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Abstract. The accuracy of a model to forecast a time series diminishes as the prediction horizon 

increases, in particular when the prediction is carried out recursively. Such decay is faster when 

the model is built using data generated by highly dynamic or chaotic systems. This paper presents 

a topology and training scheme for a novel artificial neural network, named “Hybrid-connected 

Complex Neural Network” (HCNN), which is able to capture the dynamics embedded in chaotic 

time series and to predict long horizons of such series. HCNN is composed of small recurrent 

neural networks, inserted in a structure made of feed-forward and recurrent connections and 

trained in several stages using the algorithm back-propagation through time (BPTT). In 

experiments using a Mackey-Glass time series and an electrocardiogram (ECG) as training signals, 

HCNN was able to output stable chaotic signals, oscillating for periods as long as four times the 

size of the training signals. The largest local Lyapunov Exponent (LE) of predicted signals was 

positive (an evidence of chaos), and similar to the LE calculated over the training signals. The 

magnitudes of peaks in the ECG signal were not accurately predicted, but the predicted signal was 

similar to the ECG in the rest of its structure. 

Keywords: long-term prediction, Hybrid-connected Complex Neural Network 

(HCNN); recurrent neural networks, chaotic time series, ECG modeling, Mackey-

Glass equation. 

1. Introduction   

Modeling of nonlinear and chaotic systems constructed from observed data has 

become an important issue in the last years ([1,2]). Frequently, such data comes 

from uniform sampling of a continuous signal s(t), and the model is used to 

predict one or several future values of the time series. A time series may be 
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periodic, aperiodic, stationary (whose statistics do not change with time), cycle-

stationary (whose statistics change in time according to a known pattern), non-

stationary (whose statistics change over time) or chaotic [3]. Chaotic signals result 

from deterministic systems showing an aperiodic, long-term behavior that exhibits 

sensitive dependence on initial conditions [4]. Examples of chaotic signals are 

electroencephalograms (EEG) [5], electrocardiograms (ECG) [3], body 

temperature samplings [6], sunspot numbers [7], video traffic [8], etc. 

It is well known that accurate long-term prediction for chaotic systems is limited 

by the value of the largest Lyapunov Exponent of the system [9]. However, if a 

good reconstructed map of the system is built, a good short-term predictor may be 

built and used for long-term prediction through recursive prediction, provided that 

the model includes ways to compensate for systematic errors [10]. Recursive 

prediction consists of calculating future values of a series based on knowledge of 

past values and values calculated by the predictor itself. Long-term predictors of 

chaotic series have applications in several fields, for example medicine, economy, 

meteorology, geology and finances; techniques to build them include catastrophe 

theory, chaos modeling and artificial neural networks [11]. Among them, 

Recurrent Neural Networks are considered one of the most powerful strategies to 

tackle problems where non-stationary and complex signals play a major role [12].  

Advances in the design of machine learning algorithms and increments of 

computational power have allowed that a huge number of prediction problems 

have been tackled using neural networks or ensembles that use them, and 

everyday new models appear. Next we briefly describe some recent research 

related to long-term prediction using artificial neural networks: Beliaev and 

Kozma [13] introduced a chaotic neural network, called KIII. It is composed of a 

multi-layer architecture with excitatory and inhibitory neurons and massive 

lateral, feed-forward and delayed feedback connections between layers. They use 

KIII for multi-step time series prediction applied to the IJCNN CATS benchmark 

data [14]. Júnior and Barreto [8] showed that a Nonlinear Autoregressive Model 

with Exogenous inputs (NARX) network, originally proposed by Leontaritis and 

Billings [15], outperforms better than a Time Delay Neural Network (TDNN) [16] 

and that an Simple Recurrent Network architecture, originally proposed by Elman 

[17]. The authors applied NARX to long-term prediction of a chaotic laser time 

series and to a variable bit rate (VBR) video traffic time series. Park and 



3 

collaborators 18] introduced a wavelet-based neural network architecture, called 

“Multiscale BiLinear Recurrent Neural Network” (M-BLRNN) using it for the 

long-term prediction of network traffic. Cai et al. [19] built an architecture that 

automates the design of a recurrent neural network through an evolutionary 

learning algorithm based on a particle swarm optimization; they used their model 

to predict 100 missing values of a time series provided by the IJCNN 2004 time 

series prediction competition [14]. Alarcón-Aquino and Barria [20] used the 

maximal overlap discrete wavelet transform (MODWT) to train a multi-resolution 

FIR Neural Network and applied it to network traffic prediction. Sapankevich and 

Sankar [21] reported an excellent survey on the use of support vector machines 

for both short and long-term prediction. 

In this paper we present a novel topology and training scheme of a neural 

network, able to forecast chaotic signals with some degree of accuracy using long-

term prediction. The scheme includes pre-processing the training signals and a 

particular training scheme. The net topology, named “Hybrid-connected Complex 

Neural Network
2
” (HCNN) which was first presented at [22], is built using 

recurrent and feed-forward connections. The most important advantage of this 

topology is that it is able to oscillate in a chaotic way under bounded values. This 

allows HCNN to forecast a chaotic signal longer than other predictors using 

recursive prediction. The neural components of HCNN are trained in several 

phases using the algorithm “backpropagation through time” (BPTT), originally 

proposed by [23], and following an implementation proposed in [24].  

This paper is organized as follows: section 2 presents main concepts associated to 

the construction of embedded systems from data; section 3 describes the 

architecture of HCNN and its components; section 4 describes the particular way 

in which HCNN is trained to capture the dynamics of the system, pointing out 

some issues related to the implementation of the algorithm BPTT and recursive 

prediction; section 5 shows the results obtained by HCNN when it was trained to 

predict large horizons of two signals: a time series obtained by the integration of a 

Mackey Glass equation and a real electrocardiogram. Finally, section 6 discusses 

some conclusions and future work.   
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2. Main concepts  

Let  be a scalar time series obtained from the uniform sampling of a 

continuous signal , using a sampling time  and starting at some time . 

The state of the dynamical system producing the signal is composed of many 

unknown variables that may be represented in a state vector  following the 

unknown rule [9]: 

        (1) 

Another rule defines the relation among the observations and the state variables as 

follows: 

                                                                         (2)    

In order to predict the future behavior of , building a model approximating 

F(.) is required. To do so, first it is required to create a d-dimensional state space 

of vectors  that is a proxy for the unknown . According to Takens [25] 

such space can be represented as: 

                       (3) 

where: 

 is the integer time lag that makes the components of  independent in a 

nonlinear sense; 

d is the dimension required to unambiguously represent the trajectories of the 

system in state space; d is also known as the embedding dimension. 

To reconstruct this embedded state space, it is assumed that   and , 

for some integer , are independent samplings of the state of the nonlinear 

system [9]. During time  the system evolves and the unknown variables are 

now reflected in . Appropriate values of  and d have to be determined 

to reconstruct . Currently, there are several methods to calculate both values 

from  [1]. Abarbanel et al. [26] describe a method to calculate  based on 

finding the first zero of the auto-correlation function of . They also propose to 

calculate d in an iterative process involving the calculation of the correlation 
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function for increasing values of d, starting at one. They choose the value of d 

when the correlation does not change with an increment of d. Both methods were 

used in this research to calculate the values of  and d for the experiments shown 

in this paper.  

A standard procedure to determine if a measured signal comes from a chaotic 

system is calculating the local Lyapunov Exponents (LE) in the embedded space. 

LE are a measure of the mean ratio of contractions or expansions near the limit in 

a non-linear dynamical system [27]. There are as many LE as dimensions in the 

system and, in a chaotic system, at least one Lyapunov Exponent is positive. 

Values of local LE of an unknown dynamical system may be approximated using 

numerical methods. Gencay and Dechert [28] proposed an algorithm for obtaining 

Lyapunov exponents of an unknown dynamical system, based on a multivariate 

feed-forward network estimation technique. This idea was used to design the 

HCNN, as described in section 3.2. The algorithm developed by Wolf et al. [29] 

monitors the long-term evolution of a single pair of nearby orbits of the system in 

order to estimate the largest LE. This algorithm was used to calculate the LE in the 

training and predicted signals used in the experiments reported in this paper. The 

algorithm attempts to approximate the local tangent space around a fiducial orbit of 

the system. After calculating the embedded system, the algorithm finds the nearest 

neighbor in the reconstructed space to the first point in the orbit. The magnitude of 

the difference vector is recorded. Subsequently, the point evolves along its trajectory 

a given number of steps. The magnitude of the final separations is determined, and a 

contribution to the largest LE is calculated as the logarithm of the final separation 

divided by the initial separation. All contributions are averaged over the length of the 

time series. If the distance between neighbors becomes too large, the algorithm 

abandons this point and searches for a new neighbor. Sano and Sawada [30] 

introduced a method to determine the Lyapunov spectrum from a chaotic time 

series, based on a least-square-error optimal estimation of a linear flow map of the 

tangent space from the data sets. Rosenstein et al. [31] proposed an algorithmic 

approach for finding the largest LE based on the reconstruction of the attractor 

dynamics from the time series, with an estimation of lag and mean period using 

the Fast Fourier Transform. LE are estimated using the mean rate of nearest-

neighbor separation of each point on the trajectory. Darbyshire and Broomhead 

[32] presented an approach for obtaining the spectrum of LE based on least square 
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and total least square methods applied to the estimation of tangent maps from time 

series data. 

The HCNN implements an approximation of map F() (equation 1), which is built 

with information given by the embedded state space  (equation 3) obtained 

from the observed time series . After being trained, HCNN represents a 

system with a maximum LE similar to the one calculated over the training time 

series . Next we present details of the design and implementation of HCNN.  

3. Architecture of HCNN  

HCNN is a combination of components connected in recurrent and feed-forward 

fashions; it receives as input  and output last variable in , that is, 

. When HCNN is used to predict long horizons, it receives inputs 

calculated by the network itself. HCNN works as a function approximator whose 

architecture aims to represent two main concepts: 1) the construction of a function 

aided by a non-linear combination of sinusoidal functions and 2) the modeling of 

a dynamical system with invariant characteristics similar to the ones found in the 

unknown system producing the training time series. To represent the first concept, 

the HCNN uses small fully-connected neural networks able to produce discrete 

samplings of sine signals autonomously, that is, with no external inputs except for 

their initial conditions [33]. These small networks are inspired in the work of 

Logar [34]. The second concept is inherent to the ability of multi-layer 

perceptrons, described by Gencay and Dechert [28], to create a function with a 

maximum LE similar to the one calculated in the training time series. 

The dynamics of each neuron in a recurrent neural network can be defined as [24]:  

                                                                               (4) 

for all neurons in the network, where:  


j

jji ywx
i                 (5) 

  represents the input to neuron i coming from all neurons    

connecting to it; 

 Ii                    is an external input to neuron i; 



7 

jiw                  is the weight connecting neuron i to neuron  j; 

 )(x
                 

is an activation function, which can be a sigmoid function or 

 a linear function, depending upon the layer where the neuron  

is located. 

HCNN contains recurrent and feed-forward connections, so, in order to use 

equation 4, some connections  are set to zero to represent connections that are 

not required in the structure of the network. To implement HCNN in a digital 

computer, we approximate equation 4 using a first-order difference equation, as 

proposed by Pearlmutter [24]: 

              (6) 

for all networks in HCNN and where: 

    is the time step; 

; 

 

 represents each variable of the embedded state, at iteration n, as defined by 

equation (3), 

 

 is a scaling factor, experimentally adjusted according to magnitudes of training 

data. 

HCNN contains L neurons arranged in four layers. Neurons in the input layer 

receive external inputs , corresponding to . The output layer contains 

only one neuron. The outputs of neurons in the input layer feed neurons in the 

hidden layer. There is also a layer made of several 3-node, fully-connected 

recurrent networks called harmonic generators (HG), which are also connected to 

the hidden layer. Figure 1 shows an example of HCNN that contains five inputs 

and seven HGs. 

The role of each part of HCNN is: HGs give information to the network about the 

frequency components of the time series; the hidden layer captures information 
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about the nonlinearity in the system, and it allows internal representation of the 

dynamics of the model; the last layer allows an approximation of the function 

generating the network’s output . The activation function of the unique 

neuron at the output layer is a linear function, in order to allow the HCNN to 

approximate any arbitrary value. 

3.1 Harmonic Generators (HGs) 

An HG is a three-node, fully-connected recurrent neural network that, once 

trained, is able to reproduce in each neuron, discrete values of a sinusoidal  

function. This is achieved autonomously, that is, without any external input to the 

HG, except for the initial values of its neurons . An HG is trained using 

one cycle of a discrete sine function with any frequency and amplitude. The 

output of an HG is defined as the output of one of its neurons, arbitrarily selected. 

Figure 2 shows the structure of an HG. 

The HCNN includes r HGs, each trained to learn different discrete sinusoidal 

functions representing frequency components of the time series to be predicted. 

Each HG is trained with a time series  defined as: 

                                        (7) 

where: 

is the fundamental frequency obtained from the HCNN training series s(n); 

  is the number of samples of hi(n); 

A    is the magnitude of the sine function. 

An amplitude A=0.8 was determined by experimentation to be used during the 

training stage. This value allowed the sigmoidal function to keep the output within 

an adequate range, which supported the network convergence. 
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Fig. 1  HCNN with seven harmonic generators and five inputs 

 

 

Sine function 

 

3-node, fully 

connected NN 

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217 226 235 244

Initial 

conditions 

 

 

Fig. 2.  A harmonic generator [33] 

 

The fundamental frequency was obtained by spectral analysis of the training 

series s(n), using the component with largest magnitude obtained from its Discrete 

Fourier Transform: 

                  (8) 

where  is the number of samplings in . 

Figure 3 shows a plot of the first 200 discrete sine values of a training series  

and the values autonomously generated by an HG in its node number 3. After 

being trained, the weights of this HG were: 

 ; 

initial values for each neuron were:  for 

;  and . This HG was trained using one 
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cycle of a discrete sine function with  and N= 90. Note that expected and 

predicted signals are almost equal, even in the segment corresponding to testing 

(points 91 to 180). 

 

 

Fig. 3 Example of the output of neuron 3 of a trained HG 

3.2 Representation of the Dynamical Invariants 

After training, the HCNN is aimed to be a dynamical system with invariant 

characteristics similar to the ones found in the unknown system producing the 

training time series. A way to achieve this is to make the HCNN represent a 

function whose local LE are similar in magnitude to those found in the training 

time series. To do so, a multi-layer perceptron architecture (MLP) is built into the 

HCNN. It has been proved that a MLP with d inputs and one hidden layer 

approximates a function with d LEs, equal to the LEs of a dynamical system 

embedded in a time series used to train such MLP [28]; the d corresponds to the 

embedding dimension of the system. Therefore, HCNN implements a function f: 

 .                                            (9) 

 

4. Training and Prediction scheme of HCNN 

There are three possible stages in a prediction system based on HCNN:  

1. Preprocessing. Here, the embedding dimension d, time lag  and 

fundamental frequency  of training series  are calculated using the 
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algorithms proposed by Abarbanel et al. [26]. After that  (equation 3) 

and r discrete sine functions  (equation 7) are built. The value of r is set 

by experimentation. 

2. Training. All trainings are carried out using the algorithm back-propagation 

through time (BPTT) as implemented in [24] (see section 4.1). HCNN is 

treated as a fully-connected neural network where some connections are 

represented with  to implement the feed-forward parts. Training is 

divided in 3 steps: 

2.1. A total of r HGs are trained to output their corresponding  discrete 

sine functions. Initial conditions of each neuron  are 

generated randomly. As described in section 3.1, an HG requires no input 

signals after it has been trained, except for the initial conditions of each 

neuron. 

2.2. Next, weights of the r HGs are embedded into the HCNN as the initial 

weight values of this part of the architecture; the rest of the weights in 

HCNN are randomly generated. After that, the feed-forward part of the 

HCNN is trained for a number of epochs (hidden and output layer), 

keeping constant the weights corresponding to HGs. For neurons that are 

not part of an HG, their initial conditions  are randomly 

generated at the beginning of this step. The  values corresponding to 

neurons in HGs, are provided by step 2.1. 

2.3. Last, the HCNN is trained as a fully-connected network for a number of 

epochs or until a desired Mean Square Error (MSE) (equation 11) is 

reached, or a maximum number of sweeps in the training series is 

executed (see section 4.1).  

3. Prediction.  Once trained, HCNN is ready to predict as many futures values as 

desired using recursive prediction. Each predicted value is stored in a right-

shift register that feeds the inputs to be used for the prediction of the next 

point (see Figure 4). Initially, the prediction stage requires as inputs the initial 

condition of each node in the HCNN and . After  
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the right-shift register contains only approximations of  and the predictor 

autonomously calculates as many values as desired. 

 

 

Fig. 4 Long-term prediction using HCNN  

 

4.1. Training algorithm  

BPTT extends general back-propagation algorithm so that it applies to dynamic 

systems [35]. BPTT looks to minimize the mean square error (MSE) obtained 

over a period of time, among real and desired values of output neurons. HCNN 

has only one output neuron, then MSE is defined as: 

 

                                                                  (10) 

where:  

   is the size of training set  ; 

   is the output of last neuron in the HCNN, the only neuron  

  in the output layer (see Figure 1), obtained at iteration j; 

  is the last variable at embedded system z(·) at iteration j+1;  

  it corresponds to the desired value to be predicted; d is the 

   embedding dimension.   

For the case of each HG, MSE is defined as: 
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                                (11) 

   

where: 

 is the number of samples in ; 

    is the output of the third neuron in the HG  

 

BPTT modifies weights sweeping the training set as many times as needed, until a 

desired MSE is reached, or a maximum number of sweeps is executed.  According 

to the derivations proposed by Pearlmutter [24], weights are updated on line, 

using:  

 

                                                                                                                             (12) 

where: 

 is the size of training set   

  is a learning coefficient, experimentally defined; 

   is the time step as in equation 6; 

,   p ε {neurons connecting to neuron j}; 

;  

     (13)  

calculated backwards over training data in each sweep, before weights are 

modified, 

 

   (14) 
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4.2. Recursive prediction using HCNN 

To predict a trajectory of arbitrary length, HCNN requires the first state vector 

z(0) and the initial conditions of each neuron in the network, that is , which 

were randomly generated at the beginning of training. Each output of the network 

at step n corresponds to .  This value is stored in a right-shift register 

that feeds inputs to be used for next prediction (see Figure 4). Initial values in the 

right-shift register are the d values of . Each  is calculated 

according to equation 6; external inputs are: 

 

                        (15) 

 

5. Results 

HCNN may be used with any kind of non-linear time series, but, given its 

architecture, it is better-suited for time series that present a pseudo-cyclic 

behavior. Here we present the results obtained for long-term prediction of time 

series generated using a Mackey-Glass function and a filtered real ECG.  

The performance of HCNN was measured using: 

1) Mean Squared Error (MSE), as defined in equation 10,   

2) A comparison of the magnitude of the maximum local Lyapunov Exponent of 

the output signal with the maximum local LE of the training signal. In all cases 

the maximum Lyapunov Exponent was calculated using the algorithm proposed 

by Wolf et al. [29]. 

Next we present the results obtained with two time series known to be chaotic: 

Mackey-Glass data and an Electrocardiogram (ECG) of a healthy patient. 

5.1 Long-term prediction of a Mackey-Glass time series 

The Mackey-Glass equation [6], widely used to model biological rhythms, is 

defined as: 

                                                     (16) 
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This equation results in chaotic behavior for a = 0.2, b = 0.1 and = 17. Figure 5 

shows a normalized numerical solution of the Mackey-Glass equation using these 

parameters.  

After pre-processing this time series as described in section 4, a time lag  

and an embedded dimension were identified. An HCNN with seven HGs 

was trained to model this series using 205 points for training. This HCNN has 5 

input neurons, 21 neurons distributed at the seven HGs, 7 hidden neurons and one 

output neuron. Appendix A shows the connection matrix of all neurons in the 

network. HCNN was trained for 31,000 epochs; the first 20,000 epochs trained the 

feed-forward connections and the last 11,000 epochs trained all connections. The 

training was executed with . The results of 

HCNN for the first 205 predicted values are shown in Figure 6, compared to 

training data. The MSE obtained was 0.0038. The predicted series of the same 

size obtained by the recursive method (black solid line) had a maximum LE of 

0.0374±0.006. This positive LE shows that the HCNN was able to capture the 

chaotic dynamics found in the training signal, which has a maximum LE of 

0.0334±0.003. Notice that maximum Lyapunov Exponent of training and 

predicted signals are similar. Figure 7 shows the results of long-term prediction 

for a horizon of 820 points (4 times the size of training series); The MSE of 

testing series from point 206 to point 820 was 0.2586 and the local maximum LE 

was 0.0845±0.005. Figure 8 shows the long-term prediction compared to expected 

results. Notice that this prediction resembles the expected signal but it is slightly 

delayed in time, a condition frequently found in long-term prediction.  

 

Fig 5 A Solution of Mackey-Glass equation for a = 0.2, b = 0.1 and = 17 
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Fig 6 Results of training an HCNN with 205 points of Mackey-Glass data 

 

 

Fig 7 Long-term prediction (820 points) obtained by an HCNN for 

Mackey-Glass series 
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Fig 8 HCNN 820 points of recursive long-term prediction vs. original Mackey-Glass series 

 

To compare our results with others, we looked for published research doing long-

term prediction, testing it with a Mackey-Glass series and measuring performance 

with MSE. The closest work that we found was a long-term predictor built by 

Sollacher and Gao [36]. Their predictor is based on a model called “Spiral 

Recurrent Neural Networks,” which is trained using online learning based on an 

extended Kalman filter and gradients, similar to Real Time Recurrent Learning. 

However, they evaluated the performance of their system using the “logarithmic 

normalized mean square error” metric, and they measured the error only in the 

time steps when the spikes occurred, which makes difficult to compare their 

results with ours. On the other hand, García-Treviño and Alarcón-Aquino [37] 

tested their predictor using the same performance metric and same time series as 

we did, but they reported results only with single-step prediction. Their predictor 

uses a neural network with wavelets as activation functions in the hidden layer, 

trained with a type of back-propagation algorithm. They also compared the 

performance of their network with single step prediction obtained using a feed-

forward network. Both networks were trained using 100 points and tested using 

100 single-step predictions. Wavelet network obtained an MSE of 0.0008 and the 

feed-forward network obtained a MSE of 0.0359. Given the fact that this is single-

step prediction, it is expected that the MSE obtained by their systems was smaller 

than the MSE obtained by our recursive prediction.  
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5.2 Modeling and predicting the dynamics of an ECG 

An electrocardiogram (ECG) is a time series believed to be chaotic, because it 

presents a maximum positive Lyapunov exponent, strange attractors in its phase 

or return maps [38] and other important characteristics [39]. Currently, several 

research projects are looking for modeling and predicting the behavior of an ECG, 

because several cardiac diseases could be promptly treated if they were predicted 

[40], [41]. For example, ventricular fibrillation or ventricular tachycardia produce 

arrhythmias that may lead to death [42], but the identification of patients in risk 

remains a challenge [43]. Therefore, the construction of an accurate model of an 

ECG is still an open problem. Here, we used an HCNN to capture the dynamics 

embedded in an ECG, even though its exact reproduction was not achieved. The 

ECG signal of a healthy patient, obtained from [44] was filtered with an FIR filter 

of order 40, with cutoff frequencies lying at 0.5 and 105 Hz. This upper limit was 

chosen after observing that in the original signal the magnitude of frequencies 

above 100Hz was less than 0.5. Figure 9 shows 507 points of the filtered ECG; 

the fundamental frequency of this signal is 1.4062 Hz and it presents a positive 

maximum local LE of 3.23±0.27 (an evidence of chaos). 

 

 

Fig 9 A filtered ECG signal 

 

An HCNN, with the same architecture as the one described in section 5.1 and in 

appendix A, was used for modeling this ECG. Seven HG were trained to produce 

the first seven sine harmonic components of the filtered ECG. After that, the 
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HCNN was trained for 30,000 epochs; the first 20,000 epochs trained the feed-

forward connections and the last 10,000 trained all feed-forward and recurrent 

connections. The training was executed using . 

An MSE of 0.0028 was reached for the first 507 predictions, the training segment 

(see Figure 10). This prediction has a maximum local LE=4.47±0.33. Figure 11 

shows 2,028 points of long-term prediction of the ECG (4 times the size of 

training series). This resulting series has chaotic characteristics, with a maximum 

local LE of 7.52±1.95. Notice that, even though the predicted series does not 

contain the right magnitudes in the peaks of the ECG, it contains “peaks” 

resembling the R and T peak of a typical ECG. Figure 12 compares the original 

training signals with the long-term prediction. 

 

 

Fig 10 Results of training an HCNN with 507 points of ECG data 
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Fig 11 Long-term prediction (2,028 points) obtained by an HCNN for 

ECG data 

 

 

 

 

Fig 12 Training series (507 points) and long-term prediction (2,028 points) obtained by an HCNN 

for ECG data 

 

A recursive predictor based on a fully-connected, feed-forward network was built 

to compare these results. The feed-forward network contained five inputs, 10 

hidden neurons and one output neuron and was trained using 470 points of a 

filtered ECG. This feed-forward network predicted well the training segment, as 
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shown at Figure 13. The MSE obtained for this segment was 0.0009. However, 

this network was unable to carry out the recursive prediction. Figure 14 shows the 

predictions obtained from points 470 to 570. For that prediction, the MSE was 

113.1381. The prediction is so distorted in magnitude that the training signal 

cannot be distinguished in the figure. 

 

 

Fig 13 Predicting the training series (point 1 to 470) using a feed-forward network 

 

 

Fig 14 Recursive Prediction from point 470 to 570 using a feed-forward network  
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6. Conclusions 

In this paper we presented a novel neural network architecture known as “Hybrid-

connected Complex Neural Network” (HCNN) and its training scheme. HCNN is 

able to capture the dynamics embedded in highly non-linear time series and to 

perform some long-term prediction of chaotic time series.  This architecture is 

composed of small fully-connected neural networks, embedded in a feed-forward 

system with some extra recurrent connections. The small networks, called 

harmonic generators (HGs), are trained to generate sine signals oscillating to 

frequencies that are multiples of fundamental frequency of training time series. 

The feed-forward part of HCNN is able to learn a function with similar maximum 

local Lyapunov Exponent as the one found in the training series.  The HGs in 

HCNN contribute with some information related to frequencies; the recurrent 

connections in the hidden layer contribute memorizing dynamic characteristics of 

the past; feed-forward connections going from the input to the hidden layer allow 

the definition of a function approximator. 

In the experiments reported here, an HCNN was used to learn a Mackey-Glass 

time series and an ECG to predict a horizon with a size 4 times the training 

signals. In both cases, chaotic signals were produced, and HCNN was able to 

approximate these long horizons using recursive prediction, oscillating in a stable 

way. However, the network was not able to generate right magnitudes in the peaks 

of the ECG. A reason for that could be the predictor is not detecting information 

in high frequencies. As it is well known, peaks are the most difficult part to be 

learnt by a predictor.  

Currently, we are designing other architectures similar to the HCNN, using 

wavelet theory instead of Fourier transform, in order to include time-frequency 

information in the model [45]. Future improvements to our predictor would 

include faster training algorithms and the use of ensemble forecasts, which has 

reported good results in this kind of problems [46]. Each ensemble could be built 

using several HCNNs, trained with different samplings from the same dynamical 

system but different initial conditions.    
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Appendix A 

Table A.1 shows the connection matrix of the HCNN topology, used for the 

experiments reported in this paper and in [22]. Each row and column represents a 

neuron in the network. Neurons are numbered in sequence, starting at the input 

layer. Neurons 1 through 5 correspond to input neurons; 6 to 26 belong to 

harmonic generators; neurons 27 to 33 belong to the hidden layer; neuron 34 

corresponds to the output of the network. A value 1 in a cell in row i and column j 

indicates a connection going from neuron i to neuron j. Bold lines separate each 

layer in the network, starting with the input layer, the HG layer, the hidden layer 

and the output layer.   

 

Table A.1 Connection Matrix of HCNN used for experiments reported in this paper [22].  

 
 

INPUT 
NEURONS 

 
 

HARMONIC GENERATOR’S NEURONS 

 
 

HIDDEN 
NEURONS 

O
U

T
P

U
T

 N
. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

6 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

9 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

10 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

11 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

12 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

14 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 

21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 0 

24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 

27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

  

 


