal ecg4.fil 

(Experiment A) and signal ecg6n.su4 (Experiment B).   

In experiment A, an MSE of 7.4E-3 was reached after 61,000 epochs.  Figures 5.7 to 

5.9 plot the obtained prediction of first segment, the prediction of four segments and the 

return map of the long-term prediction.  

 The MSE of C.3.A is slightly larger than the MSE of C.0 (7.1E-3).  However, the 

attractor in the return map of case C.3.A (Figure 5.9) presents a better defined geometrical 

shape than the one in the return map of C.0 (Figure 3.7).  Notice also in Figure 5.8 (a) that 

the time series of points 512 to 1,024, which correspond to the third and fourth segments of 

prediction, have a shape more similar to a ECG than the corresponding segments at case C.0 

(Figure 3.6).  This uniformity is also well noticed in the return maps of each segment: 
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Figures 5.10 (a) to (d) plot the return maps of segments of 512 points each, corresponding to 

the prediction obtained by C.3.A.  Compare these figures with Figures 5.11 (a) to (d), which 

show the same segments obtained  at case C.0.  Notice that the fourth segment in both 

figures is completely different to the first segment, due to the error accumulated by the long-

term prediction. 

 Figure 5.8 (b) shows a grid with vertical lines separated the same distance as the first 

R-peaks of the predicted signal.  Notice that almost 5 of the R-peaks1  of the prediction 

signal keep a constant time period; then the shape of ECG is lost.      

 The maximum LE of the first predicted segment was 7.76  ± 2.9; and the one 

corresponding to four segments was 3.92±1.11.  The maximum LE of the training signal is 

3.23 ± 0.27.  When analyzing these numbers, case C.3.A. seems to have captured the 

dynamic of the system better than case C.0, given the fact that  its LE for one and four 

segments are nearer to the expected value.  

 For case C.3.B where a down-sampled signal was used, an MSE of 1.59E-2 was 

obtained after 61,000 epochs.  Figures 5.12 and 5.13 show the prediction of one and four 

segments.  Figure 5.14 shows the corresponding return map.  The return map does not 

present any uniformity in the geometrical shape of the attractor neither did the long-term 

prediction yield better results than in case C.0. 

 Therefore, the use of adaptive time constants in the complex model greatly improved 

the performance of its long-term prediction, when training was done using the original 

signal.  However, it did not show any improvement when using a down-sampled signal.  

                                                           
1 See Figure 1.1 to identify the peaks of an ECG 
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Figure 5.7 First 507 points learned for case C.3.A.,  

compared with training signal 
 
 

Prediction of 2,048 points. 

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 92 183 274 365 456 547 638 729 820 911 1002 1093 1184 1275 1366 1457 1548 1639 1730 1821 1912 2003

n

prediction
expected

 
Figure 5.8 Results of Case C.3.A.  (a) Prediction of 2,048 points  

obtained at Case C.3.A, compared with training signal 
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Prediction of 2,048 points.  Case C.3.A. 
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Figure 5.8.  (b) Time periods in the prediction obtained at Case C.3.A. 
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Figure 5.9.  A return map generated for prediction at case C.3.A
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Figure 5.10.  Return maps of segments of prediction generated 
by case C.3.A. (a) first segment, points 1 to 512; (b) second 
 segment, points 513 to 1024;  (c)  third segment,  points  
1,025 to 1,536; (d) fourth segment, points 1,537 to 2,048 
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(b) 
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Figure 5.11.  Return maps of segments of prediction generated 

by case C.0, (a) first segment; (b) second segment;  
(c) third segment.  
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Figure 5.12.  First 123 points learned for case C.3.B.  MSE = 1.59E-2.  
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Figure 5.13.  Long-term prediction of 512 points obtained at Case C.3.B. 
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Figure 5.14 A return map generated for the prediction at case C.3.B. 

 

5.2.  A Predictor Based on a Hybrid Neural Network (Case H.1) 

 As specified at Table 5.2, the complex network has 1,089 weights to be adapted by 

the training algorithm.  This number is large and hence difficult to adjust considering the 

amount of information available in the training signal.   

Figure 5.15 shows a surface map of the weight matrix obtained after training at case 

C.3.A.  Notice that the activity in the recurrent connections between nodes in the same layer 

and between harmonic generators and other nodes is minimal, compared to the rest of 

weights (see section 3.3.1.4 for a description of the weights organization).  Based on this 

observation, and in an attempt to find a model with less adaptive parameters, a hybrid 

network was designed with harmonic generators in the first layer,  feed-forward connections 

from first to hidden layer, and feed-forward connections from hidden to last layer. No 

recurrent connections were included, except the ones in the harmonic generators.  The 

network is called hybrid because it contains both feed-forward and a few recurrent 

connections.  As in the complex model, the last layer contains several pseudo-output nodes 

and one output node.  There are no external inputs. 
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Figure 5.15.  A surface map of the weights after training at case C.3.A. 

 

Figure 5.16 shows this hybrid network; for simplicity, not all the connections are 

drawn there.  Section C.1 contains the connection matrix fully describing this topology.  As 

in the complex network, the harmonic generators are trained to produce the first 7 

harmonics of the training signal.  

 A hybrid network with 7 harmonic generators, 7 hidden nodes, 4 pseudo-output 

nodes and 1 output node was trained to learn the signal ecg4.fil.  After 45,000 epochs, this 

network reached a final MSE of 7.95E-3.  Figures 5.17 and 5.18 show the results obtained 

for short and long-time prediction for this case.  Figure 5.19 shows a return map of 2,048 

points obtained by this architecture.  
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Output node

 
Figure 5.16.  The hybrid network used at case H.1, with 7 hidden nodes,  

4 pseudo-output nodes and 1 output node.  
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Figure 5.17.  The first segment generated after learning for Case H.1. 

MSE = 7.9E-3 
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Figure 5.18.  Prediction of 4 segments obtained at Case H.1 
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Figure 5.19.  A Return Map of the prediction obtained at Case H.1 
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 When comparing these results with the ones obtained by case C.3.A,  the following is 

noticed:  the MSE of case H.1 is slightly larger than the one in case C.3.A.  The long-term 

prediction obtained by case H.1 (Figure 5.18) looks more “periodical,” and with all their R 

and T-peaks with similar amplitudes, which resembles little the ECG shape.  The attractor 

shown at the return map of case H.1 (Figure 5.19) does not resemble the expected shape for 

an ECG.  

 The maximum LE of the first predicted segment was 12.53±0.85; for four segments 

was 2.96±0.52; the one for the training signal is 2.23±0.27.  Notice the strong difference 

between the values obtained for the training and first predicted signal.  It is important to 

point out that the reason for this difference, besides the fact that the network is not 

representing correctly the dynamic of the system, may be also that the numerical algorithm 

calculating the LE is reaching its end before that a convergence state is reached.  This is a 

drawback found in this method for calculation of LE.     

 As explained before, this model contains information about harmonics but no other 

kind of recurrence.  The poor results obtained here, compared with the ones obtained by 

cases C.0 and C.3.A, show that recurrent connections play a very important role in modeling 

a dynamical system, even when their values are small in magnitude.  This is because the 

weights associated to recurrent connections allow the network to learn how to “correct 

itself” from its own mistakes generated at past times. 

 

5.3 Predictors Based in Feed-Forward Networks  

 Section 2.7.1.2 mentioned the ability of feed-forward neural networks to 

approximate a function from a set of observations.  Such approximation, as shown by 

Gencay and Dechert (1992), is topologically similar to the dynamical system generating the 

observations; it can be used to calculate the Lyapunov exponents of such a system.  The 

system imbedded in this kind of neural network has the same invariants as the original 

system, provided that such representation is accurate enough. 

Using this idea, a multi-layer, feed-forward network with external inputs (Figure 

5.20) was used to construct a predictor; Topology B at section C.2 fully describes their 

connections.  This network was trained to approximate a signal; then its ability for long-term 

prediction was evaluated.  The predictor works as follows:  during the learning state, it 
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receives as external inputs points of the training signal at times t-1, t-2 … t-k,  and it is 

trained to approximate the value of point s(t) (Figure 5.21 (a)).  During the prediction state 

the network may receive external inputs coming from observations of the system or it may 

receive feedback of its own past predictions when no more observations are available (Figure 

5.21 (b)).  Notice that this is not a recurrent network, because neither any weights are 

attached to the feedback, nor any other information about the past output values of the 

nodes is involved during training.  

This architecture was tested first with a very simple signal, a sine function, and then 

with an ECG.  The network used in both experiments had 5 input nodes, 10 hidden nodes 

and 1 output node. 

 

 

          I1               I2               I3               I4            I5

)(tv

 
Figure 5.20.  The feed-forward network with external inputs  

used at cases F.1, A and B.  
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Neural network
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(b) 

 
Figure 5.21.  A feed-forward predictor:  (a) Training process:   

s(t) is the training  signal;  v(t) is the actual output of the  
network.  (b) point-by-point prediction 

 
 

5.3.1. Case F.1.A:  Prediction of a sine function using a 
 feed-forward network 

 First, this architecture was tested to predict a sine function.  After 10,000 epochs, the 

MSE was 2.0E-3.  Figure 5.22 shows the first 99 predicted points when using the training 

signal to feed the network; Figure 5.23 shows a long-time prediction of 1,500 points, where 

feedback of its own outputs was provided to the network.  This long-time prediction 

generated very good results, except for a slight shift in the phase of the predicted signal, 

which is almost unnoticeable. 
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Figure 5.22.  First 99 predicted points using original observations  

as input.  Case F.1.A.  MSE = 2.0E-3. 
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Figure 5.23.  Long-time prediction of a sine function  

using feedback, compared with expected values.  Case F.1.A. 
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5.3.2.  Case F.1.B:  Prediction of an ECG Using a  
Feed-forward Network 

The same feed-forward net used in case F.1.A was trained in this case to reproduce 

and predict an ECG.  The resulting MSE after 50,000 epochs was 1.4E-3. Figure 5.24 shows 

the first 470 points predicted when using original observations as external inputs.  This next-

point prediction works very well.  Figure 5.25 shows the absolute error by point obtained 

during the prediction of this segment. The error in most of the points is small, except during 

the prediction of the R-peaks. 

Figure 5.26 shows a long-term prediction from points 460 to 660.  The first 10 

points in this plot were calculated using inputs coming from observations; from point 471 

ahead the network received feedback of its own calculated values.  The prediction resulted in 

a periodical signal oscillating approximately to a frequency of 142 Hz., without any 

resemblance to the ECG.  Notice that the amplitude at some points reached values greater 

than 10, while the expected highest values for this ECG signal is 0.75.  

Figure 5.27 shows the absolute error-by-point obtained when predicting points 471 

to 479, which required to feed the network with one or more of its own outputs; after the 6th  

point, the error started growing fast  

Therefore, this network was unable to realize any long-term prediction successfully, 

regardless of its excellent capability for next-point prediction.   
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Figure 5.24.  First 470 predicted points of an ECG.  Case F.1.B 

MSE = 1.4E-3 
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Figure 5.25.  Absolute error by point for the first 470 predicted points. 

Case F.1.B   
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Figure 5.26.  Predicted points 460 to 660.  Case F.1.B.  

 

Case F.1.B. Absolute error by point. First 10 points
 using feedback.  Points 471-479
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Figure 5.27.  Absolute error by point for points 471-479. Case F.1.B 
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5.3.3. Case F.2.  Addition of Recurrent Connections to 

not 

eral 

er to give it the ability to represent the 

tempor

r 

 

 network was 

convert

en 

ed 

growing;  from that point ahead, the outputs of the network 

grew ex

rt time 

fashion, but the network failed to realize any meaningful long-term prediction. 

 

 a Feed-forward Network 

 It is obvious from the results of case F.1.B  that a feed-forward net, by itself, is 

able to capture the dynamics of the system generating the training signal, when sev

frequency components are involved.  In an attempt to fix this problem, recurrent 

connections were added to that network, in ord

al information imbedded in the signal. 

First, a feed-forward net was fully trained and the value of the minimum reached 

error was recorded.  Next, the network was trained again using the same initial weights, but 

this time the training was stopped when the error reached approximately  ½(maximum erro

+ minimum error).  This was done in order to induce in the weights of the network some 

information about the signal, and consequently its Lyapunov exponents, but leaving some

learning possibilities to the recurrent network.  After that, the feed-forward

ed to fully-recurrent and trained until it reached a local minimum.  

The feed-forward network used here is the same as at case F.1:  5 input nodes, 10 

hidden nodes and 1 output node (Figure 5.20).  Training was stopped after 92 epochs wh

MSE was 0.0029.  Next, recurrent connections were added to make it a fully-connected 

recurrent network with 5 input nodes.  The training continued 100,000 more epochs; at this 

point the MSE was 8.34E-4.  Figure 5.28 shows the first 470 points predicted when original 

observations were given as inputs; Figure 5.29 shows the absolute error-by-point generat

during the prediction of this segment.  This next-point prediction performed excellent.  

Figure 5.30 shows the error-by-point generated when predicting points 471 to 479, which 

were calculated using one or more outputs of the network as external inputs. After the 8th 

predicted point, the error starts 

ponentially with time.   

Comparing these results with the ones obtained by case F.1, it is clear that the 

recurrent connections gave to the network some ability to predict better in a sho
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Figure 5.28.  First 470 points predicted in case F.2.  

MSE = 8.4E-4 
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Figure 5.29.  Absolute error by point for first segment predicted in case F.2 
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Case F.2.  Absolute error by point. First 10 points
 using feedback.  Points 471-479. 

0

0.05

0.1

0.15

0.2

0.25

471 472 473 474 475 476 477 478 479

Point number

A
bs

ol
ut

e 
er

ro
r b

y 
po

in
t

 
Figure 5.30.  Absolute error by point for points 471-479.  Case F.2 

 

 

5.4  Case K:  Predictors Based in Hybrid Networks Using Harmonic  
Generators and External Inputs 

From past experiments it was observed that feed-forward networks are able to 

approximate functions very well, provided that exact information about the past of the signal 

is given.  However, they are not well suitable for long-term prediction, probably because of 

the error accumulated due to the feedback of non-exact, predicted values used as external 

inputs.  Feed-forward networks contain no memory, they can go only to fixed points. It was 

also shown that harmonic generators made with a 3-node fully-recurrent neural network are 

able to keep oscillations for long periods of time and, therefore, they allow accurate long-

term prediction without need of external inputs. The complex network model showed that 

such generators can be combined to produce signals with many frequency components.  

However, the signals generated by the whole recurrent network do not reproduce the peaks 

of the signals with enough accuracy  to be useful for long-term prediction. 

 83



Based on this observations, two kinds of predictors were built combining the ideas 

of harmonic generators and external inputs.  One of them did not include any hidden nodes; 

the other include a hidden layer to allow for a better internal representation, but with a 

corresponding cost in learning.  In both experiments, the network had 5 external inputs and 

7 harmonic generators.  

These predictors were trained in a way similar to the one used in case F.2:  first an 

“almost feed-forward” network was partially trained, in order to induce in the system 

information about the Lyapunov exponents of the signals; then the network was converted 

to a fully recurrent network and trained until it reached a local minimum.  Also, similar to 

case F.2, feedback of the values calculated by the network is required during the long-term 

prediction process, because a time is reached when original observations are not available 

anymore to feed the network (see figure 5.21).  The obtained results are described next. 

 

5.4.1. Case K.1:  A Predictor with no Hidden Nodes 

 Figure 5.31 shows the network used in this case.  For simplicity not all connections 

are drawn in the figure but section C.3 fully describes its topology. 

In the first phase of prediction, the network trained during 10,000 epochs.  At this 

point the MSE was 3.67E-3.  Next all recurrent connections were added and the network 

trained 20,000 more epochs, reaching an MSE of 3.10E-3.  Figure 5.32 shows the first 507 

points (one segment) predicted using original observations as inputs.  Figure 5.33 (a) shows a 

long term prediction of 4 segments, compared with the training signal.  

In figure 5.33 (b) the same prediction is plot in a grid with vertical lines separated the 

same distance as the two first R-peaks of the predicted signal.  The period of the signal keeps 

almost the same for the 4 cycles; but the amplitudes of the peaks R and T are not as 

expected.  

The maximum LE of the first predicted segment was 4.47±0.33; the one 

corresponding to four segments was 5.09±1.14; the maximum LE of the training signal is 

3.23±0.27.  These results are the best of all experiments executed in this research with 

respect to accuracy in the Lyapunov exponents. 

Figure 5.34 shows the return map of 4 predicted segments.  Even though its shape is 

not as the expected, some regularity in the geometrical shape  is noticed in the attractor. 
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Figure 5.31.  A neural network with harmonic generators, 

 external inputs and no hidden layers used at case K.1 
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Figure 5.32.  First 507 predicted points obtained at case K.1 

MSE = 3.10E-3 
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Figure 5.33.  Results of case K.1.  (a) Four segments predicted by case K.1.
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Figure 5.33 (continuation).  (b) Time periods in the prediction obtained at case K.1 
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Figure 5.34.  Return map of 4 predicted segments. Case K.1  

 

5.4.2. Case K.2.A  A predictor with hidden layers for ECG 

 In this case a hidden layer of 5 nodes was included in the network described before, 

and trained to model an ECG signal.  Figure 5.35 shows this network; its corresponding 

connection matrix is given at section C.4. 

 This network was trained for 10,000 epochs, obtaining a MSE of 3.14E-3.  Next, it 

was converted to a fully-recurrent network and trained 20,000 more epochs. The MSE 

reached a value of 2.35E-3.  Figure 5.36 shows the first 507 points (one segment) predicted 

when using original observations as external inputs; Figure 5.37 (a) shows a long-term 

prediction of 4 segments.  Figure 5.37 (b) shows the prediction with vertical lines separated 

to the same distance as the first R-peaks.  Notice the shift of the signal after the second 

segment. 

 Figures 5.38(a) to (d) show the Fourier transform of each consecutive segment 

predicted by the network.  The first one (a), shows some resemblance to the FFT of the 

training signal (see figure D.3).  However, the rest of the FFT do not contain several of the 

frequency components presented at figure D.3. 
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 Figure 5.39 shows the return map of the prediction of 4 segments; Figures 5.40 (a) to 

(d) show the return maps of each one of these 4 segments.  Notice that only the return map 

corresponding to the first segment resembles in some way to the geometry expected in a 

return map of an ECG. 

Comparing these results with case C.3.A, it is noticed that, during the prediction of 

the first 507 points in case K.2.A, the amplitude of their peaks is larger than in case C.3.A, 

which is an advantage of K.2.A over C.3.A.  However, after the first predicted segment, in 

K.2.A the shape of an ECG is lost, probably due to the inaccuracy of the output values 

calculated by the network and given as feedback to be used as external inputs when original 

observations are not available anymore. 

   

s(t-5)            s(t-4)               s(t-3)            s(t-2)           s(t-1)
 

Figure 5.35.  A network with harmonic generators, external  
inputs and a hidden layer.  Topology D (section C.4) 
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Figure 5.36.  First 507 points predicted at case K.2.A.  
MSE = 2.35E-3. 
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Figure 5.37.  Results of Case K.2.A.  (a) A prediction of 2,048 points. Case K.2.A
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Figure 5.37 (continuation).  (b) Time periods in the prediction obtained at case K.2.A 
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(b) 

Figure 5.38.  FFT of four consecutive segments in prediction K.2 
(a) points 1-512, (b) points 513-1,024 
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(d) 

Figure 5.38 (cont.).  FFT of four consecutive segments in prediction K.2.A 
(c) points 1,025-1,536; (d) points 1,537-2,048 
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Figure 5.39.  Return map of four segments predicted at case K.2.A. 
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(a) 

Figure 5.40.  Return maps of segments of 512 points each, predicted at 
case K.2.A. (a) points 1-512 
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(b) 
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(c) 

Figure 5.40 (cont.).  (b) points 513 to 1,024; (c) points 1025 to 1536 
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(d) 

Figure 5.40 (cont.).  (d) points 1,537 to 2,048 
 
 

5.4.3. Case K.2.B  A predictor with hidden layers for Mackey-Glass Data 

 The same network described in past section was used to predict data generated by 

the Mackey-Glass equation (equation 2.8), which is chaotic., but simpler than an 

electrocardiogram.  In this example, 210 points of the data were used for training.  After 

31,000 epochs, an MSE of 8.8E-1 was reached and the network got stuck in a local 

minimum.  Figure 5.41 shows the first segment of prediction.  Figure 5.42 shows the 

prediction of 4 segments, together with the expected signal for the same number of 

segments.  The prediction resembles the expected signal, even though it is shifted in time.  

However, this is expected because the signal is chaotic. 

 The maximum LE of first predicted segment was 0.0374±0.006; the one 

corresponding to four segments was 0.0845±0.005; the maximum LE of the training signal is 
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0.0334±0.003.  These results show an excellent representation of the dynamics of the system 

during the first predicted segment, and a good representation during the prediction of four 

predicted segments.     

Figure 5.43 shows the return map of this prediction.  The return map of the 

predicted signal resembles the shape of the attractor expected for this kind of data (see 

Figure 2.8).  Therefore, this predictor seems to be acquiring the dynamic embedded in this 

chaotic data set, and probably, as in case K.2.A., the inaccuracy of its outputs is due to the 

feedback of inexact values to feed the network. 
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Figure 5.41.  First segment of prediction for case K.2.B. 
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Figure 5.42.  Four segments of prediction for case K.2.B. 
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Figure 5.43.  Return map of four predicted segment in case K.2.B. 
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CHAPTER VI 

CONCLUSIONS 

 

 The main objective of this research was to include information about the Lyapunov 

exponents of a chaotic time series in a complex network (a recurrent neural network built 

with harmonic generators), as a way to improve the long-term prediction capabilities of the 

network when trained using electrocardiograms.  Harmonic generators are 3-node fully-

connected recurrent neural networks previously trained to generate sine functions with 

specific frequencies; Lyapunov exponents are invariant measures of the exponential 

divergence of several trajectories of a dynamical system.  Electrocardiograms are time series 

with positive maximum Lyapunov exponents which make them chaotic if not at least very 

complex and hence, a real challenge for prediction.   

It is known that a function approximated by a feed-forward network can contain the 

same Lyapunov exponents as the unknown dynamical system that generated the 

observations used to train such a network (Gencay and Dechert 1992).  Using this idea, the 

concept of Lyapunov exponent was implanted in a complex predictor, combining the 

topology of feed-forward networks with harmonic generators.  

 The main conclusion of this research is that the information embedded by the 

Lyapunov exponents when implanted in a complex network using this fashion is not enough 

to allow this network to completely learn the dynamics of the system.  However, it was also 

found that such information is useful in some way, as it is explained below. 

A feed-forward network approximating a function requires that values of that 

function at past times be fed to it.  For this reason, feedback is necessary during long-term 

prediction in this case.  For the cases reported in this work, it was found that, even though 

the harmonic generators controlled the oscillation of the generated time series, the error 

produced by the feedback of outputs accumulated fast, making the prediction diverge very 

soon.  Case K.2.A (section 5.4.2), showed that when this predictor is fed with original 

observations, that is, with accurate data, it is able to generate very well the attractor defining 

the system (Figure 5.40 (a)).  However, when receiving feedback, it got lost very soon (Figure 

5.40 (b) to (d)).   
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A predictor without external inputs, as the one defined at case C.3.A (section 5.1.3), 

is able to keep longer a shape in its attractor (Figure 5.10 (a) to (d))  with some resemblance 

to the expected for an ECG, when compared to a predictor with external inputs, as in case 

K.2.  This is also noticed when comparing Figures 5.37 (b), corresponding to case K.2 with 

external inputs, with Figure 5.13 (b), corresponding to C.3.A  without external inputs.  

An important result of this research was the inclusion of time-constant weights in 

the complex model.  Time constants are parameters able to control the amount of 

modifications in the values of a neuron from time t  to time t+1.  In the original complex 

model, this value was kept constant for all nodes during the training stage.  The definition of 

one adaptive value for each node, (Pearlmutter 1990), increased the performance of the 

predictors tested here.  This improvement is clear comparing cases C.0 (without time 

constant weights, section 3.3.1.4) with C.3.A. (using time constant weights, section 5.1.3). 

The MSE of C.3.A is greater that the one obtained by C.0; however, the long term 

prediction at Case C.3.A obtained a maximum LE (3.92±1.11) nearer to the expected value 

(3.23±0.27) when compared to the LE obtained by case C.0 (1.63±0.75). Besides, the return 

map of case C.3.A presents an attractor with a geometrical shape more uniform that the one 

obtained by case C.0. The improvement due to time constant weights was noticed only for 

recurrent networks; for the cases F.1 (sections 5.3.1 and 5.3.2) and F.2 (section 5.3.3),  where 

only feed-forward connections are involved, the time constants made  impossible to train the 

network using back-propagation through time, due to instability in calculation of the value of 

z (equation B.10).    

The harmonic generators were found to be powerful tools for driving and keeping 

under control the oscillations of the networks in long-term predictions.  When a predictor 

was constructed without using these sub-networks, but just using feedback if a feed-forward 

network, the results were completely inadequate.  This is demonstrated at case F.1.B (section 

5.3.2).  This network was very good approximating the ECG signal when fed with original 

observations (Figures 5.24 and 5.25); the MSE was 1.4E-3. The LE of this segment was 

19.34±5.29, which is very near to the LE of the training signal (19.7±5.12). However, the 

same predictor was not able to generate any long-term prediction (Figure 5.26).  It was 

found that the differences between the predicted and expected values were unacceptable 

after the sixth point predicted when using feedback (Figure 5.27).  This predictor worked 
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very well when generating a function with only one frequency component.  Figure 5.23 

shows that this predictor, when trained with 99 points of a sine function, was able to 

reproduce such a function quite accurately for 1,500 points.   

The use of recurrent connections in the complex model and in its derived models 

played an important role in the performance of long-term predictors.  In case H.1 (section 

5.2), it was found that when the recurrence was eliminated from all nodes except the ones 

belonging to harmonic generators,  the performance of the predictor decreased; it is 

discovered when comparing the long-term predictions and return maps of case C.3.A (fully 

recurrent network, section 5.1.3) with case H.1.  The results in case H.1 look periodical with 

peaks of similar amplitudes among them, which does not resemble an ECG (figure 5.18).  It 

resulted interesting that the maximum LE of the long term prediction of H.1 (2.96±0.52) is 

similar to the LE of the training signal (3.23±0.27).  This shows that the fact of embedding 

the LE invariant in the neural network is not enough to predict the dynamical system.   

The down-sampling of the training series did not improve in the performance of the 

predictors tested in this work.  Actually, it seemed to affect the performance in a negative 

way.  This can be corroborated when comparing cases C.0 (section 3.3.1.4) which uses the 

original training signal, with case C.1 (section 5.1.1) which uses a down-sampled signal; both 

using the same original complex network; the MSE of cases C.0 (7.1E-3) is much smaller 

than the MSE obtained in cases C.1 (1.47E-2). Also some decline in performance is noticed 

when comparing  Figure 5.3, the return map generated by case C.0, with Figure 3.7, the 

return map generated by case C.1.  The same changes in performance are noticed between 

cases C.3.A and C.3.B which both work with the same network but using different training 

signals,  no down-sampled and down-sampled, respectively.  

The training algorithm back-propagation through time proved to be a versatile tool 

in this research.  Due to its characteristics, it was used to train feed-forward, hybrid and 

recurrent neural networks without any modifications.  This attribute allowed us to 

dynamically convert topologies during the training of the hybrid networks.  However, a few 

drawbacks were found with the implementation suggested by Pearlmutter (1990).  The main 

disadvantage was found in the use of the parameter tΔ , which drives the time step in the 

numerical integration of the differential equations used in the algorithm.  In some of the 
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cases reported here, this parameter could not be normalized to one, then several trails had to 

be done before finding its right value.  

The idea of teacher forcing has proved to be useful in some applications, but it did 

not help to improve the performance of the predictors analyzed in this work.  This 

conclusion is reached when comparing case C.1 (no teacher forcing, section 5.1.1)  with case 

C.2 (teacher forcing, section 5.1.2); both the MSE (1.47E-2 and 1.51E-2) and return maps 

(Figures 5.3 and 5.6) are the worst obtained in this work. 

As in any research, several ideas may be recommended as a continuation of this 

work.  First we suggest to try other implementations of the algorithm back-propagation 

through time.  The algorithms proposed at (Werbos 1994) and (Haykin 1994) could be a 

good starting point.  Another important modifications could be done in the equation 

defining the dynamics of the neuron (equation B.1).  Werbos (1990) proposed the use of the 

outputs of neurons in previous times  t-1 , t-2 an so on, during the calculation of the output 

of a neuron at time t.  Weights are associated to this previous outputs,  controlling its effect 

on the dynamics.  However this modification may compromise the learning speed of the 

network.  Other interesting modification could be to train the network defined for cases K.1 

and K.2 using sometimes its own output values as external inputs, and some other times 

inputs coming from the training signal. This should be done after the network has trained 

for a while using the values coming from training. 

As it was hundreds of years ago, the accurate prediction of the future continues to be 

a not-yet solved but fascinating problem.  The recent advances in non-linear dynamic theory, 

artificial neural network and parallel systems, as well as the fast increase in the power of 

computers, may allow us to find useful solutions to these kinds of problems in the near 

future.  
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APPENDIX A 

CALCULATION OF THE MAXIMUM LYAPUNOV  

EXPONENT OF A TIME SERIES 

 

Following is a structured version of the algorithm defined at (Wolf et al. 1995) to 

calculate the largest non-negative Lyapunov Exponent from a time series.  For more details 

about Lyapunov exponents and this algorithm see section 2.7.  

 

1. Read input parameters and time series 

2. Construct an attractor 

3. Set ind = 1.  Consider 1st. point as fidutial point. 

4. Find nearest point to fidutial point. Let d1 ≡  its distance to fidutial point.    

      ind2 ≡ its index.    

sum = 0 ; its = 0 

5. Repeat 

 5.1 pt1 = z[ind + evolv] ; pt2 = z[ind2 + evolv] 

 5.2 Let df ≡ distance between pt1 and pt2 

 5.3 its = its + 1 ; 

 5.4 sum sum

df
di

evolv dt
= +

log( )

* * log( . )2 0
 

 5.5 zlyp sum
its

=  

 5.6 Print zlyp, evolv*its, di, df 

 5.7 Look for a replacement of pt2.  While looking for replacement: 

5.7.1 Among all points, select a point that: 

  a) is not too far or too close to pt1. (dnew, its distance to pt1 should: 

                  dnew <= zmult*scalmx and dnew >= scalmn)   

 b) it is the one with smallest angle between pt1 and pt2 and itself.  

Name this angle as thmin, its  distance to pt1 as dii and its index as 

ind2 
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  5.7.2 if thmin < anglmx  

     5.7.2.1 This is a good point, don’t look anymore 

       else 

     5.7.2.2 A look at longer distances is needed:  

      zmult = zmult + 1 

     5.7.2.3 if zmult > 5 the requirements need to be relaxed: 

         5.7.2.3.1 anglmx = 2* anglmx  ; zmult = 1 

         5.7.2.3.2 if anglmx > 3.14 

then there is no possible point as replacement, 

continue with this one.. 

      ind2 = ind2 + evolv 

      dii = df 

           else 

        look again with new zmult and  anglmx... 

           endif 

                 endif 

            end if   

       end of while  

 5.8 ind = ind + evolv 

 5.9 if ind < npt di = dii 

     until (ind>npt or ind2 > npt)  (until there is no more data to use) 

6. End. 

 



APPENDIX B 

THE TRAINING ALGORITHM BACKPROPAGATION  

THROUGH TIME 

 
 Backpropagation through time (BPTT) is an algorithm that attempts to minimize the 

error obtained over a period of time between the output of a neuron and the desired value 

of such output.  It was originally proposed by Werbos (1990).  Some other neurons besides 

the output will be required in order to represent the dynamics of the system.  The total error 

in an output neuron is represented by: 

 E y t d t dt
t

t
= −∫ ( ( ) ( ))

0

1

,           (B.1)   

where y(t) is the “real output” obtained by the output neuron and d(t) is the desired one. 

BPTT looks for a minimization of the square root of such value E.  

 In a fully-connected recurrent neural network, the dynamics of a neuron  yi can be 

described by the equation (Pearlmutter 1989): 

dy
dt

y xi
i i= − + +σ ( ) Ii

]

,                (B.2) 

which, using recurrent equations is: 

yi t t yi t t yi t xi Ii( ) ( ) [ ( ) ( )+ = + − + +Δ Δ σ ,          (B.3) 

where 

x wi j
j

= ∑ yi j .                  (B.4) 

xi  represents the total input to the i-th neuron coming from other neurons, Ii is an external 

input to neuron i, wij  is the  weighted connection from neuron i to neuron j, and σ ( )x  is an 

arbitrary differentiable function, normally a sigmoid, for example:  

σ ( ) ( exp( ))x = + − −1 1x

Δz t

.           (B.5) 

Pearlmutter found that the modification to the weights (learning) can be described 

by the equation: 

Δw y xij i j j

t

= − ′∑η σ ( ) ,           (B.6) 

where η is a learning coefficient.  Using a discrete notation, the value of zi is given by: 
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dt
dz

tttztz i
ii Δ−Δ+= )()( ,           (B.7) 

where: 

dz
dt

z e w x zi
i i ij j

j
= − ∑ ′− σ ( ) j ,           (B.8) 

and 

e t y t desired ti i i( ) ( ) ( )= − ,           (B.9) 

in discrete notation z is: 

 ,)]( ))((          

)()([)()(

  

  

∑ Δ+Δ+′−

Δ+−Δ+Δ−Δ+=

j

jjij

iiii

ttzttxw

ttettztttztz

σ        (B.10)   

desired ti ( )  is the desired value for node i at time t.  Notice that the integration of zi  is 

calculated backwards.  Following is a description of the algorithm that implements this 

method in a complex network. 

 
B.1 Algorithm to train a Recurrent Neural Network using BPTT 

 Given a discrete signal d(nΔt) over a period of time [0, FT], the Pearlmutter’s 

implementation of BPTT to train one output node of a complex network to learn d(t) results 

in the following algorithm: 

1. Get parameters describing the architecture of the network, where n = total number of 

nodes.  

2. Get the desired values d[i][t] for each i-th output node” in the network at each time t in 

the trajectory, assuming that such values are separated by a time period Δt.  The size of 

such trajectory will be refereed from now as FinalTime   

3.   Get or calculate  the initial conditions for the outputs of all nodes, that is  y[i][0]  

       for all nodes   i = 0… n-1 

 3.1   If this network is learning by first time  then 

                3.1.1. Initialize weights of with small random numbers and/or   

                3.1.2 Set any previously calculated weights corresponding to any sub-  

              networks  

          else 
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                3.1.3  Read weights of  network corresponding to past runnings 

4.     Repeat until TotalError is small enough or until desired number of epochs 

       (each step in this loop is called an epoch) 

 4.1  For t=1 to FinalTime ( and each time t in the trajectory ) 

  4.1.1. For i = 0 to n-1 (each node in network), 

                 calculate output of i-th node at time t as: 

                 [ ] ]][[])][[(][]][[ titItixtttyttiy Δ+Δ+Δ−Δ−= σ1 , 

       where x i t w y j tji
j

[ ][ ] [ ][ ]= −∑ 1  

 4.2  For i=0 to n-1  

  4.2.1 for t=1 to FinalTime-1 

                calculate the error-by-node as: 

   e i  t
y i t d i t i

[ ][ ]
[ ][ ] [ ][ ]

=
− =⎧

⎨
⎩

     if  output node
                      if i is not an output node0

 4.3  Calculate the Total error at this epoch as: 

  TotalError sqrt e i t
it

=
⎛
⎝
⎜

⎞
⎠
⎟∑∑1

2
[ ][ ]  

 4.4   For t = FinalTime-1 to 1  (propagation of error backwards) 

     4.4.1  For i=0 to n-1  (for each node) 

   
[ ]z i t te i t t t z i t t

t w x j t t z j t tij

j

[ ][ ] [ ][ ] * [ ][ ]

( [ ][ ]) [ ][ ]

= + + − + +

′ + +∑
Δ Δ Δ Δ

Δ Δ

1

            σ Δ  

 4.5 Update the w’s 

  4.5.1 For i=0 to n-1 

                 45.1.1   For j=0 to n-1 

          w i j w i j t y i t x j t z i t
t

[ ][ ] [ ][ ] [ ][ ]* ( [ ][ ]) * [ ][ ]= − ′∑η σΔ  

5.    End.  
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B.2 Algorithm to Predict the trajectory of a time series 

 Once that the complex network is trained, or at any time during training, the output 

of this predictor for a trajectory or arbitrary length can be calculated given only the initial 

conditions of the net (value of each node at time t=0) and the value of weights.  Following is 

the appropriate algorithm:  

1.   Read the weights of complex network 

2.   Read the initial conditions of each node,  y[i][0] ,   i =1.. n-1 

3.   Read the size of the prediction, called as PredictionTime 

4.   For t=1 to PredictionTime 

 4.1 For i=0 to n-1 (each node in network), 

   4.1.1. Calculate output of i-th node at time t as: 

[ ] ]][[])][[(][]][[ titItixtttyttiy
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    Δ+Δ+Δ−Δ−= σ1 , 

   where x i t w y j tji

j

[ ][ ] [ ][ ]= −∑ 1  

  4.1.2   If i == n-1 (last output node)  then  

           4.1.2.1 display y[i][t]  

5.   End. 

 

 



APPENDIX C 

TOPOLOGIES OF THE HYBRID NETWORKS 

 

 This appendix contains the connection matrices describing the hybrid networks used 

in this work.  A hybrid network is one that may have both recurrent and no recurrent 

connections between its nodes.  It is also possible that some connections may no be present 

in a hybrid network.  A connection matrix  C for a network with n nodes is defined as: 

 
ji

jic
⎭
⎬
⎫

⎩
⎨
⎧

=
                                                 otherwise 

 node to  node fromweight a   isthere    if
],[

0
1

,   

for i, j = 1, 2 … n. 

 Following are the connection matrices for the hybrid networks used at cases H.1, F.1 

A and B, F.2, K.1 and K.2.  The first row and first column of each table identify the number 

of node.  Bold lines separate “layer” in the network. 

 

C.1 Connection Matrix A 

 This section describes the hybrid network used for case H.1 (see Figure 5.16).  The 

first layer contains nodes 1 to 21 making the 7 harmonic generators (fully 3-node RNN).  

Nodes 22 to 28 are hidden nodes, located at the second layer.  The last layer contains nodes 

29 to 32, which are pseudo-output nodes, and node 33, which is the output node.  
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Table C.1.  Connection Matrix A.  
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
4 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
5 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
6 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
7 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
8 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
9 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
10 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
11 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
12 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
14 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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C.2 Connection Matrix  B 

 This section describes the network used at cases F.1 A and B (Figure 5.20).  It is a 

pure feed-forward network with 5 nodes in the input layer, 10 nodes in the hidden layer and 

one node in the output layer.  

 

Table C.2.  Connection Matrix B. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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C.3 Connection Matrix C 

 This section describes the hybrid network used at case K.1 (Figure 5.31).  It has 5 

input nodes at the first layer; seven harmonic generators in the hidden layer that result in 21 

nodes and one output node. 

 

Table C.3.  Connection Matrix C. 

 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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C.4 Connection matrix D 

 This section describes the hybrid network for case K.2. (Figure 5.35).  It has 2 

dimensions in the first layer:  one with 5 input nodes and other with 7 harmonic generators 

(21 nodes).  Both dimensions connect to 7 hidden nodes in the second layer.  There is only 

one node in the output layer.  



 

 

Table C.4.  Connection Matrix D. 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
9 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0
24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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APPENDIX D 

SUMMARY OF TRAINING FILES 

 

 All training data used in this work came from the database produced by the Harvard-

MIT Division of Health Science and Technology Biomedical Engineering Center (Harvard 

1992).  Only short segments of such files were use for training the networks.  Such segments 

were selected and then filtered, normalized and or down-sampled, as described at chapter 

IV.  Following is a summary of the characteristic of each one: 

 

D.1 File ecg4.fil 

 This file is a modified version of file a0310_5a.dat, described by Christiasen (1995). 

The data was originally sampled to a frequency of 360 Hz. First, this signal was converted to 

mean equal zero.  Second, the signal was filtered by a FIR filter of order 40 with cutoff 

frequencies lying at 0.5 and105 Hz.  Last, the magnitude of the signal was normalized to the 

interval [-0.3122,0.75].   

 

Size:   512 points 

Lyapunov exponent: 3.23 ± 0.27 
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Figure D.1 File ecg4.fil 
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Figure D.2.  Return map of ecg4.fil 
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Figure D.3.  Fourier Transform of ecg4.fil 
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D.2 File ecg6n.su4 

 Similar to ecg4.fil, this is a modified version of a portion of a0310_5a.dat.  This 

signal was converted to mean zero, filtered by a band pass from 0.5 to 45 Hz., and 

decimated by a factor of 4.  After that, the magnitudes of the signal were normalized to 

values in the range [-0.2175, 0.75].  

Size:   128 points 

Lyapunov exponent: 10.77 ± 2.94 
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Figure D.4.  File Ecg6n.su4 
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Figure D.5.  A Return map of signal ecg6n.su4 
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Figure D.6.  Fourier Transform of ecg6n.su4 
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D.3 File A0310z.fil 

Size:   475 points 

Lyapunov exponent: 19.34 ± 5.25 
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Figure D.7.  The 475 points of file a0310z.fil 
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Figure D.8.  Return map of 475 points of a0310z.fil 
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Figure D.9  Fourier transform of 475 points of a0310z.fil 
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D.4 File good8.dat (Mackey-Glass Data) 

 

Size:  820 points 
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Figure D.10.  1,000 points of Mackey-Glass data 
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Figure D.11.  Training file for Mackey-Glass data 
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Figure D.12.  Fourier transform of 210 points of good8.dat 
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Figure D.13.  Return map of 820 points in good8.dat 
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