

The Effect of Non-linear Dynamic Invariants in
Recurrent Neural Networks for Prediction of Electrocardiograms

By
María del Pilar Gómez-Gil

A dissertation in Computer Science
Texas Tech University

Committee:
Dr. William J. B. Oldham (chairperson)

Dr. Donald Gustafson
Dr. Noe López-Benítez

Dr. Sunanda Mitra

© 1998

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

LIST OF TABLES

LIST OF FIGURES

LIST OF SYMBOLS

CHAPTER

 I. INTRODUCTION

 II. NON-LINER DYNAMICAL SYSTEMS

 2.1 General Concepts

 2.2 Fixed Points and Limit Cycles

 2.3 Chaos

 2.4 Stability

 2.5 Bifurcation

 2.6 Time Series and Phase-Space Reconstruction

 2.7 The Lyapunov Exponents

 2.7.1 Numerical Methods to Calculate Lyapunov Exponents

 2.7.1.1 The Method of Wolf et al.

 2.7.1.2 Estimation of Lyapunov Exponents using

 Feed-forward Neural Networks

 III. PREDICTION AND NEURAL NETWORKS

 3.1 Types of Prediction

 3.2 Linear Models for Prediction

 3.2.1 An Auto-Regressive Model

 3.3 Non-linear Prediction

 3.3.1 Neural Networks for Non-linear Prediction

 3.3.1.1. The Oscillatory Network of Hayashi

3.3.1.2. Real Time Recurrent Learning

3.3.1.3. Time Delay Neural Network with Global Feedback Loop

 3.3.1.4 The Complex Network

 IV. PERFORMANCE METRIS AND PRE-PROCESSING

OF TRAINING SIGNALS

4.1 Methodologies to Evaluate the Predictors

4.1.1. Averaged Mean Squared Error

4.1.2. Lyapunov Exponents

4.1.3. Return Maps

4.2 Preprocessing of Training Signals

4.2.1 Filtering

4.2.2 Sampling Rate Conversion

4.2.3 Harmonic Decomposition

 V. RESULTS

5.1 Modifications to the Complex Model

5.1.1 Case C.1: Down-sampling of the Training signal

5.1.2 Case C.2: Training Using Teacher Forcing

5.1.3 Case C.3: Time-Constant Weights

5.2 A Predictor Based on a Hybrid Neural Network (Case H.1)

5.3 Predictors Based on Feed-forward (FF) Networks

5.3.1 Case F.1.A: Prediction of a sine function

5.3.2 Case F.1.B: Prediction of an ECG

5.3.3 Case F.2: Addition of Recurrent Connections to a FF Network

5.4 Predictors Based in Hybrid Networks Using Harmonic Generators and

External Inputs

5.4.1 Case K.1: A Predictor with no Hidden Layer

5.4.2 Case K.2: A Predictor with a Hidden Layer

 VI. CONCLUSIONS

 REFERENCES

 APPENDIX

A. Calculation of the Maximum Lyapunov Exponent o a Time Series

B. The Training Algorithm Back-Propagation Through Time

C. Topologies of the Hybrid Networks

D. Summary of Training Files

LIST OF TABLES

2.1 Values of Lyapunov exponents for different types of limit

sets (Parker and Chua 1998) 18

5.1 A summary of the Cases Analyzed in This Work 51

5.2 Specifications of the Neural Net Predictors Implemented

for each Case

5.3 Performance Metrics AMSE and LE for Selected Cases

C.1 Connection Matrix A

C.2 Connection Matrix B

C.3 Connection Matrix C

C.4 Connection Matrix D

ABSTRACT

The possibility of automatic and accurate prediction of heart failures from the

analysis of electrocardiograms (ECG) could be a breakthrough in medicine, because

cardiologists can sometimes identify diseases and foresee catastrophic events, but they are

not always successful. However, ECG, as many other biological rhythms, are the result of

complex, non-linear dynamical systems, believed by many researches to be chaotic from a

mathematical point of view. Chaotic signals are extremely dependent on initial conditions;

they look random or noisy, but they are the result of bounded, deterministic systems.

Therefore, prediction of ECG is a real challenge.

This research focused on the ambition of finding ways to model and predict

electrocardiograms using artificial neural networks. It is known that point-by-point

prediction is impossible for chaotic time series. However, we were looking for a

predictability that could allow a network to model the attractor associated to ECG, rather

than making it able to calculate accurately each value in the future. A prediction with such

capabilities could foresee bifurcations in the dynamics and hence, predict catastrophic

events.

We explored the use of Lyapunov exponents (an invariant measure of the

divergence of several trajectories of a dynamical system) as an aid on the training of

predictors based on complex neural networks (CNN). A CNN is a recurrent network built

with harmonic generators, which are 3-node recurrent neural networks previously trained to

reproduce a specific sine wave. Several predictors were designed training a feed-forward

network to reproduce an ECG, using past signal values as external inputs; harmonic

generators trained to reproduce the harmonic components of the signal. After that, these

weights were embedded in a CNN, which trained until reaching a minimum. All predictors

trained using the algorithm back-propagation through time.

We found that, embedding the Lyapunov exponents using the fashion described

before is not enough to make the network fully capture the dynamics of the system, but it

improved its short-term prediction. Besides, we found that harmonic generators control

oscillations of the trajectories in long-term predictions. None of these characteristics are

present in feed-forward networks or plain recurrent neural networks.

 vi

ACKNOWLEDGEMENTS

I would like to thank the members of my committee, Dr. Sunanda Mitra and Dr.

Donald Gustafson for all the support and advice that I received from them during the

development of this research. Special thanks are given to my advisor, Dr. Brian Oldham, for

his continuous encouragement and friendship during the development of my doctoral

studies and especially during this research. Also, I would like to express very special thanks

to Dr. Noé Lopez-Benitez for his invaluable support, teaching and friendship. My sincere

appreciation is expressed to the rest of the faculty of the department of Computer Science

for all their assistance and patience when they had me as a student in their classes.

I would like to recognize the following institutions: “Universidad de las Américas-

Puebla,” “ Consejo Nacional de Ciencia y Tecnología,” and the Department of Computer

Science of Texas Tech University for the financial support that I received during my

doctoral studies.

I wish to express my sincere gratitude to my friends Sandy and Bob Crosier, who

helped me during these three years with their invaluable advice, not only as an international

student but as a friend. Sandy kindly and patiently proofread this document which I know

was not fun. I also whish to express my most sincere thanks to my friends: Sara Pendley,

Rafael Cedeño, Gilberto Zamora and Ginnett Rollins who have offered me their friendship

and support when needed. I am specially grateful to my parents, Jorge and Lilia, who have

always encouraged me to go “one step ahead,” and to Dr. Juan Manuel Ramirez, who has for

many years been “the wind beneath my wings.”

Finally, I would like to dedicate this work to my brothers: Jorge and Roberto†, and

their children: Cintya, Jorge and Mariana, as a tribute to their unconditional love.

 ii

LIST OF FIGURES

1.1 Components of an ECG 2

1.2 A plot of the strange attractor generated by an electrocardiogram 3

1.3 A small fully-connected recurrent neural network 4

2.1 A quasi-periodic time series and its return map for a time lag = 5

2.2 A trajectory of equation 2.3 traveling to a fixed point

2.3 Examples of limit cycles for Duffing equation

2.4 Two examples of stability in Poincaré oscillator

2.5 Coordinate x of Hennon map for a = 1.4, b = 0.3 and x(0) = 0.1

2.6 A strange attractor of Hennon map for a = 1.4, b = 0.3 and x(0)=0.1

2.7

CHAPTER I

INTRODUCTION

 Since the seventies, advances in the theory of non-linear dynamics have encouraged

the construction of models and predictors of non-linear time series that were previously

considered intractable. At the same time, artificial neural networks have been widely used to

model dynamic systems in applications of prediction, noise filtering and analysis of temporal

sequences such as sunspot series, stock market data, disease behavior and speech signals.

 Among other applications, the theory of non-linear dynamics has been recently used

to model biological rhythms of the human body, such as blood pressure, heart beats and

concentration of sugar in the blood. From a mathematical point of view, many of these

rhythms have been found to be chaotic (Glass 1988). Chaotic signals are extremely

dependent on initial conditions, and even though they look random or noisy, they are the

result of deterministic systems, bounded and aperiodic. Due to these characteristics, chaotic

signals are very difficult to model and consequently, to predict.

 A biological rhythm of our particular interest is the electrical activity of the human

heart. The electrocardiogram (ECG), a measure of this activity, is considered by several

authors to be a chaotic signal (Glass 1987, 1991; Denton et al. 1990 (a); Albert 1990). The

need to model this dynamical system lies in the fact that, even when experienced

cardiologists can identify diseases and foresee some catastrophic events from the behavior of

electrocardiograms, they are not always successful in predicting when it is going to occur.

Their success depends upon many factors not yet clearly identified. Therefore, the

possibility of an automatic and accurate prediction of heart failures from analysis of the

ECG could be a breakthrough in medicine. However, it is difficult to model an ECG due to

its chaotic characteristics and the high-frequency peaks present in it (points R and S at

Figure 1.1).

 The study of non-linear oscillations has been developed extensively since the

contributions of Alekandrovech Andronov (1901-1952), who recognized observable

oscillations using the abstract limit cycles defined by Poincaré (1854-1912). Andronov’s

main instrument was the two-dimensional phase space, a concept that led to the discovery of

chaos. Chaotic signals result in strange but well defined attractors, which are clearly

 1

identified in the phase space embedding the system. A return map is a representation of the

phase space of the system (section 2.1). Figure 1.2 shows the return map of an

electrocardiogram. A strange attractor with a dense injection region is noticed in the figure.

Besides phase spaces and return maps, new concepts have been developed lately in non-

linear dynamics: Poincaré sections, Lyapunov exponents, correlation dimension, fractal

dimension and Kolmogorov entropy, among others.

One of the most popular tools to identify chaos is the calculation of Lyapunov

exponents (section 2.7), which are an invariant quantitative measure of the divergence of

several trajectories in a dynamic system. A positive maximum Lyapunov exponent

characterizes a system that is very dependent of initial conditions, that is, one that is most

probably chaotic. Lyapunov exponents are currently the standard metric used to identify

chaos in time series generated by unknown dynamical systems. Several numerical algorithms

have been developed for calculating these numbers.

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

1.5

2

2.5
An ECG. File ecg2.fil

Q

R

S

T

P

Figure 1.1. Components of an ECG

 Artificial recurrent neural networks (RNN) (Figure 1.3) have shown to be promising

tools for modeling non-linear time series. Appropriate topologies of RNN are believed to

be able to acquire the dynamics imbedded in this kind of data. Due to its internal feedback

connections, RNN contain memory, which make them very powerful and suitable for

applications where information is coupled with time. Such a recurrence makes RNN to

behave as complex non-linear systems, able to extract the invariant characteristics defining a

 2

dynamical system. Therefore, RNN are a promising tool for long-term prediction of chaotic

signal, an open problem at this time.

-1
0

1
2

3

-2
0

2
4

-1

0

1

2

3

A return map of an ECG signal using a lag of 10

x(i)x(i+ 10)

x(i+ 20) Injection region

Figure 1.2. A plot of the strange attractor generated

by an electrocardiogram.

 The ability of an artificial neural network to model a system is completely related to

its topology, training algorithm and the data used for teaching it. Therefore, to search for a

solution using a neural network implies finding the appropriate topology, using the right

training algorithm, with enough and adequate training data. It is clear that, as more

information about the characteristic of the problem is embedded in the topology of the

network and in the training data, the network will have improved chances for solving the

problem.

This research focuses on the ambition of finding ways to model and predict

electrocardiograms using both neural networks and the theory of non-linear dynamics. This

work is based upon several previous studies in areas of artificial neural networks, non-linear

dynamic systems, chaos, forecasting of time series and digital signal processing.

 It is known that long-term point-by-point prediction is not possible for chaotic time

series, due to its divergence characteristics (Wang and Alkon 1993). However, in this

research we are looking for a kind of predictability that could allow a network to model the

behavior of the attractor associated to electrocardiograms, rather than making it able to

calculate accurately each value in the future of such a signal. A predictor with such

 3

capabilities could foresee bifurcations in the dynamic systems; consequently, many of the

catastrophic failures of the heart that kill hundreds each year could be diagnosed.

External Input
 w11

 w00 w01/w10 w12/w21

 w22

 w02/w20

Figure 1.3. A small fully-connected recurrent neural network.

The main objective of this research was to explore the use of information about the

non-linear characteristic of the ECG signal as an aid on the training of recurrent neural

networks, and to evaluate the prediction abilities of such networks.

 With this ultimate goal in mind, we implemented and evaluated several network

predictors, considering the concepts of Lyapunov exponents and harmonic generators. We

call a harmonic generator a 3-node recurrent neural network that has been trained to

produce a sine wave with a specific frequency and amplitude (section 3.3.1.4). Such a

trajectory is generated without receiving any external inputs each time that a prediction is

performed; the only external information given to the network for point-by-point prediction

consists of the initial conditions of the system at time zero (section 3.1). This kind of

predictor is called autonomous. A recurrent neural network using these harmonic

generators, called the complex network, showed promising results in previous works

(Oldham and Gómez 1997).

The Lyapunov exponents were imbedded in the predictors designed in this research

by training a feed-forward neural network to generate a signal with Lyapunov exponents

similar to the original training signal. After that, the weights of this network were used as

initial weights of hybrid or recurrent neural networks constructed over this feed-forward

network. Several versions were tested, including the use of external inputs, feedback for

prediction, and hybrid networks combined with harmonic generators. In addition, we

explored the impact of the use of the techniques of teacher forcing (William and Zipser

1989) and constants weights (Pearlmutter 1990) when training the neural networks using the

 4

algorithm back propagation through time. Also the effect of filtering and decimation of the

training signals was analyzed.

 The main contribution of this work was the analysis and evaluation of the amalgam

of two ideas: the ability of Lyapunov exponents to characterize chaos and the ability of

recurrent neural networks to represent complex systems. Such a mixture was done in a

search for improving the long-term capabilities of predictors built using complex networks.

As a result of this research we found that the embedding of Lyapunov exponents in complex

networks, using the version described before, is not enough to allow the network fully

capture the dynamic of the chaotic system generating the heart activity, and therefore, still

not able to foresee catastrophic events. However, it was found that the embedding of this

invariant information does improve the short-term ability to predict, and that the harmonic

generators are a powerful tool to control the oscillations of the trajectories in long-term

prediction.

 Additionally, we found the algorithm back-propagation through time a versatile tool

for training networks composed of a mixture of recurrent and feed-forward connections.

However, we also discovered a few practical problems in the implementation described by

Pearlmutter (1990), particularly with the definition of the integration step required for such

implementation. Other interesting results of this work included finding that adjustable time-

constants (section 5.1.3) proved to improve the performance of these predictors, and that

the application of teacher forcing (section 3.3.1.2) did not generate any improvement in the

training of the complex network.

 This document is divided as follows: Chapter II presents the basic concepts related

to non-linear dynamic systems. It contains the background needed to fully understand the

ideas and terminology used during the rest of the document. Chapter III describes the state

of the art of recurrent neural networks when applied to chaos and oscillatory systems. It

also contains basic definitions related to forecasting, and a description of linear and non-

linear predictors. This chapter also includes a detailed description of the recurrent neural

network called the complex model, which was used as the starting point of some of the

predictors designed in this work. Chapter IV enumerates the methodologies used in this

research to evaluate the performance of the predictors, as well as the algorithms applied to

pre-process the signals used to train the networks. The performance metrics included the

 5

 6

Mean Square Error, the Lyapunov exponents and visual inspection of return maps. The pre-

processing of training signals involved filtering, sampling rate conversion and harmonic

decomposition. Chapter V presents the results obtained by nine predictors designed

applying the concepts of Lyapunov exponents and harmonic generators in feed-forward,

hybrid, and fully-recurrent neural networks. The predictors are grouped as follows:

modifications to the original complex model, predictors based on hybrid neural networks,

predictors based in feed-forward networks and predictors based in hybrid networks using

harmonic generators and external inputs. Chapter VI presents a detailed discussion of our

conclusions and some recommendations for future work. Appendix A contains a numerical

algorithm for the calculation of Lyapunov exponents from a time series. Appendix B

describes the training algorithm back-propagation through time. Appendix C contains the

connection matrices defining the topologies of the hybrid neural networks used in the

experiments reported in Chapter V. Appendix D describes the electrocardiogram signals

used for the experiments reported in this work.

CHAPTER II

NONLINEAR DYNAMICAL SYSTEMS

 This chapter summarizes basic concepts of non-linear dynamical systems that are

needed to fully understand the context in which this thesis is developed. For a complete

review of this topic see: Tong (1993), Parker and Chua (1998), Epstein (1997), Glass and

Mackey (1988), Denton (1990) (a).

2.1 General Concepts

A non-linear system may be described by a set of differential equations:

.

))(()(

0yy

yyFy

 (0)

)],(...),(),([=)(, 21

=

= tytytytt
dt

td
d (2.1)

where the vector field F is nonlinear. Here d is the dimension of the system.

Equation (2.1) describes the motion of a point in a d-dimensional state space known as

phase space. A trajectory or orbit of the system is a curve of)(ty drawn in the phase space,

showing the solution of (2.1) for a specific initial condition. A family of trajectories for

different initial conditions is called a phase portrait.

 The behavior of a dynamical system can be visualized using a plot called return map,

which is a representation of the state space of the system. A return map shows the relation

between a given point in a time series with other points further away in time. Each point is

plotted in a different coordinate. The dimension of the plot depends on how many points are

being related. The temporal difference between the points being plotted is called the time lag.

Figure 2.1 (b) shows a return map of the time series plotted at Figure 2.1(a).

2.2 Fixed Points and Limit Cycles

 The asymptotic behavior of a dynamical system as ∞→t is known as its steady state.

An steady state y* is a set of values of the variables of a system for which the system does not

change as time proceeds. That is:

0=
dt

td)(y . (2.2)

 7

 8

-1.5

-1

-0.5

0

0.5

1

1.5

(a)

-2
-1

0
1

2

-2

0

2
-2

-1

0

1

2

Return Map of a quasi-periodic signal

x(i)x(i+ 5)

x(i+ 10)

(b)

Figure 2.1. The concept of return map. (a) A quasi-periodic time series.
(b) Its return map for a time lag = 5

When the steady state is a point, it is called a fixed point or equilibrium point. For

example, consider the system (Greenberg 78):

ayaxyyaxx −−=+−= && , . (2.3)

Changing to polar form θθ sin ,cos == yx , it reduces to whose

trajectories are logarithmic spirals that approach a singular point if a > 0 and depart from it if a

< 0. Figure 2.2 shows one of such trajectories for a > 0 in polar coordinates.

1 , −=−= θ&& arr

 Some systems do not reach fixed points as ∞→t , rather they oscillate. The solution

to their differential equation is periodic, known as a limit cycle. A limit set is defined as the set of

points in the state space that a trajectory of the system repeatedly visits. The points of the

limit cycle form the limit set.

 An example of an oscillator is the Duffing equation, defined as:

03 =++ xxx βα&& . (2.4)

 The solution of this system is given by the family of curves:

Cxxy =++
2

4
42 βα

0>

, (2.5)

β are shown at Figure 2.3 where C is a constant. Some trajectories of these curves for

 An attractor is a set of points toward which a trajectory approaches after its transient

state dies out. Equilibrium points or fixed point and limit cycles are attractors. A basin of

attraction is a set of initial conditions for which the system approaches the same attractor as

∞→t .

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90
120

300

150

330

180 0

270

Figure 2.2. A trajectory of equation 2.3 traveling to a fixed point.

 For example, the system:

π,
dt
dΦ

rar
dt
dr

2

0>a 1

=

−=)(
 (2.6)

 has a limit cycle at r = 1. A two-dimensional radial symmetric differential equation like this is

called a Poincaré oscillator. Any initial condition except r = 0 will approach the trajectory to a

specific cycle. See Figure 2.4, where two trajectories starting from different initial conditions

will approach the circle of radius 1.

-100 -50 0 50 100
-250

-200

-150

-100

-50

0

50

100

150

200

250
Limit cycles for Duffing equation

x

y

Figure 2.3. Examples of limit cycles for Duffing equation.

 9

 10

Limit cycles are not possible in linear systems or in one-dimensional ordinary

differential equations.

Poincaré trajectory starting at r=5,tao=1.0

 1

 2

 3

 4

 5

30

210

60

240

90

270

120

300

150

330

180 0

Poincaré trajectory starting at r=0.1,tao=1.5

 0.2

 0.4

 0.6

 0.8

 1

30

210

60

240

90

270

120

300

150

330

180 0

Figure 2.4. Two examples of stability in Poincaré oscillator.

2.3 Chaos

 The study of non-linear oscillations has been developed extensively since the

contributions of Alekandrovech Andronov (1901-1952), who identified observable self-

sustained oscillations using the abstract limit cycles defined by Poincaré (1854-1912) (Tong

1993). Andronov’s main tool was the two-dimensional phase plane, a concept that led to the

discovery of strange attractors or chaos.

 When the steady state behavior of a system is bounded but not an equilibrium point or

a limit cycle then the system is said to be chaotic. The geometrical object in state space to

which chaotic trajectories are attracted is called a strange attractor. The geometry of strange

attractors normally is very complicated. Strange attractors possess fractional dimension, that

is, a dimension that is not integer. The dimension of an attractor shows a lower bound on the

number of state variables needed to describe its steady-state behavior (Parker and Chua 1989).

An strange attractor presents one or more injection regions, which are zones of the phase space

with an very large number of trajectories crossing along them. Such closeness in the

trajectories make the system to “jump” from one trajectory to other, generating what is known

as chaos.

 For example, consider the Hennon map, given by the difference equations:

.t

tt

bxy
yaxx

t

t

=
+−=

+

+

1

1

21
 (2.7)

Figure 2.5 shows the variable x plotted as time goes on for a=1.4 and b=0. For these

values of a and b the Hennon map presents a chaotic behavior. Its strange attractor can be

visualized in the return map of Figure 2.6

 Another example of a chaotic system is given by the Mackey-Glass equation (Glass

1988), which has being widely used to model many biological rhythms. It is given by the

differential equation:

)(
)(

)()(tbx
tx

tax
dt

tdx
−

−+
−

=
τ

τ
101

. (2.8)

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

1

1.5
Coordinate x of hennon data for a=1.4, b=0.3,
(0) 0 1

Figure 2.5. Coordinate x of Hennon map for a =1.4, b = 0.3 and x(0) = 0.1

 11

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5
Return map of henon data a=1.4, b=0.3,
(0) 0 1

x(i)

x(i+ 1)

Injection
 region

Figure 2.6. A strange attractor of Hennon map for

A = 1.4, b = 0.3 and x(0) = 0.1

For a = 0.2, b = 0.1 and τ = 17, this equation results in chaotic behavior. Figure 2.7

shows a numerical solution of the Mackey-Glass equation and Figure 2.8 is its corresponding

return map.

0 100 200 300 400 500 600
0.4

0.6

0.8

1

1.2

1.4Mackey-Glass data for A=0.2, B=0.1, tao=17 h=0.9. 550 points of good2.dat

Figure 2.7. Mackey-Glass data. Equation (2.8)

 Through the years, the existence of chaos has been characterized in time series using

several methods, among others: analysis of Fourier spectra, fractal power spectra, entropy,

 12

fractal dimension, and calculation of Lyapunov exponents. However, several of these methods

have proven not to be very efficient. In recent years, the calculation of Lyapunov exponents

has been a common way to determine if a time series resulting from a unknown dynamical

system is chaotic. Section 2.7 describes with detail Lyapunov exponents.

0
0.5

1
1.5

0

0.5

1

1.5
0.4

0.6

0.8

1

1.2

1.4

Return map of good2.dat

x(i+ 10)

x(i)x(i+ 5)

Injection
regions

Figure 2.8. A return map of data at Figure 2.7 with a lag = 5

2.4 Stability

 A system is said to be locally stable if after a small perturbation away from the steady

state it returns to its steady state as t → ∞. If a small perturbation induces a change in the

dynamics so that the original dynamics is not reestablished, then the steady state or limit cycle

is said to be unstable.

For example, in the Poincaré oscillator (equation 2.5) r = 0 is a steady state; at that

point 0=
dt
dx . However, any small perturbation away from r = 0 will lead the path to the

stable limit cycle at r = 1. Therefore, the steady state at r=0 is unstable. We can see at Figure

2.4 two examples of such stability.

To determine stability and asymptotic stability in nonlinear systems it is common to

apply the direct method of Lyapunov. This method is based on the two Lyapunov’s theorems that

state:

 13

“Theorem 1: The equilibrium state x is stable if, in a small neighborhood of x ,

there exists a positive definite function V(x) such that its derivative with respect

to time is negative semi-definite in that region” (Haykin 1994, pp. 547).

“Theorem 2: The equilibrium state x is asymptotically stable if in a small

neighborhood of x there exists a positive definite function V(x) such that its

derivative with respect to time is negative definite in that region” (Haykin 1994,

pp. 547).

A scalar function V(x) that satisfies these requirements is called a Lyapunov function for

the equilibrium state x . Recall that a function V(x) is positive definite in the estate space L if for

all x in L it satisfies the following requirements:

1. The function V(x) has continuous partial derivatives with respect to the elements of the

state vector x.

2. V(x)=0.

3. V(x)>0 if x x≠ .

 Using this definition and according to Theorem 1, the equilibrium state x is stable if:

xxx −∈≤ UV
dt
d for)(0 , where U is a small neighborhood around x .

According to Theorem 2, the equilibrium state x is asymptotically stable if:

d
dt

V U()x x< ∈0 for x− .

 It is important to point out that stability in the sense of Lyapunov, as described before,

is applied only to fixed-point attractors, and it cannot be applied to the particular cases of

nonlinear dynamical systems exhibiting chaotic behavior (Haykin 94). In fact for a chaotic

dynamic, if perturbed, the system finds a new trajectory with new initial conditions.

2.5 Bifurcation

 Any value of a parameter in which the number and/or stability of steady states changes

is called a bifurcation point, and the involved system is said to undergo a bifurcation. At

bifurcation points, systems are structurally unstable; that is, the main qualitative features of the

system change. For example, a biological system can be approximated by a quadratic map:

40 11 ≤≤−=+ a xaxx iii)(. (2.9)

 14

 15

Its steady state x* is a value for which xi = xi+1 = x* ; that is, x* = 0 and x* = (a-1)/a.

Figure 2.9 shows an example of a time series for the quadratic map with a = 2.5. It converges

to the fixed point (a-1)/a = 0.6. As the value of parameter a increases in the range of 3.0<a<

3.75, successive period-doubling occurs in the time series (see Figures 2.10 and 2.10) and the

steady states are limit cycles now.

 Figure 2.12 shows the quadratic map for a = 4.0. Now its behavior is chaotic. Notice

that the time series seems to be random, however it was generated by a perfectly well defined

equation.

Kaplan and Cohen (1990) as well as others summarize the following as

characterizations of deterministic chaos:

• Chaotic trajectories are aperiodic and deterministic.

• Chaotic systems are extremely dependent on initial conditions.

• The chaotic behavior is bounded and presents a strange attractor.

• There is a particular pattern associated with chaotic behavior.

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7 Quadratic map. a = 2.5 , Xo = 0.04

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Quadratic map. a = 3.25, Xo = 0.04

Figure 2.10. Quadratic map for a = 3.25 Figure 2.9. Quadratic map for a = 2.5

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Quadratic map. a = 3.5, Xo = 0.04.

Figure 2.11. Quadratic map for a = 3.5

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 Quadratic map. a = 4, Xo = 0.04

Figure 2.12. Quadratic map for a = 4.0

2.6 Time Series and Phase-Space Reconstruction

In most of the cases, the only information available of an unknown non-linear, d-

dimensional system is a one-dimensional time series ℜ∈…= T }, x(t), , x(t), t 21{ .

According to the embedding theory defined by Takens (1981), a space of dimension

12 +≥ dM can be reconstructed from these one-dimensional observations. The properties

of the attractor of the real system of dimension d may be observed in the reconstructed space

of dimension M. This can be done by defining the vector:

)))1(()...2(),(),(()(τττ −+++= Mtxtxtxtxty , (2.10)

for some set of time lag τ . . MRt ∈)(y

For 12 +≥ dM , the dynamical properties of a map

)())((1+= tt yyΦ , (2.11) MM RR →:Φ

are topologically the same as the unknown system. M is called the embedding dimension

(Kaashoek and Van Dijk 1994).

There are several methods to calculate an appropriate value for the embedding

dimension M. Indeed, the value of the time lag τ need to be selected. Abarbanel et al., (1990)

describe in detail a method to reconstruct the embedding space. In their method they choose

a value of τ based on the auto-correlation function of the original scalar measurements. The

calculation of M is an iterative process involving the calculation of the correlation function for

increasing values of M, starting at one. They choose the value of M when the structure of the

correlation dimension does not change with an increment of M. These methods are applicable

 16

if the dimension is less or equal to seven. At present, there is no technique for systems with

larger dimensions.

2.7 The Lyapunov Exponents

Since the 1970’s, the study of non-linear dynamics has focused on concepts like the

KAM theorem, Lyapunov exponents, Smale’s horseshoe, Feigenbaum constants and fractal

dimensions (Tong 1993). Several techniques have been developed to detect and analyze non-

linear behavior; among them are: return maps, Poincaré sections, Lyapunov exponents,

correlation dimension, fractal dimension, Kolmogorov entropy and spectral analysis. Probably

today the most popular tool to detect chaos in an unknown dynamical system from a time

series are the Lyapunov exponents (LE for short).

Given a system:

d
dt

f
x

x= () , dRt ∈)(x x o()to x= , (2.12)

 where f is a vector field that does not depend on time, i.e., autonomous, the Lyapunov

exponents λ λ λ1 2, ... d are the average rates of expansion (λi > 0) or contraction (λi < 0) near a

limit set of the dynamical system (Parker and Chua 1989). In other words, the LE are a

quantitative measure of the divergence of several trajectories in the system. The subscript “i”

refers to the i-th direction of the d-dimensional phase space where the system is embedded.

The variable d represents the Lyapunov dimension or phase space dimension. The LE are

invariant measures that characterize the attractors of a dynamical system; that is, LE do not

change when the initial conditions of a trajectory are modified or if some perturbation occurs

in the system.

The values of the LE give us information about the type of a limit set because they

measure the exponential attraction or separation in time of two adjacent trajectories in phase

space with different initial conditions. Table 2.1 summarizes the interpretations of LE for

different kinds of systems (Parker and Chua 1989). If at least one LE is positive, the system

presents chaotic motion; hence it is very dependent on initial conditions. If that is the case,

the magnitude of the LE reflects the time scale on which the dynamics of the system become

unpredictable.

 17

 According to Brown et al. (1991), the Lyapunov exponents may be determined by

observing the evolution of small deviations in an orbit w(k). This orbit is defined in the phase

space of the system, that is, for k = 1,2,…N. It may be assumed that such an

orbit is a map; that is, it is a discrete version of the system flow. The orbit should satisfy:

w(k) ∈Rd

w() ((k f+ =1 w))k . (2.13)

A perturbation in the orbit can be described as:

δ δw f w() (()) (k D k+ =1 w)k , (2.14)

 where Df w() is the d x d Jacobian matrix evaluated along the orbit.

The Lyapunov exponents are the logarithms of the eigenvalues of the matrix defined

by:

[KKTK DD
K

Lim 21/)()(ff
∞→

], (2.15)

where D D K D K DKf f f f= ⋅ − ⋅ ⋅⋅() () ()1 1 , and D K D Kf f w() (())= .

Normally, the LE are referred in order of their numerical size, that is: λ λ1 2≥ ≥... LE

are expressed in terms of bits of information/s for continuos systems and bits/iteration for

discrete systems.

The Lyapunov spectrum is closely related to fractional dimensions associated with the

attractor. Examples of fractional dimension-like quantities are: fractal dimension,

information dimension and correlation exponent. For example, the information dimension

 is related to LE as: fd

1

1

+

=
∑+

=
j

j

i
i

f

j
d

λ

λ
, where j is defined by the condition: . (2.16) 0 and 0

1

11

<> ∑∑
+

==

j

i
i

j

i
i λλ ,

For chaotic systems, the magnitude of the LE reflects the time scale on which the

system dynamics become unpredictable.

Table 2.1. Values of Lyapunov exponents for different

 18

types of limit sets (Parker and Chua 1989)

Steady State Flow Lyapunov exponents
Equilibrium
 point

Point 0 1> ≥ ≥λ λ... n

Periodic Circle λ =
nλλ ≥≥> ...2

1

0
0

Two-periodic Torus λ λ
λ λ

1 2

3

0
0

= =
> ≥ ≥... n

K-periodic K-torus λ λ
λ λ

1

1

0
0

= = =
> ≥ ≥+

...
...

k

k n

Chaotic Cantor-like λ
λ

1 0
0

.>
<∑ i

2.7.1 Numerical Methods to Calculate Lyapunov Exponents

A numerical method is needed to calculate the LE from a set of observations of the

system when equations describing it are not available. In 1985, Wolf et al., proposed one of

the first practical methods to calculate the maximum LE from a time series. Since then, many

others have been proposed; examples are presented at Parker et al. (1989), Brown et al. (1991),

Abarbanel et al. (1990), Rosenstein et al. (1993), Banbrook et al. (1997), Barna and Tsuda

(1993), among others. There are numerical methods available for both the calculation of the

maximum LE or calculation of the LE spectra.

Following is the description of two numerical methods for calculation of LE: the one

proposed by Wolf et al. (1985) which has historical importance, and the one proposed by

Gencay and Dechert (1992) which is of fundamental importance in this research.

2.7.1.1. The Method of Wolf et al.

 This method can calculate non-negative LE. The authors have published versions of

their method to calculate the LE spectra or only the largest positive exponent. This algorithm

is easy to use and requires fewer amounts of data than other methods available at the time that

it was created. However, as in most of these numerical methods, its reliability depends mainly

on the good sense of the experimenter when choosing or calculating several parameters

needed by the algorithm, as well as in the accuracy and size of the data set. Appendix A shows

 19

a structured version of the algorithm to calculate the maximum LE using fixed evolution time

as described at (Wolf et al. 1985).

 The main idea of this algorithm is to monitor the long-term evolution of a single pair

of nearby orbits of the system in order to estimate 1λ , the largest LE. The algorithm attempts

to approximate the local tangent space about a fiducial orbit of the system. The process starts

calculating the time-delay reconstructed coordinates y as described at section 2.6. After that, it

finds the nearest neighbor in the reconstructed space to the first point in the orbit. The

magnitude of the difference vector is recorded. Subsequently, the point evolves along its

trajectory a given number of steps. The magnitude of the final separations is determined, and

a contribution to 1λ is calculated as the logarithm of the final separation divided by the initial

separation. All contributions are averaged over the length of the time series. If the distance

between neighbors becomes too large, the algorithm abandons this point and searches for a

new neighbor.

This algorithm requires the following input parameters:

1. The number of points in the time series (N). Wolf et al. (1985) suggest that at least 10d

points are needed, but Abarbanel et al. (1991) suggest 20d as the right amount of data to

use with this algorithm. Greater accuracy requires a longer time series.

2. The embedded dimension of the system (d). The determination of this value requires the

application of other numerical methods. Wolf et al. (1985) and Abarbanel et al. (1991)

suggest some ways to calculate it. The behavior of the algorithm is very dependent on the

accuracy of this value. A too large value increments noise; a too short value produces loss

of information.

3. Reconstruction time delay (dτ). This value is chosen in a way to make the d components

of the system as “orthogonal” as possible. A popular way to calculate it is finding the first

zero of the auto-correlation function of the time series, but experimentation is sometimes

needed to find a correct value.

4. Time between successive measurements in the time series (sT). This is the inverse of the

sampling rate for the data.

 20

 21

5. Maximum distance that the algorithm will look for neighbors (Smax). Making this variable

smaller will increase accuracy. The authors suggest it should be less than 1% of the macro-

scale of the attractor, and to experiment with its value.

6. Minimum distance that the algorithm will look for neighbors (Smin). This variable is used to

avoid noise.

7. Evolution time (ET). Given in time series steps, it is the time that a given pair of

neighbors are allowed to evolve before replacement. This variable affects greatly the

accuracy of calculation. Experimentation is required to find a correct value.

 The well-known Lorenz system:

,
,)(

),(

cZxyz
yzbxy

yxax

−=
−−=

−=

&

&

&

 (2.17)

presents chaotic behavior when a = 16.0, b = 45.92, c =4.0. Figure 2.13 (a) shows 500 points

of a numerical solution to the Lorenz system, and (b) the return map for the same data

showing the strange attractor of the system. The maximum LE of this time series was

calculated using the Wolf et al. algorithm with the following parameters: number of points:

4,500; embedded dimension: 3; time delay: 13; time period of data: 0.1; maximum distance to

look for neighbors: 0.4; minimum distance to look for neighbors: 0.00001 and evolution time:

20. Figure 2.14 shows the convergence of LE , getting as the last result 1.315. It is known that

the true value of the maximum LE for the Lorenz system is 1.5.

Wolf et al. suggest running the algorithm for different values of evolution time and

choosing the one where 1λ presents some stationary. Figure 2.14 plots the obtained values

for the Lorenz system for evolution times between 2 and 60. Notice that a plateau is around

12 and 21. The average 1λ on this range is 1.3518.

0 100 200 300 400 500
-20

-15

-10

-5

0

5

10

15

20
First 500 points of file lorenz1.dat

(a)

-20 -15 -10 -5 0 5 10 15 20
-20

-15

-10

-5

0

5

10

15

20
Return map of lorenz1.dat using 500 points, d=2, tao=1

x(i)

x(i+ 1)

(b)

Figure 2.13. Lorenz system. (a) Data. (b) Return map with lag = 1.

 22

Convergence of the Lyapunov exponent of lorenz1.dat

0

0.2

0.4

0.6

0.8
1

1.2

1.4

1.6

1.8

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 209 217

Iterations

LE

Figure 2.14. Convergence in the calculation of Lyapunov Exponent.

 The main drawback of this algorithm is its strong dependence on the size of the data

set and the accuracy of the input parameters, which by themselves are hard to determine in real

life cases. This is the case of electrocardiograms, which are believed to be chaotic signals.

Figure 2.15 shows a sample of an electrocardiogram signal. This is a fraction of record No.

123 of the database produced by Harvard (1992). The signal was sampled at 360Hz. The

Wolf’s algorithm was used with 37,500 points of this record, an embedded dimension of 6 (as

suggested by Babloyantz & Destexhe [1988]), time delay of 15 points (calculated using the

auto-correlation function), time period of 0.028, a maximum distance to look for neighbors of

0.008 and a minimum distance of 1.0e-5. Figure 2.16 shows a plot of the convergence of 1λ as

the algorithm goes over the data (only the first 150 points are plotted). Notice that the plot is

rougher than that in Figure 2.14.

Figure 2.17 shows the obtained values of 1λ for evolution times from 80 to 384.

Notice that 1λ does not converge to a well-defined stable value. Some stability is shown at the

range from 254 to 384, where the mean of 1λ is 0.0931. The true value of the maximum

exponent of an ECG has not been determined. Several numerical calculations, using different

data sets of ECG signals, have being reported: Babloyantz and Destexhe (1988) obtained

values of 080380 .. ±1 =λ for ECG; Karanam (1996) obtained calculated lower limits of 1λ

 23

from 0.11 to 0.27; Casaleggio et. al (1995) obtained values ranging from 7.6 to 29.1 for

different samples of ECG.

A fraction of file ecg123.dat

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10

-2

-1.5

12

tim e

Figure 2.15. A fraction of file ecg123.dat

0 50 100 150
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Convergence of L.E using 37,500 points of ecg123.dat

Iterations

LE

Figure 2.16. Convergence of Wolf’s algorithm for ecg123.dat

 24

LE for ecg123.dat for different evolution times

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200 250 300 350 400

Evolution time

LE

Figure 2.17. Maximum LE of the ECG signal
for different evolution times

2.7.1.2. Estimation of Lyapunov Exponents using
Feed-forward Neural Networks

 Gencay and Dechert (1992) developed an algorithm to estimate all the Lyapunov

exponents of an unknown dynamical system using a technique based on a multivariate feed-

forward neural network. The same algorithm has been used by several authors (Sattin 1997,

González et al. 1995, Kaashoek and Van Dijk 1994) for different applications. The main idea

of this algorithm is to estimate a function from the observations of the system that is

topologically equivalent to the one describing the system, then calculate the LE of that

function. As stated by equations 2.13 to 2.15, the Lyapunov exponents of a dynamical system

can be calculated by evaluating the Jacobian of the function f (see equations) that describes its

trajectory. Multi-layer feed-forward neural networks can approximate a function and its

derivatives to any degree of accuracy; therefore, they are used in this algorithm as a non-

parametric estimation technique. The algorithm works as follows:

Suppose a dynamical system with a trajectory nnf ℜ→ℜ:

 ... 0,1,2, t1 ==+),(tt xfx . (2.18)

 25

Associated with this system there is a measurement function that generates the

sequence of observations { :

ℜ→ℜnh :

}ty

)(tt xhy = . (2.19)

The time series { is all the information available about the system. As described at

section 2.3, a map of dimension m with equivalent properties to the original system can be

constructed from the one-dimensional observations as:

}ty

ty

)(m
t

m
t ygy =+1 , (2.20)

where and .),...,,(tmtmt
m
t yyyy 21 −+−+=),...,,(111 +−+++ = tmtmt

m
t yyyy

The dynamical properties of f and g are the same. The map g to be estimated can be

represented as:

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

→

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+

−+

−+−+

−+

−+

1

1

21

2

1

t

mt

tmtmt

t

mt

mt

y

y
yyyv

y

y
y

g
:
:

)...,(

:
:: . (2.21)

The function v can be estimated using a feed-forward network with one hidden layer (see

Figure 2.17)

∑ ∑
=

+=
L

j

m

jijijmN bxwkbwxv
1 1

),(),,;(,, ββ (2.22)

where:

)exp(
)(

bwx
xk

−−+
=

1
β , (2.23)

the are weights from input nodes to hidden nodes, ijw jβ are weights from hidden to output

node, L is the number of hidden nodes, m it he number of inputs, corresponding to the

imbedded dimension and x are external inputs to the network. The optimization criteria

consists on minimizing the square-error cost function over the whole trajectory of size T:

 ∑
−−

=
+ −=

1

0 2
1mT

t

m
tmtjij bwyvywE),,;((),(, ββ . (2.24)

 26

The estimation of parameters can be carried out using the well-known algorithm back-

propagation (Rumelhart et al. 1986) or, as suggested by Gencay and Dechert, using the Polak-

Ribiere conjugate gradient method (Press et al. 1988). The latter requires one to use the partial

derivatives of the cost function which are:

∑ ∑ ∑∑
−−

= =

+

=
+

+

=

+−=
1

0 1

1

1

1

1

mT

t

L

j

m

i
ijijmt

m

i
iil

l

xwkyxwk
d
dE))(()(,β
β

, (2.25)

∑ ∑∑
−−

= =

+

=
+

+

=

+−′=
1

0 1

1

1

1

1

mT

t

L

j

m

i
ijijmt

m

i
ililk

kl

xwkyxwkx
dw
dE))(())((,,

,

ββ ∑ , (2.26)

for , Lkml ..),...(1 11 =+=

where the substitutions and jmj wb ,1+= 11 +=+mx , have been made to simplify the equations.

Once that g is known, a method as the one described by Parker and Chua (1989) can

be used to calculate the Lyapunov Exponents based on the Jacobian Matrix of g, which is

given by:

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−−

01000

00001
1221

...

...

...

)(M

vvvvv

Dg

mmm

y m
u

, (2.27)

where:

,
1−+

=
mt

m dy
dvv (2.28)

and the Lyapunov exponents iλ are computed as:

miv
T

T

t

i
ti ...,ln 1 1

0
== ∑

=

λ . (2.29)

The ability of equation (2.22) to approximate arbitrary functions has proven to be very

good (Hornik et al. 1990), even for a chaotic series. Figure 2.19 shows the result of

approximating a time series of a Hennon map (see equation 2.7) using 2 input nodes and 8

hidden nodes.

 27

jβ

jiw ,

1x
2x

v

Figure 2.18. A feed-forward net with two external inputs.

The network was trained using the standard back-propagation algorithm. This one-step

prediction is so good that the plots of original and calculated series can not be distinguished at

the resolution of Figure 2.19. The Mean Square Error of the cost function after training of the

network was 7.8E-4. Similar results were obtained when training the network using the Polak-

Ribiere conjugate gradient method, with the observation that even though the convergence

was much faster, the final value of the error was not better than with back-propagation.

Approximation by BP after 500 sweeps

-1.5

-1

-0.5

0

0.5

1

1.5

1 9 17 25 33 41 49 57 65 73 81 89 97 10
5

11
3

12
1

12
9

13
7

14
5

15
3

16
1

16
9

17
7

18
5

19
3

time

V
alue approximation

Original function

Figure 2.19. Aproximation of a Hennon series using a feed-
forward net with 2 inputs and 6 hidden nodes. LE = 0.6064.

 28

 29

This kind of approximation or single-point prediction (see section 3.1) also works well

for ECG signals. Figure 2.20 shows a plot of the first 1,000 points for the estimation of 3,978

points of a series. For this example 5 input nodes and 10 hidden nodes were used. The Mean

Square Error was 3.29E-4.

Approximation of BP. 1-point prediction.

0.5

1

1.5

2

-2

-1.5

-1

-0.5

0

1 37 73 10
9

14
5

18
1

21
7

25
3

28
9

32
5

36
1

39
7

43
3

46
9

50
5

54
1

57
7

61
3

64
9

68
5

72
1

75
7

79
3

82
9

86
5

90
1

93
7

97
3

time

va
lu

e bp-25 (testing)
expected

Figure 2.20. Approximation of an ECG signal using a feed-fordward

net with 5 inputs and 10 hidden nodes. LE = 0.1823

CHAPTER III

PREDICTION AND ARTIFICIAL NEURAL NETWORKS

 The possibility to foresee future events has always been of great interest for all

disciplines. Tong (1993) identifies three basic activities in the construction of a forecasting

model: first determine the main characteristics of the data, next construct a model using the

available theory and such characteristics, and finally verify if the model is able to represent

the features of the system. Such activities may need to be executed several times.

However, this is not an easy task, particularly for the cases where the unknown

dynamical model is non-linear or chaotic, because the simple observation of the outputs

gives few clues to determine the model that will represent the dynamics accurately.

Despite the difficulties of forecasting, many techniques to predict time series have

been proposed. According to Brockell (1991), the problem of forecasting consists of the

evaluation of future values of a time series, , based on the observations of its

past values . In general, prediction may be seen as a function approximation

problem (Príncipe et al. 1997) which consists of defining a complicated function

1≥+ hx hT ,

Txxx ..., 21

)(yf using

other function that is a combination of simpler functions:)(~ yf

∑
=

=
N

i
iiaf

1
)()(~ yy ϕ . (3.1)

If the bases functions)(yiϕ are a linear combination of past outputs and/or inputs,

the model is said to be linear. When the bases are nonlinear with respect to the past signal,

the model is non-linear. For many years linear models have been the most popular tools to

predict, but obviously they are not able to represent accurately any non-linear dynamical

system.

3.1 Types of Prediction

A predictor map defined by (3.1) can be written as:

)),(() ayFy t(t =+1 . (3.2)

Single-step prediction takes place when several observations of past values are used by

the predictor to calculate the next point. This is also called next-point prediction or one-point

 30

prediction. The predictor map is applied once:)),(() ayFy t(t =+1 . This kind of prediction is

normally carried out by non-autonomous predictors, where each prediction of time t requires as

external inputs observations at times t-1, t-2… t-d+1. It is also possible to carry out single-

step prediction using an autonomous predictor, which is able to fully represent the solution to

the dynamic of the system, and therefore it only requires as external input the initial

conditions of the system. From time t=0 the predictor will calculate the output at any time t

without any external inputs.

Point-by-point prediction takes place when, in a iterative way, the predictor calculates

outputs at times t, t+1 , t+2 … . Here the predictor map is applied several times:

. A non-autonomous

predictor will require feedback from its own predictions to calculate new values when the

value to be predicted is such that there are no more available observations. Point-by-point

prediction is required for long-time prediction.

)),((...)),),((()),(() ayFaayFFayFy tktktk(t k==−+=−+=+ 21

3.2 Linear Models for Prediction.

 A linear predictor can be seen as a filter, as pictured at Figure 3.1 (Burrs 1991).

Given a discrete time signal with unknown parameters, future outputs can be estimated as a

linear combination of input values, output values, or both. In its most general form, the

estimation is given by:)(~ ny

∑ ∑
= =

−+−−=
N

i

M

j

ji jnxbinyany
1 1

)()()(ˆ , (3.3)

where)(nx and are inputs and outputs of the system respectively; and represent

estimated values. Normally the only known values are the outputs of the system.

)(ny ia jb

This system can be described as:

)()()()(zXzBzYzA = , (3.4)

then:

)(
)(

)(
)(

)(ˆ
zA
zB

zX
zYzH == . (3.5)

 31

 H(z) x(n) y(n)

unknown values
known value

Figure 3.1. A linear prediction model

The obtained parameters are estimations of the poles and zeroes of the system. This

pole-zeroes model is known as the ARMA model, initials standing for Auto-Regressive, Moving-

Average.

 It is also possible to define simpler models which take in account only past inputs or

past outputs. They are the all-zeroes model, defined as:

∑
=

−=
M

j

j jnxbny
1

)()(ˆ , (3.6)

also called the MA model, initials standing for Moving Average, and the all-poles model,

defined as:

∑
=

−−=
N

i

i inyany
1

)()(ˆ , (3.7)

also called the AR model, initials standing for Auto Regressive.

3.2.1 Implementation of an AR Model

 AR models are very popular because in most applications only the output values of

the system are known. Besides they are easy to implement, but they require heavy numerical

calculations.

 In this model, it is required to solve the equation:

∑
=

−−=
M

i
i inyany

1
)()(ˆ ,

 in a way that the error defined by the function is minimized. >=<)(neE 2

 32

For any set , the error when estimating }{ ia)(ny is given by:

∑
=

−−=−=
N

i
io inyanyanynyne

1
)()()(ˆ)()(∑

=

−=
N

i
i inya

0
)(, (3.9)

where . 10 =a

 According to the orthogonal principle, the minimum error is obtained when is

chosen such that E is orthogonal to

}{ ia

)(iny − for all i=0..N, that is,

 ... N, j=jnyne 210)()(=− , (3.10)

which is equivalent to:

 Njjnyinya
N

i
i ,...,)()(210

0

==−−∑
=

. (3.11)

 If is a stationary signal, the auto-correlation function defined by:)(ny

)()(jnyinyr ji −−=− , (3.12)

can by substituted in equation 3.11 which becomes:

Njra
N

i
jii .., 210

0

==∑
=

− . (3.13)

The minimum-squared error is given by the equation:

∑
=

=
N

i
ii raE

0

. (3.14)

Combining equations (3.13) and (3.14), the following equation system is

obtained:

r r r r
r r r r
r r r r

r r r r

a
a
a

a p

Ep

p

p

p p p

p0 1 2

1 0 1 1

2 1 0 2

1 2 0

0
1
2

0
0

0

L

L

L

L M

L

M M

−

−

− −

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

()
()
()

()

, (3.15)

where , and p is the number of coefficients to calculate or degree of the predictor.

 is the minimum error obtained when using p coefficients.

iaia =)(

pE

 33

 There are many ways to solve this system. For example, N. Levinson constructed a

recursive algorithm to calculate the coefficients { based on the fact that in a stationary

signal the correlation matrix is symmetric and “Toeplitz,” that is, its j-th. row counting from

bottom is always the inverse of its j-th. row counting from the top. For a detailed

description of the Levinson method see Oppenheim (1989).

}ia

 A non-autonomous, single-point predictor of degree 10 was trained using the

Levinson method to learn the ECG signal given at Figure 3.2 (a). Figure 3.2 (b) shows the

results obtained when predicting the next point. The predictor takes 10 past values of the

original signal to predict the next point, obtaining satisfactory results. However, it is

important to point out that single-point prediction is neither very difficult nor useful in most

cases. Almost any kind of predictor could obtain satisfactory results for one-point

prediction.

0 200 400 600 800 1000
-2

0

2

(a) Original Signal

0 200 400 600 800 1000
-2

0

2

(b) Next-point prediction using p= 10
Figure 3.2. An example of next-point prediction of an ECG signal.

 Figure 3.3 (b) shows the results obtained by the same predictor when working as a

point-by-point predictor and trained with p=200. Two hundred points of the original signal

were given, and 50 points ahead were predicted. To predict point 201, 200 original points

 34

were given as external inputs. Feedback of the calculated values was required to predict

from point 202 ahead. For prediction of the last point, 151 original points and 49 predicted

values were used. Point by point prediction was not successful after just a few points.

3.3 Non-linear Prediction

 A non-linear model can not be described by a transfer function, but a model

equivalent to the linear case can be constructed for non-linear systems using the embedding

theory of Takens (Príncipe 1997). This model is designed by first reconstructing an

embedding space from the time series with characteristics equivalent to the original system

(see section 2.6) and then defining a map that transforms from the current reconstructed

state of the trajectory to the next state.

0 100 200 300 400 500 600 700 800 900
-2

-1

0

1

2

(a) Original signal. Only 200 points were used

0 50 100 150 200 250 300
-2

-1

0

1

2

(b) Prediction of 50 points after point 200

Figure 3.3. An example of point-by-point prediction of an ECG signal

 Given))(()...(),(),(()(τττ 12 −+++= dnxnxnxnxny (where)(nx is the time

series, d is the embedding dimension, and τ the time lag), a map

parameterized by , can be constructed such that

dF ℜ: ,d ℜ→

)...,,(paaaa 321=a

)),(()(ayFy nn =+1 . (3.16)

 35

As in the linear case, the estimation of coefficients is carried out such that a cost

function like:

ia

[∑ ∑
−

= =
⎥
⎦

⎤
⎢
⎣

⎡
−+=

1

1 1

21
N

n

d

m
mm nFnyE)),(()()(aya] , (3.17)

is minimized.

 The map F is required not only to produce accurately)(1+ny from)(ny , but also to

produce after two applications of the map to)(2+ny)(ny ,)(3+ny after three and so on.

 As pointed out at section 2.7, data resulting from a non-linear dynamical system

contain invariant information that is essential to describe the geometrical structure of its

attractor. A way to construct a predictor map is calculating such invariants from the data

and then imposing them as constraints on the calculation of parameters, in a way that the

dynamical system defined by F has similar invariants to the unknown system. Abarbanel et

al. (1990) constructed a predictor for chaotic series based on this concept obtaining good

results for data coming from the Hennon map and the Lorenz system. They found that the

parameter values that minimize the least-square criterion do not in general reproduce the

invariants of the dynamical system, while the maps that reproduce the values of the

invariants are not optimum in the least-square sense.

 It is important to remark that reliable point-to-point prediction of chaotic systems

with unknown dynamics is impossible (Wang and Alkon 1993). Indeed, there is not a theory

for recognizing whether a constructed predictor has been able to truly identify the original

system.

3.3.1 Neural Networks for Non-linear Prediction
 Applications of artificial neural networks are countless. Both feed-forward and

recurrent neural networks have proved to be well suitable for many problems where

approximations to functions are needed; also several models have been designed to emulate

oscillations and other time-dependent sequences.

There are several studies related to modeling and prediction of non-linear time series

using neural networks. Wang and Alkon (1993) present a good summary of some of these

studies. Recurrent neural networks have shown to be crucial for activities involving non-

 36

linear dynamics and specially for chaos. Following is a brief description of some of these

models.

3.3.1.1. The Oscillatory Network of Hayashi

 Hayashi (1994) analyzed the behavior of an oscillatory network with external inputs.

His network is made of excitatory and inhibitory neural groups. Each excitatory cell is

connected to an inhibitory cell and to other excitatory cells. The dynamic equations for the

cells are:

& (()x x G W x K y Ii i ij j EI
i

i i
j

N
= − + − +

=
∑

1
)

)

, (3.18)

& (()y y G K xi i IE
i

i= − + , (3.19)

G z z
a() arctan()=

2
π

, (3.20)

W
N

ij i j ij
M

= +
=
∑1

1
ξ ξ δα α

α
 (N M)≥ , (3.21)

where and are the averaged pulse density for excitatory and inhibitory cells, N

represents the number of node groups, M is the number of memory patterns,

are the training patterns and

ix

1,2=

jy

 M)... (i αξ α δij is the Kronecker’s delta. Hayashi observed

that, when the external inputs to the network were similar to a memory pattern, the network

generated a limit cycle near such a pattern. For an input far from the memory patterns, a

chaotic orbit was generated.

3.3.1.2 Real Time Recurrent Learning
 Williams and Zipser (1989) proposed a network called Real Time Recurrent Learning

(RTRL). This learning algorithm is based on minimization of error, as in Back Propagation

Through Time (BPTT). The authors claim that the principal advantage of their algorithm

over BPTT is that it does not require an epoch length. The computation time of this

algorithm is of O(n4). The dynamics of their system is represented by the equations:

∑∑ ∑
∪∈∈ ∈

=+=
IUl

lkl

Ul Il
lkllklk tZwXwYwtS)()(, (3.22)

 37

)]([)(tSftY kkk =+1 . (3.23)

There are n nodes and m external input lines per node. X t() is an m-tuple of external

inputs at time t, Y t() is an n-tuple of outputs at time t, U represents the set of outputs and I

represents the set of inputs. The vector Z is defined as:

Z t
X t k I

Y t k U
k

k

k
()

()
()

=
∈
∈

⎧
⎨
⎩

 if
 if

 . (3.24)

 William and Zipser also proposed the concept of teacher forcing, which basically

consists of using the desired value of the signal, if available, instead of the actual output Yk(t)

when computing the rest of the outputs of the network. Teacher forcing has shown to

improve learning in some applications but not in all cases.

3.3.1.3 Time Delay Neural Network with Global Feedback Loop

 Príncipe and Kuo (1994) studied a dynamic modeling of chaotic time series using a

recurrent neural network with a global feedback loop. Their network was trained using

back- propagation through time. They proposed to use dynamic invariants as a measure of

the success of the predictor, instead of a global error. This network is called the Time

Delay Neural Network with Global Feedback Loop (TDNNGFL). The dynamic net is

seeded with a set of input samples; next, the input is disconnected and the predicted sample

is fed back to the input for k steps. The mean square error between the predicted and true

sample is used as a cost function. Because the time series is chaotic, the authors weighted

the error function according to the largest Lyapunov exponent of the signal. The cost

function used in this network is:

∑ ∑
= +=

++−++⋅=
r

j

k

mi

jqixjqixdistihE
0 12

11))(~)(()(, (3.25)

where r is the number of training sequences, m is the estimated dimension of the dynamic

system, k is the length of the trajectory, q is the number of samples that overlap the

sequences of length k, x is the real data and ~x is the predicted data. The function h is

defined as:
) , (3.26) (max)()(12 −−−Δ= miteih λ

 38

where λ max is the largest Lyapunov exponent and Δt is the sampling interval. Using this cost

function, the weighting of errors for later iterations has less credit than in former iterations.

3.3.1.4 The Complex Network

 A 3-node fully-connected recurrent neural network (RNN) is able to oscillate, hence

it may capture the dynamics of sine waves and work as an autonomous predictor. Once

trained, these kinds of networks can accurately predict point-by-point fairly well during long

periods of time, using no external inputs except the initial point of the signal (Figure 3.4).

We call this a harmonic generator.

Based on this oscillation ability, Oldham (1997) developed a predictor model which

consists of a fully-connected RNN pre-loaded with information about the Fourier

components of the signal to be learned. Such a model is known as the complex network.

The frequency information of the signal is embedded in the network in the following

fashion: the seven first sine harmonics of the signal to be modeled are used to train the

weights of seven three-node recurrent networks, called “the sub-networks” or harmonic

generators. After training, these sub-networks are embedded in a bigger RNN, the complex

network.

Figure 3.5 shows a complex network with 3 harmonic generators, (named A, B and

C). No is the output node that produces the predicted signal. The sub-networks are

connected in a fully recurrent fashion to every other node in the complex network, but, for

simplicity, not all connections are drawn in the figure. The internal weights of the harmonic

generators are held fixed during the training of the rest of the weights. Bold lines in the

figure represent these fixed weights. There are no nodes with external inputs; therefore, the

network acts as an autonomous predictor. The signal is fed to the network during training as

the desired value of node No. The model also may include other “output nodes,” which are

trained to learn the value of the signal in delayed times (and in the figure). These are

called “pseudo-output” nodes. The rest of the nodes are hidden nodes. This network is

trained using an implementation of the algorithm back-propagation through time developed

by Pearlmutter (1989). Appendix B contains a detailed description of this algorithm.

0S 1S

 39

initial
value

sine wave

3-node RNN

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244

Figure 3.4. A harmonic generator: an autonomous

predictor of sine waves.

 Figure 3.6 shows the results obtained by a complex network trained to model an

ECG signal. The network has a total of 33 nodes; 4 of them are pseudo-output nodes, one

is the output node and 21 correspond to 7 sub-networks trained to the first seven harmonics

of the original signal. This network has 1,026 modifiable weights out of 1,089 total.

The training time series has 512 points corresponding to approximately 2 beats or

cycles of the ECG. The point-by-point prediction is carried out up to point number 1,500.

Both the original and predicted signals are shown in Figure 3.6; the original signal ends at

point 512. Figure 3.7 shows the corresponding return map. These results were obtained

after 31,000 epochs, obtaining a final mean square error of 0.0071. More training did not

result in any significant improvement in the error. Notice that the highest output value

obtained by the network is around 0.2 while the original signal has a maximum at 0.75.

 Figure 3.8 shows the prediction obtained when the harmonic weights were allowed

to be modified, and the network trained 15,000 more epochs. The final mean square error

by point was 0.0068. These results are similar to the ones showed at Figure 3.6.

 40

..

.
...

A B

No

G

So S1

Figure 3.5. The complex network. A, B and C are

harmonic generators; No. is the output node.

0 200 400 600 800 1000 1200 1400 1600
-0.4

-0.2

0

0.2

0.4

0.6

0.8
Original signal and prediction after 31,000 epochs. Running c-16

Figure 3.6. A prediction obtained by a complex network after

31,000 epochs.

 41

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

Return map of 1,536 points predicted by running C-16

x(i)x(i+ 10)

x(i+ 20)

Figure 3.7. Return map generated by the prediction

shown at Figure 3.6

 Figure 3.9 shows a surface plot of the 33-by-33 weight matrix of the network after

31,000 epochs. This matrix 320 ..., , == jiw jiW contains the connections from node i to

node j. Nodes are ordered as follows: the first 21 nodes belong to sub-networks; the next 7

are hidden nodes; the next 4 are pseudo-output nodes; and the last is the output node.

Notice in the figure that most of the activity is found at the weights located in the inverted

diagonal, which correnspond to the 3-node sub-networks. Almost no activity is shown in

the connections corresponding to recurrence among the hidden nodes.

 Even though this point-to-point prediction is not satisfactory, the network shows an

oscillatory, aperiodic output for large periods of time.

 42

0 200 400 600 800 1000 1200 1400 1600
-0.4

-0.2

0

0.2

0.4

0.6

0.8
Original and Predicted signal after 46,000 epochs. Running C-17

Figure 3.8. Prediction after 46,000 epochs

training all weights

0
10

20
30

40

0
10

20
30

40
-6

-4

-2

0

2

4

X-axisY-axis

Z-
axi
s

A surface plot of the weight matrix after 31,000
h

Figure 3.9. The weight matrix after 31,000 epochs.

 43

CHAPTER IV

PERFORMANCE METRICS AND

PREPROCESSING OF TRAINING SIGNALS

 This chapter presents the methodologies used to measure and compare the

performance of the predictors constructed in this work. It also includes a brief description of

the pre-processing algorithms that were applied to the training signals before using them to

feed the predictors. See also Appendix D for a listing of these metric values for all the training

signals used in this research.

4.1 Methodologies to Evaluate the Predictors.

 The performance of each predictor was measured using one or more of the following:

the Mean Squared Error, the maximum Lyapunov exponent of the output signal and a visual

inspection of the return maps generated by the output signal. Next is a description of such

metrics.

4.1.1. Mean Squared Error.

 The Mean Squared Error (MSE) generated by the a neural net predictor is calculated as:

∑
−

=

−=
1

0

21 S

t

nn tdty
S

MSE))()((, (4.1)

where S is the size of the trajectory being evaluated;)(tyn is the output of the node predicting

the signal; and)(tdn is the desired output of the predictor.

Even though MSE is a popular metric in approximation problems, it is not considered

the best performance measure for modeling of chaotic systems (Príncipe & Kuo 1994,

Abarbanel et al. 1990). A chaotic system may generate an infinite number of trajectories

depending upon its initial conditions; therefore, even when the predictor is learning the correct

information about the dynamic system, it is possible that it is not reproducing the same

trajectory that was used for training. For this reason, this metric should be used with

discretion.

4.1.2. Lyapunov Exponents

 44

The Lyapunov exponents (LE) are invariant measures of non-linear systems; they do not

change when the initial conditions of the trajectory are altered or due to small perturbations

(see section 2.7 for a full description of Lyapunov Exponents). It is expected that a predictor

map, if getting the essential characteristics of a dynamic system, will reproduce signals with

invariants similar to the training signal, even if its output signal does not look similar to the

training signal.

The method proposed by Wolf et al. (1985) was used in this work to calculate the

maximum LE of the signals generated by the predictors (see section 2.7.1 and Appendix A for

details). As pointed out in section 2.7.1, this numerical method needs to be used with caution,

because its correct convergence is very sensitive to input parameters, noise and the amount of

data available. This problem is a characteristic of most of the methods currently available to

calculate LE from data.

4.1.3 Return Maps

A return map is a plot representing the state space of the system (section 2.1 for a

detailed explication of return maps). Chaotic signals generate return maps with well-defined

but strange attractors, while random signals generate return maps without a defined shape.

The return maps of chaotic signals show parts where trajectories are infinitely close to each

other, known as injection regions. Return maps may be considered an invariant characteristic of

chaotic time series, because different trajectories of the same dynamic system generate similar

return maps.

Figure 2.7 shows a time series generated with the Mackey-Glass equation (equation

2.8), and Figure 2.8 shows its corresponding three-dimensional return map. Figure 4.1 (a)

shows an electrocardiogram and 4.1 (b) its corresponding return map.

4.2 Preprocessing of Training Signals

 The signals input to the predictors were modified for at least one of the following

procedures: normalization of their amplitudes to get a mean equal zero or a specific maximum

and minimum value; filtering of the signals to a specific frequency bandwidth; and conversion

of the signals to a smaller sampling rate. All of these procedures were applied in order to

simplify the work of the predictors. Also, the harmonic components for some signals were

 45

calculated in order to use this information in the design of some predictors. Following is a

brief explanation of how some of these procedures were carried out.

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

1.5

2

2.5 An ECG. File ecg2.fil

(a)

-1
0

1
2

3

-2
0

2
4

-1

0

1

2

3

A return map of an ECG signal using a lag of 10

x(i)x(i+ 10)

x(i+ 20)

Injection
Region

(b)

Figure 4.1. Return map of an electrocardiogram. (a) An ECG and
(b) its corresponding return map with a time lag = 10.

 Appendix D contains the return maps of all the signals used to train the experiments

described at Chapter 5. All of these return maps were calculated using a time lag of 10.

4.2.1 Filtering

 46

 Filtering is the process of converting a signal to another signal where a range of

frequencies has been removed. Following the recommendations of Abarbanel et al. (1993), a

band-pass filter with finite-duration impulse response (FIR filter) was applied to the signal in

order to reduce noise (see Proakis and Manolakis (1996) for a detailed description of FIR

filters).

 Electrocardiograms are signals with a broadband Fourier spectrum. Figure 4.3 shows

the frequency spectrum of the ECG shown at Figure 4.2, which was sampled to 360 Hz. This

signal will be referred as ecg2.dat (see Appendix D for a full description of all signals referred to

in this chapter).

Ecg2.dat was filtered by a FIR filter of order 40 with cutoff frequencies lying at 0.5 and

105 Hz. This upper limit was chosen after observing that, in ecg2.dat, the magnitude of

frequencies above 100 Hz. is less than 0.5. The filtered signal, called ecg2.fil, is shown at Figure

4.4; Figure 4.5 shows its frequency spectrum. The fundamental frequency of both ecg2.dat

and ecg2.fil is 1.4062 Hz.

 Figure 4.6 shows the signal ecg4.fil, which is the result of normalizing the magnitudes

of ecg2.fil to a minimum of –0.3122 and a maximum of 0.75.

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

1.5

2

2.5
Original signal ecg2.dat

Figure 4.2. An electrocardiogram (ecg2.dat) .

 47

0 180 360
0

5

10

15

20

25

30
Power spectrum of an unfiltered ECG (ecg2.dat)

Hertz

Figure 4.3. The frequency spectrum of ECG in Figure 4.2.

4.2.2 Sampling Rate Conversion

 Sampling Rate Conversion is the process of changing a signal from a given sampling

rate to another sampling rate . The ratio xF yF
x

y

F
F should be rational when using a digital

method for the conversion. If the sampling rate is reduced the process is called decimation.

0 100 200 300 400 500 600
-1

-0.5

0

0.5

1

1.5

2

2.5
Filtered signal ecg2.fil

Figure 4.4. A filtered version of ecg2.dat (Ecg2.fil)

 48

O Hz. 180 Hz. 360 Hz.
0

5

10

15

20

25
Power spectrum of f iltered signal (according to program)

Figure 4.5. The frequency spectrum of ecg2.fil

ecg4.fil

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257 273 289 305 321 337 353 369 385 401 417 433 449 465 481 497

n
Figure 4.6 Ecg4.fil: the signal ecg2.fil normalized in magnitude

 to the range [-0.3122,0.75]

When decimating a signal x(n) with spectrum X(w) by an integer factor of D, the

bandwidth of x(n) must first be reduced to:

D
F

F x
MAX 2

= , (4.2)

 to avoid the phenomenon of aliasing in the resulting signal (Proakis and Manolakis 1996).

 49

To decimate by a factor of 4 the time series ecg2.dat (Figure 4.2) which was originally

sampled to 360 Hz., the signal needs to be filtered to :

45
4*2

360
2

===
D

F
F X

MAX Hz.,

before the down sampling. Figure 4.7 shows the resulting signal, called ecg6n.su4. Ecg2.dat

had 512 points; ecg6n.su4 contains 128 points.

0 20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

2
File ecg6.su4. Downsampling of ecg6.fil by a factor of 4

Figure 4.7. Ecg6n.su4: ecg2.dat converted to a sampling frequency of 90 Hz.

4.2.3. Harmonic Decomposition

Spectral decomposition of a discrete-time aperiodic signal is carried out using the

Discrete Fourier Transform (DFT), defined for a signal with N components as follows:)(nx

X k x n e
n

N
j kn N() () /=

=

−
−∑

0

1
2π , for k=0, 1, 2,... N - 1. (4.3)

Its corresponding Inverse (IDFT) is defined by:

x n
N

X k e
k

N
j kn N() () /=

=

−
−∑1

0

1
2π n= 0, 1, 2,...N-1. (4.4)

The magnitude of X(k) is called the Power Spectrum Density (PSD) of the signal.

 50

Knowing the fundamental frequency of a signal, its harmonic components are defined

as sine and cosine functions with their frequencies being a factor of the fundamental. The

amplitudes and phases can also be obtained from the PDS. The addition of all harmonic

components of a signal will lead to the exact signal if the number of frequency components is

infinite. Figures 4.8 shows the signal obtained when adding 30 harmonics of ecg2.fil. Notice

that this figure roughly resembles the original signal; therefore, modeling ECG signals using

harmonics is not accurate enough to allow any prediction, unless that the number of

harmonics were large.

0 100 200 300 400 500

6

4

2

0

-2

-4

-6
600

8
this is the addition of the 30 harmonics (Phase

id d)

Figure 4.8. Approximation of ecg4.fil using 30 harmonics.

 51

CHAPTER V

RESULTS

This chapter describes the results obtained by several neural-net predictors built

applying some of the ideas detailed in previous chapters. Four kinds of predictors were

analyzed: modifications to the complex network model, predictors based on hybrid neural

networks, predictors based on feed-forward networks with feedback, and predictors based

on hybrid networks using harmonic generators and external inputs. Other experiments were

run, but these are used to summarize the results.

All the neural networks (feed-forward, hybrid and recurrent types) were trained using

an implementation of the algorithm back propagation through time described by Pearlmutter

(1990); Appendix B contains a detailed description of this algorithm. In all cases, the

training processes were stopped when the decrement in the cost function during the last 100

epochs became less than 1.0E-05.

 All programs were implemented using the programming language C++. Some of

the pre-processing software was developed using MatLab™. The electrocardiograms used

in the experiments were taken from the database produced by the Harvard-MIT Division of

Health Science and Technology Biomedical Engineering Center (Harvard 1992). Appendix

D contains a full description of all signals used in the experiments. This includes values of

their maximum Lyapunov Exponents, and plots of the time series, Fourier transforms and

return maps.

Table 5.1 describes at-a-glance each case; Table 5.2 contains a detailed description of

the input parameters used for training each predictor; Table 5.3 shows the calculations of

the performance metrics maximum Lyapunov Exponent (LE) and Mean Squared Error

(MSE) for most of the cases. In that table, as well as in other places, the term segment is used

to refer a trajectory of predicted points with the same size as the trajectory used to train the

network. Appendix C contains the connection matrices that fully specify the topology of the

hybrid and feed-forward networks used in some of the experiments. The results obtained by

the original complex model, described at section 3.3.1.4, will be referred to as Case C.0 in

this and next chapters. Case C.0 is used as a comparison point for some of the cases

reported in this chapter.

 52

 53

Table 5.1 A summary of the cases analyzed in this work.

CASE
NUMBER

DESCRIPTION

C.0 The original complex network (section 3.3.1.4): a fully
recurrent network with harmonic generators. No external
inputs.

C.1 The same complex network defined at C.0 but using a down-
sampled signal (section 4.2.2) for training.

C.2 The same complex network model defined at C.0, adding
teacher forcing (section 3.3.1.2) during training.

C.3
A and B

The complex network defined at C.0, adding time constants
weights (section 4.3.3). Part A used the same signal as C.0 for
training; part B used a down-sampled version of the signal.

H.1 A hybrid network using harmonic generators and pseudo-
output nodes, with no recurrent connections except in the
harmonic generators. The topology of this network is defined
in appendix C by the connection matrix A.

F.1
A and B

A feed-forward network that uses feedback during its
prediction state. Its topology is defined by connection matrix
B in appendix C. Part A predicts a sine function; part B
predicts an electrocardiogram.

F.2 Addition of recurrent connections to the network used at case
F.1.

K.1 A hybrid network built with harmonic generators and external
inputs, that uses feedback during prediction. No hidden layer
is included. Connection matrix C defines its topology.

K.2
A and B

A hybrid network built with harmonic generators and external
inputs, that uses feedback during prediction. A hidden layer is
included. Connection matrix D defines its topology. Part A
predicts an ECG; part B predicts Mackey-Glass data.

Table 5.2 Specifications of the neural net predictors implemented for each case.

CHARAC-TERISTIC
CASE

C.0

CASE

C.1

CASE

C.2

CASE C.3.A CASE C.3.B CASE

H.1

Type of connections

Fully recurrent Fully recurrent Fully recurrent Fully recurrent Fully recurrent Hybrid

I.D. of connection
topology (appendix C)

-- -- -- -- -- A

Total number of weights
to modify.

1,089 1,089 1,089 1,089+33=
1,122

1,089+33=
1,122

245+33
= 278

Total number of nodes

33 33 33 33 33 33

Number of input nodes

0 0 0 0 0 0

Number of output
nodes

5 5 5 5 5 5

Sigmoid coefficient

0.5 0.3 0.3 0.1 0.3 0.1

Delta t

0.1 0.6 0.6 0.3 0.1 0.3

Training file

Ecg4.fil Ecg6n.su4 Ecg6n.su4 Ecg4.fil Ecg6n.su4 Ecg4.fil

Size of trajectory

512 128 128 512 128 512

Number of harmonics

7 7 7 7 7 7

Total of epochs
executed

31,000 31,000 31,000 61,000 61,000 45,000

Final MSE

7.1E-3 1.47E-2 1.51E-2 7.4E-3 1.59E-2 7.95E-3

 55

Table 5.2 (continuation). Specifications of the neural net predictors implemented for each case.

CHARAC-TERISTIC
CASE

 F.1.A

CASE

F.1.B

CASE

F.2

CASE

K.1

CASE

K.2.A

CASE

K.2.B

Type of connections Feed-forward
with feedback

Feed-forward
with feedback

Feed-forward,
then recurrent

Hybrid with
external inputs

Hybrid with
external inputs

Hybrid with
external inputs

I.D. of connection
topology (appendix C)

B B B C D D

Total number of
weights to modify.

60 60 First 60; next
256

First 189+27 =
216; next
729+27 =
756

First 154+34 =
188; next
1,156+34 =
1,190

First 154+34 =
188; next
1,156+34 =
1,190

Total number of
nodes

16 16 16 27 34 34

Number of input
nodes

5 5 5 5 5 5

Number of output
nodes

1 1 1 1 1 1

Sigmoid coefficient

1.0 1.0 1.0 0.1 0.1 0.5

Delta t

1.0 1.0 1.0 0.3 0.3 0.5

Training file H360_7_5.dat
(Sine)

A0310z.fil
(ECG)

A0310z.fil
(ECG)

Ecg4.fil Ecg4.fil Good8.
dat (Mackey)

Size of trajectory

104 475 475 512 512 210

Number of harmonics

0 0 0 7 7 7

Total of epochs
executed

10,000 50,000 100,000 50,000 30,000 31,000

Final MSE

2.0E-3 1.4E-3 8.4E-4 3.10E-3 2.35E-3 8.82E-1

 56

 57

Table 5.3 Performance metrics MSE and LE for selected cases.

CHARAC-

TERISTIC

CASE

C.0

CASE

C.1

CASE

C.3.

CASE

H.1

CASE

F.1B

CASE

F.2

CASE

K.1

CASE

K.2.A

CASE

K.2.B

Training file Ecg4.fil

Ecg6n.su4 Ecg4.fil Ecg4.fil A0310z.fil A0310z.fil Ecg4.fil Ecg4.fil Good8.dat
(Mackey-
Glass)

Size of
trajectory

512 128 512 512 475 475 512 512 210

MSE after
Training

7.1E-3 1.47E-2 7.4E-3 7.95E-3 1.4E-3 8.4E-4 3.10E-3 2.35E-3 8.8E-1

LE of training
signal

3.23
±0.27

10.77
±2.94

3.23
±0.27

3.23
±0.27

19.34
±5.25

19.34
±5.25

3.23
±0.27

3.23
±0.27

0.0334
±0.003

LE of first
predicted
segment *

6.53
±4.54

38.64
±10.53

7.76
±2.09

12.53
±0.85

19.7
±5.12

18.05
±5.66

4.47
±0.33

4.88
±2.21

0.0374
±0.006

LE of first 4
predicted
segments *

1.63
±0.75

1.90
±1.04

3.92
±1.11

2.96
±0.52

INFINITE INFINITE 5.09
±1.14

7.52
±1.95

0.0845
±0.005

* A segment is a trajectory of predicted points with the same number of points as the trajectory used to train the signal

5.1 Modifications to the Complex Model

Several modifications were tried for Case 0, in an attempt to improve its learning

speed and prediction ability. These modifications include: training the network with a

down-sampled signal, the use of teacher forcing during training, and adjusting the time-

constant weights. Each case is described next.

5.1.1. Case C.1. Down-sampling of the training signal

 The training algorithm backpropagation through time has a complexity of ,

where n is the number of nodes in the network and s is the size of the training set

(trajectory). Therefore, a reduction in the size of the trajectory could lead to faster training,

provided that no information is lost. Besides, it was hoped that removing noise and

retraining only the important features of the signal would make it easier for the network to

learn.

)(snO ⋅2

 Considering this, the training signal used at case C.0 (ecg4.fil) was down-sampled by

a factor of 4 using the procedures described at section 4.2. Then the experiment was

repeated keeping the rest of parameters similar (see Table 5.2). After 31,000 epochs the

MSE was 1.47E-2. This resulted in a value larger than the MSE obtained at case C.0

(7.1E-3).

Figure 5.1 shows the first segment of the predicted signal (128 points), obtained after

that the training was stopped; and it compares it with the expected one. Figure 5.2 shows a

plot of the long-term, point-by-point prediction obtained at this case; Figure 5.3 shows a

return map of such a prediction.

The LE of the first predicted segment was 38.64 ± 10.53. This value is far away of

the LE of the corresponding segment in the training signal, which is 10.77. The same

difference is noticed with the LE of 4 segments of prediction, which was 1.90 ± 1.04.

Therefore, comparing the MSE, the LE and the return maps of cases C.0 and C.1, no

improvement is noticed due to down-sampling.

 57

Case C.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

prediction
expected

Figure 5.1. First 128 points predicted after learning in case C.1,

compared with training signal. MSE = 7.1E-3.

Case C.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505

time

prediction
expected

Figure 5.2. Prediction of 520 points obtained at Case C.1.,

compared with training signal.

 58

-0.4
-0.2

0
0.2

0.4

-0.4
-0.2

0
0.2

0.4
-0.4

-0.2

0

0.2

0.4

Return map for Case C.1

x(i)x(i+ 10)

x(i+ 20)

Figure 5.3. Return map of 4 segments of prediction

 generated at case C.1.

5.1.2 Case C.2. Training Using Teacher Forcing

 As described in Appendix B, the dynamic of the neurons used at the complex

network is defined by:

dy
dt

y xi
i i= − + +σ () Ii , (5.1)

where:

j
j

iji ywx ∑= , . (5.2)

Williams and Zipser (1989) (section 3.3.1.2) proposed that during training, the

calculation of the total input to neuron i (equation 5.2) should be carried out using the

desired value for node i, if available, instead of the actual output of such node.

This change was implemented for the complex network described at case C.1 using

the down-sampled signal ecg6n.su4 for training. After 31,000 epochs, the MSE was 1.51E-2,

slightly larger than in case C.1 (1.47E-2) where the same signal was used.

 59

Figure 5.4 shows the prediction of the first segment after training; Figure 5.5 shows

the long-term prediction of 4 segments; and Figure 5.6 shows the return map generated by

this prediction.

Comparing the MSE and return maps of cases C.1 and C.2, no improvement is

noticed due to teacher forcing.

First 128 predicted points. Case C.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

n

prediction
expected

Figure 5.4. First 128 points predicted after learning for case C.2,

compared with training signal. MSE = 1.47E-2.

 60

Case C.2.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505

n

prediction
expected

Figure 5.5. Prediction of 4 segments obtained at Case C.2,

compared with training signal.

-0.4
-0.2

0
0.2

0.4

-0.4
-0.2

0
0.2

0.4
-0.4

-0.2

0

0.2

0.4

Return map of case C.2.

x(i)x(i+ 10)

x(i+ 20)

Figure 5.6 A return map generated by the prediction of case C.2.

 61

5.1.3. Case C.3. Time-Constant Weights

Pearlmutter (1989) pointed out that the change of a neuron over time (equation

5.1), can be driven by an adapting parameter called time constant. Equation (5.1) becomes:

iy

iii
i

i Ixy
dt
dyT ++−=)(σ , (5.3)

which, solving for and written in discrete form is: iy

i
i

i
i

i
i

i I
T

ttx
T

ttty
T

tty Δ
+

Δ
+Δ−⎥⎦

⎤
⎢⎣
⎡ Δ
−=))(()()(σ1 . (5.4)

Using this dynamic, the equations to train the weights and using back

propagation through time (see Appendix B) are:

jiw , iT

∑ ⎥⎦
⎤

⎢⎣
⎡

Δ
Δ−−Δ

−=
t t

ttiytiytiz
iT
tiTiT]][[]][[*]][[
][

][:][η , (5.5)

,]][[*])][[(*]][[
][

]][[:]][[

∑ ′Δ
−=

t

tiztjxtiy
jT
t

jiwjiw

σ
η (5.6)

],][[])][[(

]][[*]][[]][[

ttjzttjx
T
wt

ttiz
T

tttitetiz

j j

ij

i

Δ+Δ+′Δ+

Δ+⎥⎦
⎤

⎢⎣
⎡ Δ
−+Δ+Δ=

∑ σ

1
 (5.7)

for all i, j = 0 to n-1; where n is number of neurons in the network. These changes were

implemented for the complex network described at case C.0, using signal ecg4.fil

(Experiment A) and signal ecg6n.su4 (Experiment B).

In experiment A, an MSE of 7.4E-3 was reached after 61,000 epochs. Figures 5.7 to

5.9 plot the obtained prediction of first segment, the prediction of four segments and the

return map of the long-term prediction.

 The MSE of C.3.A is slightly larger than the MSE of C.0 (7.1E-3). However, the

attractor in the return map of case C.3.A (Figure 5.9) presents a better defined geometrical

shape than the one in the return map of C.0 (Figure 3.7). Notice also in Figure 5.8 (a) that

the time series of points 512 to 1,024, which correspond to the third and fourth segments of

prediction, have a shape more similar to a ECG than the corresponding segments at case C.0

(Figure 3.6). This uniformity is also well noticed in the return maps of each segment:

 62

Figures 5.10 (a) to (d) plot the return maps of segments of 512 points each, corresponding to

the prediction obtained by C.3.A. Compare these figures with Figures 5.11 (a) to (d), which

show the same segments obtained at case C.0. Notice that the fourth segment in both

figures is completely different to the first segment, due to the error accumulated by the long-

term prediction.

 Figure 5.8 (b) shows a grid with vertical lines separated the same distance as the first

R-peaks of the predicted signal. Notice that almost 5 of the R-peaks1 of the prediction

signal keep a constant time period; then the shape of ECG is lost.

 The maximum LE of the first predicted segment was 7.76 ± 2.9; and the one

corresponding to four segments was 3.92±1.11. The maximum LE of the training signal is

3.23 ± 0.27. When analyzing these numbers, case C.3.A. seems to have captured the

dynamic of the system better than case C.0, given the fact that its LE for one and four

segments are nearer to the expected value.

 For case C.3.B where a down-sampled signal was used, an MSE of 1.59E-2 was

obtained after 61,000 epochs. Figures 5.12 and 5.13 show the prediction of one and four

segments. Figure 5.14 shows the corresponding return map. The return map does not

present any uniformity in the geometrical shape of the attractor neither did the long-term

prediction yield better results than in case C.0.

 Therefore, the use of adaptive time constants in the complex model greatly improved

the performance of its long-term prediction, when training was done using the original

signal. However, it did not show any improvement when using a down-sampled signal.

1 See Figure 1.1 to identify the peaks of an ECG

 63

Learning . R unning c6 -11

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1

1 19 37 55 73 91 109 127 145 163 181 199 217 235 253 271 289 307 325 343 361 379 397 415 433 451 469 487 505

n

pred iction
expected

Figure 5.7 First 507 points learned for case C.3.A.,

compared with training signal

Prediction of 2,048 points.

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 92 183 274 365 456 547 638 729 820 911 1002 1093 1184 1275 1366 1457 1548 1639 1730 1821 1912 2003

n

prediction
expected

Figure 5.8 Results of Case C.3.A. (a) Prediction of 2,048 points

obtained at Case C.3.A, compared with training signal

 64

Prediction of 2,048 points. Case C.3.A.

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

1 88 175 262 349 436 523 610 697 784 871 958 1045 1132 1219 1306 1393 1480 1567 1654 1741 1828 1915 2002

n

Figure 5.8. (b) Time periods in the prediction obtained at Case C.3.A.

 65

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

A return map for prediction in case C.3.A

x(i)x(i+ 10)

x(i+ 20)

Figure 5.9. A return map generated for prediction at case C.3.A

 66

-0.1
0

0.1
0.2

-0.1

0

0.1

0.2
-0.1

0

0.1

0.2

from 1 to 512

x(i)x(i+ 10)

x(i+ 20)

(a)

-0.1
0

0.1
0.2

-0.1

0

0.1

0.2
-0.1

0

0.1

0.2

from 513 to 1024

x(i)x(i+ 10)

x(i+ 20)
(b)

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

from 1025 to 1536

x(i)x(i+ 10)

x(i
+
20
)

(c)

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2

-0.1

0

0.1

from 1537 to 2048

x(i)x(i+ 10)

x(i
+
20
)

(d)

Figure 5.10. Return maps of segments of prediction generated
by case C.3.A. (a) first segment, points 1 to 512; (b) second
 segment, points 513 to 1024; (c) third segment, points
1,025 to 1,536; (d) fourth segment, points 1,537 to 2,048

 67

-0.1
0

0.1
0.2

-0.1

0

0.1

0.2
-0.1

0

0.1

0.2

From 1 to 512

x(i)x(i+ 10)

x(i+ 20)

(a)

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2

-0.1

0

0.1

From 513 to 1024

x(i)x(i+ 10)

x(i+ 20)

(b)

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

From 1025 to 1536

x(i)x(i+ 10)

x(i+ 20)

(c)

Figure 5.11. Return maps of segments of prediction generated

by case C.0, (a) first segment; (b) second segment;
(c) third segment.

 68

Learning. Running c7-3c

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126

n

prediction
expected

Figure 5.12. First 123 points learned for case C.3.B. MSE = 1.59E-2.

Prediction of 512 points. Running c7-3c

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501

n

prediction
expected

Figure 5.13. Long-term prediction of 512 points obtained at Case C.3.B.

 69

-0.2
0

0.2
0.4

-0.2

0

0.2

0.4
-0.2

-0.1

0

0.1

0.2

0.3

A return map for prediction generated at case C.3.B

x(i)x(i+ 10)

x(i
+
20
)

Figure 5.14 A return map generated for the prediction at case C.3.B.

5.2. A Predictor Based on a Hybrid Neural Network (Case H.1)

 As specified at Table 5.2, the complex network has 1,089 weights to be adapted by

the training algorithm. This number is large and hence difficult to adjust considering the

amount of information available in the training signal.

Figure 5.15 shows a surface map of the weight matrix obtained after training at case

C.3.A. Notice that the activity in the recurrent connections between nodes in the same layer

and between harmonic generators and other nodes is minimal, compared to the rest of

weights (see section 3.3.1.4 for a description of the weights organization). Based on this

observation, and in an attempt to find a model with less adaptive parameters, a hybrid

network was designed with harmonic generators in the first layer, feed-forward connections

from first to hidden layer, and feed-forward connections from hidden to last layer. No

recurrent connections were included, except the ones in the harmonic generators. The

network is called hybrid because it contains both feed-forward and a few recurrent

connections. As in the complex model, the last layer contains several pseudo-output nodes

and one output node. There are no external inputs.

 70

0
10

20
30

40

0
10

20
30

40
-10

-5

0

5

10

15

Weights Generated at Case C.3.A

X-axisY-axis

Z-axis

Figure 5.15. A surface map of the weights after training at case C.3.A.

Figure 5.16 shows this hybrid network; for simplicity, not all the connections are

drawn there. Section C.1 contains the connection matrix fully describing this topology. As

in the complex network, the harmonic generators are trained to produce the first 7

harmonics of the training signal.

 A hybrid network with 7 harmonic generators, 7 hidden nodes, 4 pseudo-output

nodes and 1 output node was trained to learn the signal ecg4.fil. After 45,000 epochs, this

network reached a final MSE of 7.95E-3. Figures 5.17 and 5.18 show the results obtained

for short and long-time prediction for this case. Figure 5.19 shows a return map of 2,048

points obtained by this architecture.

 71

Output node

Figure 5.16. The hybrid network used at case H.1, with 7 hidden nodes,

4 pseudo-output nodes and 1 output node.

Case H.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 19 37 55 73 91 10
9

12
7

14
5

16
3

18
1

19
9

21
7

23
5

25
3

27
1

28
9

30
7

32
5

34
3

36
1

37
9

39
7

41
5

43
3

45
1

46
9

48
7

50
5

time

va
lu

e prediction
expected signal

Figure 5.17. The first segment generated after learning for Case H.1.

MSE = 7.9E-3

 72

Case H.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 104 207 310 413 516 619 722 825 928 1031 1134 1237 1340 1443 1546 1649 1752 1855 1958

expected signal
prediction

Figure 5.18. Prediction of 4 segments obtained at Case H.1

-0.1
0

0.1
0.2

-0.1

0

0.1

0.2
-0.1

-0.05

0

0.05

0.1

0.15

Return map of Case H.1

x(i)x(i+ 10)

x(i+ 20)

Figure 5.19. A Return Map of the prediction obtained at Case H.1

 73

 When comparing these results with the ones obtained by case C.3.A, the following is

noticed: the MSE of case H.1 is slightly larger than the one in case C.3.A. The long-term

prediction obtained by case H.1 (Figure 5.18) looks more “periodical,” and with all their R

and T-peaks with similar amplitudes, which resembles little the ECG shape. The attractor

shown at the return map of case H.1 (Figure 5.19) does not resemble the expected shape for

an ECG.

 The maximum LE of the first predicted segment was 12.53±0.85; for four segments

was 2.96±0.52; the one for the training signal is 2.23±0.27. Notice the strong difference

between the values obtained for the training and first predicted signal. It is important to

point out that the reason for this difference, besides the fact that the network is not

representing correctly the dynamic of the system, may be also that the numerical algorithm

calculating the LE is reaching its end before that a convergence state is reached. This is a

drawback found in this method for calculation of LE.

 As explained before, this model contains information about harmonics but no other

kind of recurrence. The poor results obtained here, compared with the ones obtained by

cases C.0 and C.3.A, show that recurrent connections play a very important role in modeling

a dynamical system, even when their values are small in magnitude. This is because the

weights associated to recurrent connections allow the network to learn how to “correct

itself” from its own mistakes generated at past times.

5.3 Predictors Based in Feed-Forward Networks

 Section 2.7.1.2 mentioned the ability of feed-forward neural networks to

approximate a function from a set of observations. Such approximation, as shown by

Gencay and Dechert (1992), is topologically similar to the dynamical system generating the

observations; it can be used to calculate the Lyapunov exponents of such a system. The

system imbedded in this kind of neural network has the same invariants as the original

system, provided that such representation is accurate enough.

Using this idea, a multi-layer, feed-forward network with external inputs (Figure

5.20) was used to construct a predictor; Topology B at section C.2 fully describes their

connections. This network was trained to approximate a signal; then its ability for long-term

prediction was evaluated. The predictor works as follows: during the learning state, it

 74

receives as external inputs points of the training signal at times t-1, t-2 … t-k, and it is

trained to approximate the value of point s(t) (Figure 5.21 (a)). During the prediction state

the network may receive external inputs coming from observations of the system or it may

receive feedback of its own past predictions when no more observations are available (Figure

5.21 (b)). Notice that this is not a recurrent network, because neither any weights are

attached to the feedback, nor any other information about the past output values of the

nodes is involved during training.

This architecture was tested first with a very simple signal, a sine function, and then

with an ECG. The network used in both experiments had 5 input nodes, 10 hidden nodes

and 1 output node.

 I1 I2 I3 I4 I5

)(tv

Figure 5.20. The feed-forward network with external inputs

used at cases F.1, A and B.

 75

 s(t-5) s(t-4) s(t-3) s(t-2) s(t-1)

Feed-forward
Neural network

V(t) is trained to
reproduce the desired
output s(t)

V(t)

(a)

V(t)

Feed-forward
Neural network

Right- shift register

V(t-1)V(t-5)

(b)

Figure 5.21. A feed-forward predictor: (a) Training process:

s(t) is the training signal; v(t) is the actual output of the
network. (b) point-by-point prediction

5.3.1. Case F.1.A: Prediction of a sine function using a
 feed-forward network

 First, this architecture was tested to predict a sine function. After 10,000 epochs, the

MSE was 2.0E-3. Figure 5.22 shows the first 99 predicted points when using the training

signal to feed the network; Figure 5.23 shows a long-time prediction of 1,500 points, where

feedback of its own outputs was provided to the network. This long-time prediction

generated very good results, except for a slight shift in the phase of the predicted signal,

which is almost unnoticeable.

 76

Case F.1.A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97

prediction
expected signal

Figure 5.22. First 99 predicted points using original observations

as input. Case F.1.A. MSE = 2.0E-3.

Case F.1.A

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 73 145 217 289 361 433 505 577 649 721 793 865 937 1009 1081 1153 1225 1297 1369 1441

prediction
expected value

Figure 5.23. Long-time prediction of a sine function

using feedback, compared with expected values. Case F.1.A.

 77

5.3.2. Case F.1.B: Prediction of an ECG Using a
Feed-forward Network

The same feed-forward net used in case F.1.A was trained in this case to reproduce

and predict an ECG. The resulting MSE after 50,000 epochs was 1.4E-3. Figure 5.24 shows

the first 470 points predicted when using original observations as external inputs. This next-

point prediction works very well. Figure 5.25 shows the absolute error by point obtained

during the prediction of this segment. The error in most of the points is small, except during

the prediction of the R-peaks.

Figure 5.26 shows a long-term prediction from points 460 to 660. The first 10

points in this plot were calculated using inputs coming from observations; from point 471

ahead the network received feedback of its own calculated values. The prediction resulted in

a periodical signal oscillating approximately to a frequency of 142 Hz., without any

resemblance to the ECG. Notice that the amplitude at some points reached values greater

than 10, while the expected highest values for this ECG signal is 0.75.

Figure 5.27 shows the absolute error-by-point obtained when predicting points 471

to 479, which required to feed the network with one or more of its own outputs; after the 6th

point, the error started growing fast

Therefore, this network was unable to realize any long-term prediction successfully,

regardless of its excellent capability for next-point prediction.

 78

Case F.1.B

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 20 39 58 77 96 115 134 153 172 191 210 229 248 267 286 305 324 343 362 381 400 419 438 457

prediction
expected signal

Figure 5.24. First 470 predicted points of an ECG. Case F.1.B

MSE = 1.4E-3

Case F.1.B.
Absolute error by point. First 470 points

0

0.05

0.1

0.15

0.2

0.25

0.3

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

37
8

39
1

40
4

41
7

43
0

44
3

45
6

46
9

Point number

A
bs

ol
ut

e
er

ro
r

Figure 5.25. Absolute error by point for the first 470 predicted points.

Case F.1.B

 79

Case F.1.B

-15

-10

-5

0

5

10

15

449 469 489 509 529 549 569

prediction
expected signal

Figure 5.26. Predicted points 460 to 660. Case F.1.B.

Case F.1.B. Absolute error by point. First 10 points
 using feedback. Points 471-479

0

1

2

3

4

5

6

7

8

471 472 473 474 475 476 477 478 479

Point number

A
bs

ol
ut

e
er

ro
r

Figure 5.27. Absolute error by point for points 471-479. Case F.1.B

 80

5.3.3. Case F.2. Addition of Recurrent Connections to

not

eral

er to give it the ability to represent the

tempor

r

 network was

convert

en

ed

growing; from that point ahead, the outputs of the network

grew ex

rt time

fashion, but the network failed to realize any meaningful long-term prediction.

 a Feed-forward Network

 It is obvious from the results of case F.1.B that a feed-forward net, by itself, is

able to capture the dynamics of the system generating the training signal, when sev

frequency components are involved. In an attempt to fix this problem, recurrent

connections were added to that network, in ord

al information imbedded in the signal.

First, a feed-forward net was fully trained and the value of the minimum reached

error was recorded. Next, the network was trained again using the same initial weights, but

this time the training was stopped when the error reached approximately ½(maximum erro

+ minimum error). This was done in order to induce in the weights of the network some

information about the signal, and consequently its Lyapunov exponents, but leaving some

learning possibilities to the recurrent network. After that, the feed-forward

ed to fully-recurrent and trained until it reached a local minimum.

The feed-forward network used here is the same as at case F.1: 5 input nodes, 10

hidden nodes and 1 output node (Figure 5.20). Training was stopped after 92 epochs wh

MSE was 0.0029. Next, recurrent connections were added to make it a fully-connected

recurrent network with 5 input nodes. The training continued 100,000 more epochs; at this

point the MSE was 8.34E-4. Figure 5.28 shows the first 470 points predicted when original

observations were given as inputs; Figure 5.29 shows the absolute error-by-point generat

during the prediction of this segment. This next-point prediction performed excellent.

Figure 5.30 shows the error-by-point generated when predicting points 471 to 479, which

were calculated using one or more outputs of the network as external inputs. After the 8th

predicted point, the error starts

ponentially with time.

Comparing these results with the ones obtained by case F.1, it is clear that the

recurrent connections gave to the network some ability to predict better in a sho

 81

Learning

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 18 35 52 69 86 103 120 137 154 171 188 205 222 239 256 273 290 307 324 341 358 375 392 409 426 443 460

ext2_10
expected

Figure 5.28. First 470 points predicted in case F.2.

MSE = 8.4E-4

Case F.2
Absolute error by point. First 470 points

0

0.005

0.01

0.015

0.02

0.025

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

point

er
ro

r

Figure 5.29. Absolute error by point for first segment predicted in case F.2

 82

Case F.2. Absolute error by point. First 10 points
 using feedback. Points 471-479.

0

0.05

0.1

0.15

0.2

0.25

471 472 473 474 475 476 477 478 479

Point number

A
bs

ol
ut

e
er

ro
r b

y
po

in
t

Figure 5.30. Absolute error by point for points 471-479. Case F.2

5.4 Case K: Predictors Based in Hybrid Networks Using Harmonic
Generators and External Inputs

From past experiments it was observed that feed-forward networks are able to

approximate functions very well, provided that exact information about the past of the signal

is given. However, they are not well suitable for long-term prediction, probably because of

the error accumulated due to the feedback of non-exact, predicted values used as external

inputs. Feed-forward networks contain no memory, they can go only to fixed points. It was

also shown that harmonic generators made with a 3-node fully-recurrent neural network are

able to keep oscillations for long periods of time and, therefore, they allow accurate long-

term prediction without need of external inputs. The complex network model showed that

such generators can be combined to produce signals with many frequency components.

However, the signals generated by the whole recurrent network do not reproduce the peaks

of the signals with enough accuracy to be useful for long-term prediction.

 83

Based on this observations, two kinds of predictors were built combining the ideas

of harmonic generators and external inputs. One of them did not include any hidden nodes;

the other include a hidden layer to allow for a better internal representation, but with a

corresponding cost in learning. In both experiments, the network had 5 external inputs and

7 harmonic generators.

These predictors were trained in a way similar to the one used in case F.2: first an

“almost feed-forward” network was partially trained, in order to induce in the system

information about the Lyapunov exponents of the signals; then the network was converted

to a fully recurrent network and trained until it reached a local minimum. Also, similar to

case F.2, feedback of the values calculated by the network is required during the long-term

prediction process, because a time is reached when original observations are not available

anymore to feed the network (see figure 5.21). The obtained results are described next.

5.4.1. Case K.1: A Predictor with no Hidden Nodes

 Figure 5.31 shows the network used in this case. For simplicity not all connections

are drawn in the figure but section C.3 fully describes its topology.

In the first phase of prediction, the network trained during 10,000 epochs. At this

point the MSE was 3.67E-3. Next all recurrent connections were added and the network

trained 20,000 more epochs, reaching an MSE of 3.10E-3. Figure 5.32 shows the first 507

points (one segment) predicted using original observations as inputs. Figure 5.33 (a) shows a

long term prediction of 4 segments, compared with the training signal.

In figure 5.33 (b) the same prediction is plot in a grid with vertical lines separated the

same distance as the two first R-peaks of the predicted signal. The period of the signal keeps

almost the same for the 4 cycles; but the amplitudes of the peaks R and T are not as

expected.

The maximum LE of the first predicted segment was 4.47±0.33; the one

corresponding to four segments was 5.09±1.14; the maximum LE of the training signal is

3.23±0.27. These results are the best of all experiments executed in this research with

respect to accuracy in the Lyapunov exponents.

Figure 5.34 shows the return map of 4 predicted segments. Even though its shape is

not as the expected, some regularity in the geometrical shape is noticed in the attractor.

 84

s(t-5) s(t-4) s(t-2) s(t-1)

v(t)

Figure 5.31. A neural network with harmonic generators,

 external inputs and no hidden layers used at case K.1

Case K.1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 22 43 64 85 106 127 148 169 190 211 232 253 274 295 316 337 358 379 400 421 442 463 484 505

prediction
expected signal

Figure 5.32. First 507 predicted points obtained at case K.1

MSE = 3.10E-3

 85

Prediction

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 89 177 265 353 441 529 617 705 793 881 969 1057 1145 1233 1321 1409 1497 1585 1673 1761 1849 1937 2025

expected
predicted

Figure 5.33. Results of case K.1. (a) Four segments predicted by case K.1.

 86

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

1 129 257 385 513 641 769 897 1025 1153 1281 1409 1537 1665 1793 1921

R

R

R

RR
R

R
P

T
TTTTTT

Figure 5.33 (continuation). (b) Time periods in the prediction obtained at case K.1

 87

-0.1
0

0.1
0.2

0.3

-0.1
0

0.1
0.2

0.3
-0.1

0

0.1

0.2

0.3

Return map. Case K.1

x(i)x(i+ 10)

x(i+ 20)

Figure 5.34. Return map of 4 predicted segments. Case K.1

5.4.2. Case K.2.A A predictor with hidden layers for ECG

 In this case a hidden layer of 5 nodes was included in the network described before,

and trained to model an ECG signal. Figure 5.35 shows this network; its corresponding

connection matrix is given at section C.4.

 This network was trained for 10,000 epochs, obtaining a MSE of 3.14E-3. Next, it

was converted to a fully-recurrent network and trained 20,000 more epochs. The MSE

reached a value of 2.35E-3. Figure 5.36 shows the first 507 points (one segment) predicted

when using original observations as external inputs; Figure 5.37 (a) shows a long-term

prediction of 4 segments. Figure 5.37 (b) shows the prediction with vertical lines separated

to the same distance as the first R-peaks. Notice the shift of the signal after the second

segment.

 Figures 5.38(a) to (d) show the Fourier transform of each consecutive segment

predicted by the network. The first one (a), shows some resemblance to the FFT of the

training signal (see figure D.3). However, the rest of the FFT do not contain several of the

frequency components presented at figure D.3.

 88

 Figure 5.39 shows the return map of the prediction of 4 segments; Figures 5.40 (a) to

(d) show the return maps of each one of these 4 segments. Notice that only the return map

corresponding to the first segment resembles in some way to the geometry expected in a

return map of an ECG.

Comparing these results with case C.3.A, it is noticed that, during the prediction of

the first 507 points in case K.2.A, the amplitude of their peaks is larger than in case C.3.A,

which is an advantage of K.2.A over C.3.A. However, after the first predicted segment, in

K.2.A the shape of an ECG is lost, probably due to the inaccuracy of the output values

calculated by the network and given as feedback to be used as external inputs when original

observations are not available anymore.

s(t-5) s(t-4) s(t-3) s(t-2) s(t-1)

Figure 5.35. A network with harmonic generators, external
inputs and a hidden layer. Topology D (section C.4)

 89

Learning

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381 401 421 441 461 481 501

prediction
expected signal

Figure 5.36. First 507 points predicted at case K.2.A.
MSE = 2.35E-3.

Case K.2

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1 94 187 280 373 466 559 652 745 838 931 1024 1117 1210 1303 1396 1489 1582 1675 1768 1861 1954 2047

n

expected
prediction

Figure 5.37. Results of Case K.2.A. (a) A prediction of 2,048 points. Case K.2.A

 90

-0 .2

-0 .1

0

0.1

0.2

0.3

0.4

1 114 227 340 453 566 679 792 905 1018 1131 1244 1357 1470 1583 1696 1809 1922 2035

n

Figure 5.37 (continuation). (b) Time periods in the prediction obtained at case K.2.A

 91

 92

0 180 360
0

5

10

15

20

25

30

35

40
FFT of first segment of prediction in case K.2.A

Hz.

(a)

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9
FFT of segment with points 513-1024 of prediction
13

(b)

Figure 5.38. FFT of four consecutive segments in prediction K.2
(a) points 1-512, (b) points 513-1,024

 92

0 180 360
0

1

2

3

4

5

6

7

8

9
FFT of segment with points 1025-1536 of prediction
13

(c)

0
0

2

4

6

8

10

12
FFT of second predicted segment at case K.2.A

0 180 360 Hz.

(d)

Figure 5.38 (cont.). FFT of four consecutive segments in prediction K.2.A
(c) points 1,025-1,536; (d) points 1,537-2,048

 93

-0.2
0

0.2
0.4

-0.2

0

0.2

0.4
-0.2

0

0.2

0.4

Return map of 2,048 points predicted in case K.2.A

x(i)x(i+ 10)

x(i+ 20)

Figure 5.39. Return map of four segments predicted at case K.2.A.

-0.2
0

0.2
0.4

-0.2

0

0.2

0.4
-0.2

0

0.2

0.4

Return map of first predicted segment. Case K.2.A

x(i)x(i+ 10)

x(i+ 20)

(a)

Figure 5.40. Return maps of segments of 512 points each, predicted at
case K.2.A. (a) points 1-512

 94

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

Return map of points 513-1,024. Case K.2.A

x(i)x(i+ 10)

x(i+ 20)

(b)

-0.2
-0.1

0
0.1

0.2

-0.2
-0.1

0
0.1

0.2
-0.2

-0.1

0

0.1

0.2

Return map of points 1,025 to 1536. Case K.2.A

x(i)x(i+ 10)

x(i+ 20)

(c)

Figure 5.40 (cont.). (b) points 513 to 1,024; (c) points 1025 to 1536

 95

-0.2
0

0.2
0.4

-0.2

0

0.2

0.4
-0.2

-0.1

0

0.1

0.2

0.3

Return map of points 1,536 to 2,048. Case K.2.A

x(i)x(i+ 10)

x(i+ 20)

(d)

Figure 5.40 (cont.). (d) points 1,537 to 2,048

5.4.3. Case K.2.B A predictor with hidden layers for Mackey-Glass Data

 The same network described in past section was used to predict data generated by

the Mackey-Glass equation (equation 2.8), which is chaotic., but simpler than an

electrocardiogram. In this example, 210 points of the data were used for training. After

31,000 epochs, an MSE of 8.8E-1 was reached and the network got stuck in a local

minimum. Figure 5.41 shows the first segment of prediction. Figure 5.42 shows the

prediction of 4 segments, together with the expected signal for the same number of

segments. The prediction resembles the expected signal, even though it is shifted in time.

However, this is expected because the signal is chaotic.

 The maximum LE of first predicted segment was 0.0374±0.006; the one

corresponding to four segments was 0.0845±0.005; the maximum LE of the training signal is

 96

0.0334±0.003. These results show an excellent representation of the dynamics of the system

during the first predicted segment, and a good representation during the prediction of four

predicted segments.

Figure 5.43 shows the return map of this prediction. The return map of the

predicted signal resembles the shape of the attractor expected for this kind of data (see

Figure 2.8). Therefore, this predictor seems to be acquiring the dynamic embedded in this

chaotic data set, and probably, as in case K.2.A., the inaccuracy of its outputs is due to the

feedback of inexact values to feed the network.

First 205 predicted. Case K.2.B

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161 169 177 185 193 201 prediction
expected

Figure 5.41. First segment of prediction for case K.2.B.

 97

Pred ictio n o f 4 seg m ents . C ase K .2 .B

-1

-0 .8

-0 .6

-0 .4

-0 .2

0

0 .2

0 .4

0 .6

0 .8

1 30 59 88 117 146 175 204 233 262 291 320 349 378 407 436 465 494 523 552 581 610 639 668 697 726 755 784 813 expected
p red icted

Figure 5.42. Four segments of prediction for case K.2.B.

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

Return map of 820 points in prediction of case K.2.B

x(i)x(i+ 5)

x(i+ 10)

Figure 5.43. Return map of four predicted segment in case K.2.B.

 98

CHAPTER VI

CONCLUSIONS

 The main objective of this research was to include information about the Lyapunov

exponents of a chaotic time series in a complex network (a recurrent neural network built

with harmonic generators), as a way to improve the long-term prediction capabilities of the

network when trained using electrocardiograms. Harmonic generators are 3-node fully-

connected recurrent neural networks previously trained to generate sine functions with

specific frequencies; Lyapunov exponents are invariant measures of the exponential

divergence of several trajectories of a dynamical system. Electrocardiograms are time series

with positive maximum Lyapunov exponents which make them chaotic if not at least very

complex and hence, a real challenge for prediction.

It is known that a function approximated by a feed-forward network can contain the

same Lyapunov exponents as the unknown dynamical system that generated the

observations used to train such a network (Gencay and Dechert 1992). Using this idea, the

concept of Lyapunov exponent was implanted in a complex predictor, combining the

topology of feed-forward networks with harmonic generators.

 The main conclusion of this research is that the information embedded by the

Lyapunov exponents when implanted in a complex network using this fashion is not enough

to allow this network to completely learn the dynamics of the system. However, it was also

found that such information is useful in some way, as it is explained below.

A feed-forward network approximating a function requires that values of that

function at past times be fed to it. For this reason, feedback is necessary during long-term

prediction in this case. For the cases reported in this work, it was found that, even though

the harmonic generators controlled the oscillation of the generated time series, the error

produced by the feedback of outputs accumulated fast, making the prediction diverge very

soon. Case K.2.A (section 5.4.2), showed that when this predictor is fed with original

observations, that is, with accurate data, it is able to generate very well the attractor defining

the system (Figure 5.40 (a)). However, when receiving feedback, it got lost very soon (Figure

5.40 (b) to (d)).

 99

A predictor without external inputs, as the one defined at case C.3.A (section 5.1.3),

is able to keep longer a shape in its attractor (Figure 5.10 (a) to (d)) with some resemblance

to the expected for an ECG, when compared to a predictor with external inputs, as in case

K.2. This is also noticed when comparing Figures 5.37 (b), corresponding to case K.2 with

external inputs, with Figure 5.13 (b), corresponding to C.3.A without external inputs.

An important result of this research was the inclusion of time-constant weights in

the complex model. Time constants are parameters able to control the amount of

modifications in the values of a neuron from time t to time t+1. In the original complex

model, this value was kept constant for all nodes during the training stage. The definition of

one adaptive value for each node, (Pearlmutter 1990), increased the performance of the

predictors tested here. This improvement is clear comparing cases C.0 (without time

constant weights, section 3.3.1.4) with C.3.A. (using time constant weights, section 5.1.3).

The MSE of C.3.A is greater that the one obtained by C.0; however, the long term

prediction at Case C.3.A obtained a maximum LE (3.92±1.11) nearer to the expected value

(3.23±0.27) when compared to the LE obtained by case C.0 (1.63±0.75). Besides, the return

map of case C.3.A presents an attractor with a geometrical shape more uniform that the one

obtained by case C.0. The improvement due to time constant weights was noticed only for

recurrent networks; for the cases F.1 (sections 5.3.1 and 5.3.2) and F.2 (section 5.3.3), where

only feed-forward connections are involved, the time constants made impossible to train the

network using back-propagation through time, due to instability in calculation of the value of

z (equation B.10).

The harmonic generators were found to be powerful tools for driving and keeping

under control the oscillations of the networks in long-term predictions. When a predictor

was constructed without using these sub-networks, but just using feedback if a feed-forward

network, the results were completely inadequate. This is demonstrated at case F.1.B (section

5.3.2). This network was very good approximating the ECG signal when fed with original

observations (Figures 5.24 and 5.25); the MSE was 1.4E-3. The LE of this segment was

19.34±5.29, which is very near to the LE of the training signal (19.7±5.12). However, the

same predictor was not able to generate any long-term prediction (Figure 5.26). It was

found that the differences between the predicted and expected values were unacceptable

after the sixth point predicted when using feedback (Figure 5.27). This predictor worked

 100

very well when generating a function with only one frequency component. Figure 5.23

shows that this predictor, when trained with 99 points of a sine function, was able to

reproduce such a function quite accurately for 1,500 points.

The use of recurrent connections in the complex model and in its derived models

played an important role in the performance of long-term predictors. In case H.1 (section

5.2), it was found that when the recurrence was eliminated from all nodes except the ones

belonging to harmonic generators, the performance of the predictor decreased; it is

discovered when comparing the long-term predictions and return maps of case C.3.A (fully

recurrent network, section 5.1.3) with case H.1. The results in case H.1 look periodical with

peaks of similar amplitudes among them, which does not resemble an ECG (figure 5.18). It

resulted interesting that the maximum LE of the long term prediction of H.1 (2.96±0.52) is

similar to the LE of the training signal (3.23±0.27). This shows that the fact of embedding

the LE invariant in the neural network is not enough to predict the dynamical system.

The down-sampling of the training series did not improve in the performance of the

predictors tested in this work. Actually, it seemed to affect the performance in a negative

way. This can be corroborated when comparing cases C.0 (section 3.3.1.4) which uses the

original training signal, with case C.1 (section 5.1.1) which uses a down-sampled signal; both

using the same original complex network; the MSE of cases C.0 (7.1E-3) is much smaller

than the MSE obtained in cases C.1 (1.47E-2). Also some decline in performance is noticed

when comparing Figure 5.3, the return map generated by case C.0, with Figure 3.7, the

return map generated by case C.1. The same changes in performance are noticed between

cases C.3.A and C.3.B which both work with the same network but using different training

signals, no down-sampled and down-sampled, respectively.

The training algorithm back-propagation through time proved to be a versatile tool

in this research. Due to its characteristics, it was used to train feed-forward, hybrid and

recurrent neural networks without any modifications. This attribute allowed us to

dynamically convert topologies during the training of the hybrid networks. However, a few

drawbacks were found with the implementation suggested by Pearlmutter (1990). The main

disadvantage was found in the use of the parameter tΔ , which drives the time step in the

numerical integration of the differential equations used in the algorithm. In some of the

 101

 102

cases reported here, this parameter could not be normalized to one, then several trails had to

be done before finding its right value.

The idea of teacher forcing has proved to be useful in some applications, but it did

not help to improve the performance of the predictors analyzed in this work. This

conclusion is reached when comparing case C.1 (no teacher forcing, section 5.1.1) with case

C.2 (teacher forcing, section 5.1.2); both the MSE (1.47E-2 and 1.51E-2) and return maps

(Figures 5.3 and 5.6) are the worst obtained in this work.

As in any research, several ideas may be recommended as a continuation of this

work. First we suggest to try other implementations of the algorithm back-propagation

through time. The algorithms proposed at (Werbos 1994) and (Haykin 1994) could be a

good starting point. Another important modifications could be done in the equation

defining the dynamics of the neuron (equation B.1). Werbos (1990) proposed the use of the

outputs of neurons in previous times t-1 , t-2 an so on, during the calculation of the output

of a neuron at time t. Weights are associated to this previous outputs, controlling its effect

on the dynamics. However this modification may compromise the learning speed of the

network. Other interesting modification could be to train the network defined for cases K.1

and K.2 using sometimes its own output values as external inputs, and some other times

inputs coming from the training signal. This should be done after the network has trained

for a while using the values coming from training.

As it was hundreds of years ago, the accurate prediction of the future continues to be

a not-yet solved but fascinating problem. The recent advances in non-linear dynamic theory,

artificial neural network and parallel systems, as well as the fast increase in the power of

computers, may allow us to find useful solutions to these kinds of problems in the near

future.

BIBLIOGRAPHY

Abarbanel, Henry D. I., Reggie Brown and James Kadtke. “Prediction in Chaotic Nonlinear

Systems: Methods for Time Series with Broad Band Fourier Spectra.” Physical Review
A, Vol. 41, pp. 1782-1807, 15 February 1990.

Abarbanel, Henry D. I., Reggie Brown, John J. Sidorowich and Lev Sh. Tsimring. “The

Analysis of Observed Chaotic Data in Physical Systems,” Reviews of Modern Physics,
Vol. 65, No. 4, pp. 1331-1392, October 1993.

Albert, David E. “Chaos and ECG: Fact and Fiction.” Journal of Electro-cardiology, Vol.

24 supplement, pp. 102-106, 1990.

Babloyantz, A. and D. Destexhe. “Is the Normal Heart a Periodic Oscillator?,” Biological

Cybernetics, Vol. 58, pp. 203-211, 1988.

Banbrook, M., G. Ushaw and S. McLaughlin. “How to extract Lyapunov Exponents from

Short and Noisy Time Series,” IEEE Transactions on Signal Processing, Vol. 45, No.
5, pp. 1378-1382, 1997.

Barna, György and Ichiro Tsuda. “A new Method for Computing Lyapunov Exponents,”

Physics Letters A, Vol. 175, pp. 421-427, 1993.

Brockwell, Peter J. and Richard A. Davis. Time Series Theory and Methods. Second

Edition. Springer Editors, New York, 1991.

Brown, Reggie and Paul Bryant. “Computing the Lyapunov Spectrum of a Dynamical

System From an Observed Time Series,” Physical Review A, Vol. 43, No. 6, pp. 2,787-
2,806, March 15, 1991.

Burrs, C. Sidney, J. H. McClellan, Alan V. Oppenheim, Thomas W. Parks, Ronald

Oppenheim, Alan V and Ronald W. Schafer. Discrete Time Signal Processing, Prentice
Hall.

Burrs, C. Sidney, James H. McClellan, Alan V. Oppenheim, ThomasW. Parks, Ronald W.

Schafer and Hans W. Schuessler. Computer-based Exercises for Signal Processing
using MATLAB, Curriculum Series, Prentice-Hall, Englewood Cliffs, New Jersey, 1994.

Casaleggio, A. S Braiotta and A. Corana. “Study of the Lyapunov Exponents of ECG

Signals from MIT-BIH Database,” Computers in Cardiology, IEEE Press, pp. 697-700,
1995.

Casaleggio, A., S. Cerutti and M.G. Signorini. “Study of the Lyapunov Exponents in Heart

Rate Variability Signals,” Methods of Information in Medicine, Vol. 36, No. 4-5, 1997.

 103

Casdagli, M. “Nonlinear Prediction of Chaotic Time Series,” Physica D, Vol. 35, pp. 335-
356, 1989.

Christiasen, B. T. ECG Time Series Prediction with Neural Networks. Master’s thesis,

Department of Computer Science, Texas Tech University, Lubbock, TX, August 1995.

Corwin, Edward M. Chaos and Learning in Recurrent Neural Networks. Ph.D. dissertation

in Computer Science, Texas Tech University, Lubbock, TX, 1995.

Denton, T. A. (a). “Fascinating Rhythm: A Primer on Chaos Theory and its Application to

Cardiology,” Journal of Electrocardiology, Vol. 24, Supplement, pp. 84-90, December
1990.

Denton, Timothy A., George A. Diamond, Steven S. Khan, and Hrayr Karagueuzian (b).

“Can the Techniques of Nonlinear Dynamics Detect Chaotic Behavior in
Electrocardiograph Signals?” Journal of Electrocardiology, Vol. 24, Supplement, pp. 84-
90, 1990.

 Epstein, Joshua M. Nonlinear dynamics, Mathematical Biology and Social Science, Lecture

Notes, Vol. 4, Santa Fe Institute, Addison-Wesley Publishing, Reading, MA, 1997.

Garfinkel, Alan; Mark L. Spano, William L. Ditto, James N. Weiss. “Controlling Cardiac

Chaos,” Science, Vol. 257, pp. 1230-1235, 28 August 1992.

Gencay, Ramazan and W. Davis Dechert. “An algorithm for the n Lyapunov exponents of

an n-dimensional unknown dynamical system,” Physica D. Vol. 59, pp. 142-157, 1992.

Glass, Leon. “Complex Cardiac Rhythms,” Nature, Vol. 330, No. 24/31, pp. 695-696,

December 1987.

 Glass, L. and M. C. Mackey. From Clocks to Chaos, Princeton University Press, Princeton,

New Jersey, 1988.

Glass, Leon; Peter Hunter, Andrew McCulloch, editors. Theory of Heart, Springer-Verlag,

New York, 1991.

Gómez-Gil, Pilar and W.J.B. Oldham. “Recurrent Neural Networks as a Tool for Modeling

and Prediction of Electrocardiograms,” Proceedings of the World multi-conference on
Systemics, Cybernetics and Informatics (SCI’98), Orlando, USA, 1998.

González-F., Jesús J., Ismael Espinosa-E. and Alberto Fuentes-M. “Lyapunov Exponents
from Chua’s Circuit Time Series Using Artificial Neural Networks,” Second
International Workshop on Harmonic Oscillators, edited by D. Han and K. B. Wolf,
NASA Conference Publications 3286, Scientific and Technical Information Branch,
1995.

 104

Gourieroux, Christian and Alian Monfort. Time Series and Dynamic Models, Translated

and edited by Giampiero Gallo, University Press, Cambridge, 1997

Greenberg, Michael D. Foundations of Applied Mathematics, Prentice-Hall, Englewood

Cliffs, New Jersey, 1978.

Harvard-MIT Division of Health Sciences and Technology. The MIT_BIH Arrhythmia

Database CD-ROM. Second Edition, Biomedical Engineering Center, Cambridge, MA,
August 1992.

Hayashi, Yukio. “Oscillatory Neural Network and Learning of Continuously Transformed

Patterns,” Neural Networks, Vol. 7, No. 2, pp. 219-231, 1994.

Haykin, Simon. Neural Networks. A Comprehensive Foundation, Macmillan College

Publishing Co., New York, 1994.

Hornik, K., M. Stinchcombe and H..White. “Universal Approximation of an Unknown

Mapping and its Derivatives using Multi-layer Feed-forward Networks,” Neural
Networks, Vol. 3, pp. 535-549, 1990.

Kaashoek, Johan F. and Herman K. van Dijk. “A Neural Network Applied to the

Calculation of Lyapunov Exponents,” Econometric Reviews, Vol. 13, No. 1, pp. 123-
137, 1994.

Kaashoek, Johan F. and Herman K. van Dijk. “A neural Network applied to the calculation

of Lyapunov Exponents,” Econometric Reviews, Vol. 13, No. 1, pp. 123-137, 1994.

 Kaplan, Daniel T. and Richard J. Cohen. “Is Fibrillation Chaos?” Circulation Research,

Vol. 67, No. 4, October 1990.

Karanam, Rajaiah. Prediction of the Behavior Of The Human Heart Using Methods of

Non-Linear Dynamics, Master’s thesis in Computer Science, Texas Tech University,
Lubbock, TX, May 1996.

Lao, Xueying. Time Series Prediction on Electrocardiogram Data by Radial Basis Function

Neural Networks, Master’s thesis in Computer Science, Texas Tech University,
Lubbock, TX, December 1994.

Lapades, R. and R. Farber. “Nonlinear Signal Processing Using Neural Networks:

Prediction and System Modeling,” Technical Report LA-UR87-2662, Los Alamos
National Laboratory, Los Alamos, New Mexico, 1987.

Logar, Antonette M. Recurrent Neural Networks and Time Series prediction, Ph.D.

Dissertation in Computer Science, Texas Tech University, Lubbock, TX, December
1992.

 105

Oldham, W. and Pilar Gómez-Gil. “Modeling and Prediction of Time Series Using
Recurrent Neural Networks: an Application to ECG,” Proceedings of the “Second Joint
Mexico-US International Workshop on Neural Networks and Neurocontrol Sian Ka'an
'97,” Quintana Roo, México, August 1997.

Oldham, W. and Pilar Gómez-Gil. “Application of Recurrent Neural Networks for the

Prediction on the Behavior of Biological Oscillators,” Proceedings of the VII
International Conference on Electronics, Communications and Computers.
CONIELECOMP 97,” Puebla, México, February 1997.

Oppenheim, A..V. and R..W. Schafer. Discrete Time Signal Processing, Prentice Hall,

Englewood Cliffs, New Jersey, 1989.

 Parker, T. S and L.O. Chua. Practical Numerical Algorithms for Chaotic Systems, Springer-

Verlag, New York, 1989.

Pearlmutter, B. A. “Learning State Space Trajectories in Recurrent Neural Networks,”

Neural Computation, Vol.1, pp. 263-269, 1989.

Pearlmutter, B. A. “Dynamic Recurrent Neural Networks,” Technical Report CMU-CS-90-

196, School of Computer Science, Carnegie Mellon University, Pittsburgh, December
1990.

Press, William H., Saul A.. Teukolsky , William T. Vetterling and Brian P. Flannery.

Numerical Recipes in C. The Art of Scientific Computing. Second Edition, Cambridge
University Press, 1992.

Príncipe, Jose C. and Jyh-Ming Kuo. “Dynamic Modeling of Chaotic Time Series with

Neural Networks,” Advances in Neural Information Processing Systems 6, edited by
Cowan, Tesauro and Alspector, Morgan Koufmann, pp. 311-318, 1994.

Príncipe, Jose C., Ludong Wang and Jyh-Ming Kuo. “Non-linear Dynamic Modeling with

Neural Networks,” Proceedings of the First European Conference on Signal Analysis
and Prediction, 1997.

Proakis, John G. and Dimitris G. Manolakis. Digital Signal Processing. Principles,

Algorithms and Applications, third Edition. Prentice Hall, Englewood Cliffs, New
Jersey, 1996

Rosenstein, Michael T., James J. Collins and Carlo J. De Luca. “A practical Method for

Calculating Largest Lyapunov Exponents from Small Data Sets,” Physica D, Vol. 65,
pp. 117-134, 1993.

Rumelhart, David E., Geoffrey E. Hinton, and R. J. Williams. “Learning internal

representations by Error Propagation,” In Parallel Distributed Processing: Explorations
in the Microstructure of Cognition, Vol. I, Bradford Books, Cambridge, MA, 1986.

 106

 107

Sattin, Fabio. “Lyap: A Fortran 90 Program to Compute the Lyapunov Exponents of a

Dynamical System from a Time Series,” Computer Physics Communications, Vol. 107,
No. 1-3, pp. 253-257, 1997.

Stein, Kenneth M., Neal Lippman and Paul Kligfield. “Fractal Rhythms of the Heart,”

Journal of Electrocardiology, Vol. 24, supplement, pp. 72-76, 1990.

Takens, F. “Detecting Strange Attractors in Turbulence,” Dynamical Systems and

Turbulence, edited by D. A. Rand and L. S. Young, Springer-Verlag, Berlin, 1981.

 Tong, Howell. Non Linear Time Series. A Dynamical System Approach, Oxford Science

Publications, Clarendon Press, Oxford, 1993.

Wang, Lipo and Daniel L. Alkon. Artificial Neural Networks: Oscillations, Chaos and

Sequence Processing, IEEE Computer Society Press, Washington DC, 1993.

Werbos, Paul J. The Roots of Backpropagation. From Ordered Derivatives To Neural

Networks And Political Forecasting, John Wiley and Sons, New York, 1994.

Werbos, Paul J. “Backpropagation Through Time: What it Does and How to Do it,”

Proceedings of the IEEE, Vol. 74, No. 10, pp. 1550-1560, October 1990.

Williams, Ronald J. and David Zipser. “Experimental Analysis of Real-time Recurrent

Learning Algorithm,” Connection Sciences, Vol. 1, No. 1, 1989.

Wolf, Alan, Jack B. Swift, Harry L. Swinney and John A. Vastano. “Determining Lyapunov

Exponents from a Time Series,” Physica 16D, pp. 285-317, 1985.

APPENDIX A

CALCULATION OF THE MAXIMUM LYAPUNOV

EXPONENT OF A TIME SERIES

Following is a structured version of the algorithm defined at (Wolf et al. 1995) to

calculate the largest non-negative Lyapunov Exponent from a time series. For more details

about Lyapunov exponents and this algorithm see section 2.7.

1. Read input parameters and time series

2. Construct an attractor

3. Set ind = 1. Consider 1st. point as fidutial point.

4. Find nearest point to fidutial point. Let d1 ≡ its distance to fidutial point.

 ind2 ≡ its index.

sum = 0 ; its = 0

5. Repeat

 5.1 pt1 = z[ind + evolv] ; pt2 = z[ind2 + evolv]

 5.2 Let df ≡ distance between pt1 and pt2

 5.3 its = its + 1 ;

 5.4 sum sum

df
di

evolv dt
= +

log()

* * log(.)2 0

 5.5 zlyp sum
its

=

 5.6 Print zlyp, evolv*its, di, df

 5.7 Look for a replacement of pt2. While looking for replacement:

5.7.1 Among all points, select a point that:

 a) is not too far or too close to pt1. (dnew, its distance to pt1 should:

 dnew <= zmult*scalmx and dnew >= scalmn)

 b) it is the one with smallest angle between pt1 and pt2 and itself.

Name this angle as thmin, its distance to pt1 as dii and its index as

ind2

 108

 109

 5.7.2 if thmin < anglmx

 5.7.2.1 This is a good point, don’t look anymore

 else

 5.7.2.2 A look at longer distances is needed:

 zmult = zmult + 1

 5.7.2.3 if zmult > 5 the requirements need to be relaxed:

 5.7.2.3.1 anglmx = 2* anglmx ; zmult = 1

 5.7.2.3.2 if anglmx > 3.14

then there is no possible point as replacement,

continue with this one..

 ind2 = ind2 + evolv

 dii = df

 else

 look again with new zmult and anglmx...

 endif

 endif

 end if

 end of while

 5.8 ind = ind + evolv

 5.9 if ind < npt di = dii

 until (ind>npt or ind2 > npt) (until there is no more data to use)

6. End.

APPENDIX B

THE TRAINING ALGORITHM BACKPROPAGATION

THROUGH TIME

 Backpropagation through time (BPTT) is an algorithm that attempts to minimize the

error obtained over a period of time between the output of a neuron and the desired value

of such output. It was originally proposed by Werbos (1990). Some other neurons besides

the output will be required in order to represent the dynamics of the system. The total error

in an output neuron is represented by:

 E y t d t dt
t

t
= −∫ (() ())

0

1

, (B.1)

where y(t) is the “real output” obtained by the output neuron and d(t) is the desired one.

BPTT looks for a minimization of the square root of such value E.

 In a fully-connected recurrent neural network, the dynamics of a neuron yi can be

described by the equation (Pearlmutter 1989):

dy
dt

y xi
i i= − + +σ () Ii

]

, (B.2)

which, using recurrent equations is:

yi t t yi t t yi t xi Ii() () [() ()+ = + − + +Δ Δ σ , (B.3)

where

x wi j
j

= ∑ yi j . (B.4)

xi represents the total input to the i-th neuron coming from other neurons, Ii is an external

input to neuron i, wij is the weighted connection from neuron i to neuron j, and σ ()x is an

arbitrary differentiable function, normally a sigmoid, for example:

σ () (exp())x = + − −1 1x

Δz t

. (B.5)

Pearlmutter found that the modification to the weights (learning) can be described

by the equation:

Δw y xij i j j

t

= − ′∑η σ () , (B.6)

where η is a learning coefficient. Using a discrete notation, the value of zi is given by:

 110

dt
dz

tttztz i
ii Δ−Δ+=)()(, (B.7)

where:

dz
dt

z e w x zi
i i ij j

j
= − ∑ ′− σ () j , (B.8)

and

e t y t desired ti i i() () ()= − , (B.9)

in discrete notation z is:

 ,)]())((

)()([)()(

∑ Δ+Δ+′−

Δ+−Δ+Δ−Δ+=

j

jjij

iiii

ttzttxw

ttettztttztz

σ (B.10)

desired ti () is the desired value for node i at time t. Notice that the integration of zi is

calculated backwards. Following is a description of the algorithm that implements this

method in a complex network.

B.1 Algorithm to train a Recurrent Neural Network using BPTT

 Given a discrete signal d(nΔt) over a period of time [0, FT], the Pearlmutter’s

implementation of BPTT to train one output node of a complex network to learn d(t) results

in the following algorithm:

1. Get parameters describing the architecture of the network, where n = total number of

nodes.

2. Get the desired values d[i][t] for each i-th output node” in the network at each time t in

the trajectory, assuming that such values are separated by a time period Δt. The size of

such trajectory will be refereed from now as FinalTime

3. Get or calculate the initial conditions for the outputs of all nodes, that is y[i][0]

 for all nodes i = 0… n-1

 3.1 If this network is learning by first time then

 3.1.1. Initialize weights of with small random numbers and/or

 3.1.2 Set any previously calculated weights corresponding to any sub-

 networks

 else

 111

 3.1.3 Read weights of network corresponding to past runnings

4. Repeat until TotalError is small enough or until desired number of epochs

 (each step in this loop is called an epoch)

 4.1 For t=1 to FinalTime (and each time t in the trajectory)

 4.1.1. For i = 0 to n-1 (each node in network),

 calculate output of i-th node at time t as:

 []]][[])][[(][]][[titItixtttyttiy Δ+Δ+Δ−Δ−= σ1 ,

 where x i t w y j tji
j

[][] [][]= −∑ 1

 4.2 For i=0 to n-1

 4.2.1 for t=1 to FinalTime-1

 calculate the error-by-node as:

 e i t
y i t d i t i

[][]
[][] [][]

=
− =⎧

⎨
⎩

 if output node
 if i is not an output node0

 4.3 Calculate the Total error at this epoch as:

 TotalError sqrt e i t
it

=
⎛
⎝
⎜

⎞
⎠
⎟∑∑1

2
[][]

 4.4 For t = FinalTime-1 to 1 (propagation of error backwards)

 4.4.1 For i=0 to n-1 (for each node)

[]z i t te i t t t z i t t

t w x j t t z j t tij

j

[][] [][] * [][]

([][]) [][]

= + + − + +

′ + +∑
Δ Δ Δ Δ

Δ Δ

1

 σ Δ

 4.5 Update the w’s

 4.5.1 For i=0 to n-1

 45.1.1 For j=0 to n-1

 w i j w i j t y i t x j t z i t
t

[][] [][] [][]* ([][]) * [][]= − ′∑η σΔ

5. End.

 112

B.2 Algorithm to Predict the trajectory of a time series

 Once that the complex network is trained, or at any time during training, the output

of this predictor for a trajectory or arbitrary length can be calculated given only the initial

conditions of the net (value of each node at time t=0) and the value of weights. Following is

the appropriate algorithm:

1. Read the weights of complex network

2. Read the initial conditions of each node, y[i][0] , i =1.. n-1

3. Read the size of the prediction, called as PredictionTime

4. For t=1 to PredictionTime

 4.1 For i=0 to n-1 (each node in network),

 4.1.1. Calculate output of i-th node at time t as:

[]]][[])][[(][]][[titItixtttyttiy

 113

 Δ+Δ+Δ−Δ−= σ1 ,

 where x i t w y j tji

j

[][] [][]= −∑ 1

 4.1.2 If i == n-1 (last output node) then

 4.1.2.1 display y[i][t]

5. End.

APPENDIX C

TOPOLOGIES OF THE HYBRID NETWORKS

 This appendix contains the connection matrices describing the hybrid networks used

in this work. A hybrid network is one that may have both recurrent and no recurrent

connections between its nodes. It is also possible that some connections may no be present

in a hybrid network. A connection matrix C for a network with n nodes is defined as:

ji

jic
⎭
⎬
⎫

⎩
⎨
⎧

=
 otherwise

 node to node fromweight a isthere if
],[

0
1

,

for i, j = 1, 2 … n.

 Following are the connection matrices for the hybrid networks used at cases H.1, F.1

A and B, F.2, K.1 and K.2. The first row and first column of each table identify the number

of node. Bold lines separate “layer” in the network.

C.1 Connection Matrix A

 This section describes the hybrid network used for case H.1 (see Figure 5.16). The

first layer contains nodes 1 to 21 making the 7 harmonic generators (fully 3-node RNN).

Nodes 22 to 28 are hidden nodes, located at the second layer. The last layer contains nodes

29 to 32, which are pseudo-output nodes, and node 33, which is the output node.

 114

Table C.1. Connection Matrix A.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
2 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
4 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
5 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
6 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
7 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
8 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
9 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
12 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
13 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
15 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0
22 0 1 1 1 1 1
23 0 1 1 1 1 1
24 0 1 1 1 1 1
25 0 1 1 1 1 1
26 0 1 1 1 1 1
27 0 1 1 1 1 1
28 0 1 1 1 1 1
29 0
30
31 0
32 0
33 0

 115

C.2 Connection Matrix B

 This section describes the network used at cases F.1 A and B (Figure 5.20). It is a

pure feed-forward network with 5 nodes in the input layer, 10 nodes in the hidden layer and

one node in the output layer.

Table C.2. Connection Matrix B.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
3 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
4 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
5 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 116

C.3 Connection Matrix C

 This section describes the hybrid network used at case K.1 (Figure 5.31). It has 5

input nodes at the first layer; seven harmonic generators in the hidden layer that result in 21

nodes and one output node.

Table C.3. Connection Matrix C.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 0 0 0 0 0 1 0
2 0 0 0 0 0 1 0
3 0 0 0 0 0 1 0
4 0 0 0 0 0 1 0
5 0 0 0 0 0 1 0
6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
9 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1
21 0 1 1 1 0 0 0 1
22 0 1 1 1 0 0 0 1
23 0 1 1 1 0 0 0 1
24 0 1 1 1 1
25 0 1 1 1 1
26 0 1 1 1 1
27 0

 117

 118

C.4 Connection matrix D

 This section describes the hybrid network for case K.2. (Figure 5.35). It has 2

dimensions in the first layer: one with 5 input nodes and other with 7 harmonic generators

(21 nodes). Both dimensions connect to 7 hidden nodes in the second layer. There is only

one node in the output layer.

Table C.4. Connection Matrix D.
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 0 1 1 1 1 1 1 1 0
2 0 1 1 1 1 1 1 1 0
3 0 1 1 1 1 1 1 1 0
4 0 1 1 1 1 1 1 1 0
5 0 1 1 1 1 1 1 1 0
6 0 0 0 0 0 1 1 1 0
7 0 0 0 0 0 1 1 1 0
8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
9 0 0 0 0 0 0 0 0 1 1 1 0

10 0 0 0 0 0 0 0 0 1 1 1 0
11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0
14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0
18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0
21 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
22 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0
23 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0
24 0 1 1 1 0 0 0 0 0 0 0 0
25 0 1 1 1 0 0 0 0 0 0 0 0
26 0 1 1 1 1 1 1 1 1 1 1 0
27 0 1
28 0 1
29 0 1
30 1
31 0 1
32 0 1
33 0 1
34 0

 119

APPENDIX D

SUMMARY OF TRAINING FILES

 All training data used in this work came from the database produced by the Harvard-

MIT Division of Health Science and Technology Biomedical Engineering Center (Harvard

1992). Only short segments of such files were use for training the networks. Such segments

were selected and then filtered, normalized and or down-sampled, as described at chapter

IV. Following is a summary of the characteristic of each one:

D.1 File ecg4.fil

 This file is a modified version of file a0310_5a.dat, described by Christiasen (1995).

The data was originally sampled to a frequency of 360 Hz. First, this signal was converted to

mean equal zero. Second, the signal was filtered by a FIR filter of order 40 with cutoff

frequencies lying at 0.5 and105 Hz. Last, the magnitude of the signal was normalized to the

interval [-0.3122,0.75].

Size: 512 points

Lyapunov exponent: 3.23 ± 0.27

0 100 200 300 400 500 600
-0.4

-0.2

0

0.2

0.4

0.6

0.8
ecg4.fil

Figure D.1 File ecg4.fil

 120

-0.5
0

0.5
1

-0.5

0

0.5

1

0

0.5

Return map of ecg4.fil

x(i)x(i+ 10)

x(i+ 20)

Figure D.2. Return map of ecg4.fil

0
0

1

2

3

4

5

6

7

8

9
Fourier transform of file ecg4.fil

Figure D.3. Fourier Transform of ecg4.fil

 121

D.2 File ecg6n.su4

 Similar to ecg4.fil, this is a modified version of a portion of a0310_5a.dat. This

signal was converted to mean zero, filtered by a band pass from 0.5 to 45 Hz., and

decimated by a factor of 4. After that, the magnitudes of the signal were normalized to

values in the range [-0.2175, 0.75].

Size: 128 points

Lyapunov exponent: 10.77 ± 2.94

0 20 40 60 80 100 120 140
-0.5

0

0.5

1

1.5

2
File Ecg6n.su4

Figure D.4. File Ecg6n.su4

 122

-0.5
0

0.5
1

-0.5

0

0.5

1

0

0.5

Return map of ecg6n.su4

x(i)x(i+ 10)

x(i+ 20)

Figure D.5. A Return map of signal ecg6n.su4

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5

3

3.5
Fast Fourier Transform of ecg6n.su4

Figure D.6. Fourier Transform of ecg6n.su4

 123

D.3 File A0310z.fil

Size: 475 points

Lyapunov exponent: 19.34 ± 5.25

0 100 200 300 400 500
-0.4

-0.2

0

0.2

0.4

0.6

0.8
 File a0310z.fil

Figure D.7. The 475 points of file a0310z.fil

-0.5
0

0.5
1

-0.5

0

0.5

1

0

0.5

Return map of 475 point of a0310z.fil

x(i)x(i+ 10)

x(i
+
20
)

Figure D.8. Return map of 475 points of a0310z.fil

 124

0

1

2

3

4

5

6

7

8

9
Fourier transform of 475 points of file a0310z.fil

Figure D.9 Fourier transform of 475 points of a0310z.fil

 125

D.4 File good8.dat (Mackey-Glass Data)

Size: 820 points

0 200 400 600 800 1000
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
First 1000 pots. of good8.dat

Figure D.10. 1,000 points of Mackey-Glass data

0 50 100 150 200 250
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
First 210 pts. of good8.dat

Figure D.11. Training file for Mackey-Glass data

 126

0 500 1000 1500
0

50

100

150

200

250

300

350
FFT of good8.dat

Figure D.12. Fourier transform of 210 points of good8.dat

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1
-1

-0.5

0

0.5

1

Return map of 820 points in good8.dat

x(i)x(i+ 5)

x(i
+
10
)

Figure D.13. Return map of 820 points in good8.dat

 127

© 1998, María del Pilar Gómez-Gil.

	title dissertation
	copyright
	ABSTRACT
	ACKNOW
	CONTENTS
	LISTS
	CHAP01
	CHAP02
	Chap03
	Chap04
	CHAP05A
	CHAP05B
	CHAP05C
	CHAP05D
	CHAP06
	BIBLIO
	APPEN_a
	APPEN_b
	APPEN_c
	APPEN_D

