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Abstract—An electroencephalogram (EEG) is a record of the
electric signal generated by the cooperative action of brain
cells, that is, the time course of extracellular field potentials
generated by their synchronous action. EEG are widely used
in medicine for diagnostic and analysis of several conditions. In
this paper, we present a system based on neural networks and
wavelet analysis, able to identify epilepsy seizures using EEG
as inputs. This work is part of a research looking for novel
models able to obtain classification rates better that the state-
of-the-art, for the identification of normal and epileptic patients
using EEG. Here we present results using a Discrete Wavelet
Transform (DWT) and the Maximal Overlap Discrete Wavelet
Transform (MODWT) for feature extraction and Feed-Forward
Artificial Neural Networks (FF-ANN) for classification. By using
the benchmark database provided by the University of Bonn, our
approach obtains an average accuracy of 99.26 % tested using
three-fold cross-validation, which is better than other works using
similar strategies.

Index Terms—Electroencephalogram (EEG), Epileptic seizure
detection, DWT, MODWT, Self Recurrent Wavelet Neural Net-
works (SRWNN).

I. INTRODUCTION

THE human brain is a complex system that exhibits rich
spatio-temporal dynamics. Epilepsy is a common brain

disorder that affects about 1% of the world population, where
25% of such patients cannot be treated properly by any
available therapy [1]. Epileptic seizures are manifestations of
epilepsy; these seizures are seen as a sudden abnormal function
of the body, often with loss of consciousness, an increase in
muscular activity or an abnormal sensation [2]. Among the
noninvasive techniques for probing human brain dynamics,
electroencephalography provides a direct measure of cortical
activity with a millisecond temporal resolution. EEG signal
can provide valuable insight and improved understanding
of the mechanism causing epileptics disorders. Since in the
human brain there are millions of neurons interconnected in
a very complex manner, the resultant EEG signal is complex,
nonlinear and nonstationary in nature. A non-stationary signal
is one whose basic statistical properties, such as the mean and
variance do not remain constant over time [3].

Analysis, detection and classification are required in many
applications where signals are nonstationary and/or multicom-
ponent [4]. Lately, the EEG analysis has been mostly focused
on epilepsy seizure detection diagnosis [2], [5], [6], which con-
sists of normal and seizure EEG signals using methods such as
Empirical Mode Decomposition (EMD), Wavelet Transforms
and Artificial Neural Networks. EMD is a spontaneous multi
resolution method that represents nonlinear and non stationary
data as a sum of oscillatory modes inherent in the data, called
Intrinsic Mode Functions (IMFs) [7]. Wavelet transform is one
subclass of time-scale transforms. It has been used for repre-
senting various aspects of nonstationary signals [8].Traditional
methods rely on experts to visually inspect the entire length
EEG recordings of up to one week, which is tedious and time-
consuming [9]. Therefore, in recent years several models have
been proposed, some of them based on wavelet analysis and
artificial neural networks. The combination of both theories
seeks to exploit the features of analysis and decomposition
of wavelet processing along with the properties of learning,
adaptation and generalization of neural networks. Despite of
all works recently published, still there is a need to improve
the classification accuracy obtained by the available models,
as well as the generalization capabilities of such classifiers.
As a result we are looking for novel models based on neural
networks and wavelet analysis [10]. In this paper, we present
the results obtained by a classifier based on Infinite Impulse
Response (IIR) and Finite Impulse Response (FIR) filters,
Wavelet Transforms (WT) and Feed-Forward Artificial Neural
Networks (FF-ANN). The database provided by the University
of Bonn [11], [12] was used to assess this model and to
compare it with similar works. Our model, tested using three-
fold cross-validation, was able to obtain an accuracy of 99.26
%, which is better than the the results obtained by similar
works using the same database [9], [13], [14].

The rest of this paper is organized as follows. Section II
presents an overview of recent works related to epileptic classi-
fication, using wavelet analysis and neural networks; the EEG
database, pre-processing, feature extraction and classification
method proposed in this work are described in Section III;
Section IV provides the experimental results and Section V
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summarizes the conclusions drawn from previous sections.

II. RELATED WORK

An electroencephalographer, although guided by the general
definitions for epileptogenic sharp transient waveforms, uses
additional subjective criteria based on contextual information
and others heuristics to reach a decision [15]. Visual screening
of EEG records requires highly trained professionals. An
automated EEG epilepsy diagnostic system would be very
useful to improve this medical diagnosis. Several approaches
have been proposed for this task. We briefly describe some
works that report results using the Bonn database, which is
used in our research. Performance metrics such as accuracy,
sensitivity and specificity are described in Section IV.

A method of analysis of EEG signals based on WT and
classification of EEG signals using FF-ANN and logistic
regression (LR) are presented by Subasi and Ercelebi [9]. They
used lifting-based discrete wavelet transform (LBDWT) as a
preprocessing method. A LR and a FF-ANN classifiers were
compared using EEG data owned by the authors. This database
consists in 500 segments of EEG signals. A classification
accuracy of 89% of EEG signals was obtained by logistic
regression and a classification accuracy of 92 % by FF-ANN
trained using Levenberg-Marquardt algorithm.

Tzallas et al. [6] demonstrated the suitability of the time-
frequency (t-f) analysis to classify EEG segments for epileptic
seizures and they compared several methods for t-f analysis of
EEGs. Short-time Fourier transform and several t-f distribu-
tions were used to calculate the power spectrum density (PSD)
of each segment. A FF-ANN was used for the classification
of the EEG segments (that is, determine the existence of an
epileptic seizure). The method is evaluated using a benchmark
EEG dataset of the University of Bonn [11], [12] obtaining
89% of classification accuracy.

Another proposal based on FF-ANN incorporating a sliding
window technique for pattern recognition is presented by
Anusha K. et al. [15] for detection of epilepsy based on EEG
signals. This work used 50 segments of EEG, 25 cases of
healthy patients and 25 of epileptic patients of the database of
University of Bonn (it uses two data sets, Z and S) [11], [12].
The classification accuracy obtained was 93.37% for signals
of normal patients and 95.5% for epileptic patients.

A wavelet-chaos-neural network model for classification of
EEGs of healthy (normal), ictal (seizure-active), and interictal
patients is presented by Gosh et al. [14]. Interictal refers to the
period between seizures. Wavelet analysis is used to decom-
pose the EEG into delta (δ), theta (θ), alpha (α), beta (β), and
gamma (γ) sub-bands (see Section III-C for the meaning of
each sub-band). Three parameters are employed to represent
each segment of the EEG: standard deviation, correlation
dimension, and largest Lyapunov exponent. A mixed-band
feature space consisting of nine parameters and a Levenberg-
Marquardt Backpropagation Neural Network (LMBPNN) ob-
tained a classification accuracy of 96.7%, using the EEG
database of the University of Bonn [11], [12]. Experiments
were performed using the data sets named Z, F and S.

A classification system for epilepsy based on FF-ANN and
features extraction from EEG, based on wavelet is presented

TABLE I
COMPARISON OF SEVERAL PUBLISHED WORKS RELATED TO DETECTION

OF EPILEPSY.

Authors Type classifier Feature Dataset Accuracy Sensitivity Specificity
(hidden nodes) Extraction % % %

Subasi et al. [9] FF-ANN (21) LBDWT Db4 Own data 92 91.6 91.4
Tzallas et al. [6] FF-ANN (15) T-F Analysis Bonn (O,Z,F,N,S) 89 89.0 89.1

Anusha et al. [15] FF-ANN (20) T-F Analysis Bonn (Z, S) 93.3 — —
Shaik et al. [13] FF-ANN (-) DWT Db4 Bonn (O,Z,F,N,S) 98.3 97.6 98.5
Gosh et al. [14] FF-ANN (15) DWT Db4 Bonn (Z,F,S) 96.7 — —
Juárez et al. [10] FF-ANN (12) MODWT Db2 Bonn (Z,S) 90.0 100 83.3

Fig. 1. General block diagram for seizure classification [10]
.

by Shaik and Srinivasa [13]. They used features of Energy,
Covariance Inter-quartile range (IQR) and Median Absolute
Deviation (MAD) from each sub-band of EEG as input to a
classifier based on FF-ANN. The authors divided all segment
of EEG signal of the database into 23 sub-segments (1 second
each) generating 2300 samples from each set of the database
from University of Bonn [11], [12]. This work obtained 98%
of classification accuracy.

In a previous work we reported the use a FF-ANN for classi-
fication of ictal/normal states [10]. An accuracy of 90% was
obtained using a Maximal Overlap Discrete Wavelet Trans-
form (MODWT) [19] based on a second order Daubechies
(Db2) for characterizing the signal and a FF-ANN with 12
hidden nodes for classification. The MODWT was applied on
segments of 23.6 seconds taken from the subset Z and S of the
database provided by the University of Bonn [11], [12]. The
EEG signals were filtered using a digital Butterworth low-pass
filter of order 10 and cut off frequency of 64 Hz.

Table I summarizes these works in terms of classification
accuracy, sensitivity and specificity. Notice that the highest
accuracy is 98%.

III. MATERIALS AND METHODS

In this work, Wavelet Transforms (WT) are used to ex-
tract features of EEG signal and ANN are used to classify
Epileptic seizure. The results of two experiments each using
different filters, wavelets and size of samples of the database
are described. Fig. 1 shows the general block diagram of
the proposed approach, which is divided in three modules:
preprocessing, feature extraction and classification. In what
follows, we explain each module.

A. Experimental Data

The EEG database used in the experiments showed here
was provided by the University of Bonn [11], [12]. This
collection contains EEG data coming from three different
events, namely, healthy subjects, epileptic subjects during
seizure-free intervals (known as interictal states) and epileptic
subjects during a seizure (ictal states) [11], [12]. The collection
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contains five datasets identified as: O, Z, F, N and S; each
set holds 100 segments of EEG signals of 23.6 seconds. The
sampling frequency of these signals was 173.6 Hz, so each
segment contains 4,096 samples. Sets O and Z were obtained
from healthy subjects with eyes open and closed respectively;
sets F and N were obtained during interictal states in different
zones of the brain and set S was gotten from an subject during
ictal state [6]. In order to make a fair comparison with some
of the works described in Section II, sets Z and S were used
only for the results reported here.

B. Preprocessing

A filtering of the EEG signals was performed in order to
remove noise added during recording. Some physiological re-
searchers consider that EEG frequencies above 60 Hz are noise
and can be neglected [17]. Considering this value, the cut-off
frequency of the low-pass filters used here was set to 64 Hz.
The value 64, which is an exact power of two, was used instead
of 60 Hz, in order to obtain more easily the frequency sub-
bands of the EEG during the wavelet analysis. Two approaches
for filtering were tested: Finite Impulse Response (FIR) and
Infinite Impulse response (IIR). A FIR filter is one whose
impulse response (or response to any finite-length input) is
of finite duration, because it settles to zero in finite time. An
IIR filter may has internal feedback and responds indefinitely,
usually decaying [16]. Low-pass filters were designed with 3
dB of ripple in the pass-band from 0 to 64 Hz and at least
60 dB of attenuation in the stop-band [16]. An IIR Chebyshev
type II filter of order 24, an Elliptic filter of order 9, a FIR
filter Equiripple of order 343 and a Least Squares filter of
order 350 [16] were implemented using Matlab 2010a and the
Signal Processing Toolbox Version 6.19.

Figure 2 shows a segment of 4,096 samples of a filtered
EEG from a healthy subject(part a) and an ictal subject (part
b) with their corresponding frequency spectrum. Notice the
differences in the frequency range of each subject. Upper
plots of Figure 2 correspond to EEG segments and lower
plots are the corresponding frequencies. Notice that frequency
components above to 64 Hz have been eliminated due to the
low-pass filtering.

C. Feature extraction

In this work wavelet analysis was used to decompose the
EEG signals into delta (δ), theta (θ), alpha (α), beta (β), and
gamma (γ) sub-bands. Delta (δ) waves are between 0-4Hz,
shown during deep sleep, infancy and serious organic brain
disease [18]. Theta (θ) waves have frequencies between 4-8
Hz, shown mainly in parietal and temporal regions in children
and during emotional stress in some adults [18]. Alpha (α)
waves have frequencies between 8-12 Hz; they are found in
EEGs of almost all normal subjects when they are awake but
in quiet, resting and relaxed condition [18]. Beta (β) waves
normally occur in frequencies from 12 to 30 Hz. A beta wave
is normally associated with active thinking, active attention or
problem solving, that is, during intense mental activity [18].
Gamma (γ) waves show frequencies above 30 Hz, related to
information processing and the onset of voluntary movements
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Fig. 2. Filtered signals EEG by an Least Squares FIR filter and its frequency
spectrum of: a) Healthy subject, b) Ictal subject. Upper plots are samples
from EEG signals and the lower plots show the frequency components of
these EEG signals.

[18]. According to Ravish [18] and Sunhaya [2], the delta
and alpha sub-bands provide useful information to localize a
seizure. Therefore, only these sub-bands of the EEG signal
were used in this work. The wavelet analysis was carried
out using both a Discrete Wavelet Transform (DWT) and
the Maximal Overlap Discrete Wavelet Transform (MODWT)
[19]. In both cases a Haar wavelet, a second order Daubechies
(Db2) wavelet and a fourth order Daubechies (Db4) wavelet
were used. The selection of the wavelet must be related to the
common features of the events present in real signals. That
is, the wavelet should be well adapted to the events to be
analyzed. Different wavelet families have a trade-off between
the degree of symmetry (i.e., linear phase characteristics of
wavelet) and the degree to which ideal high-pass filters are
approximated (i.e., frequency response functions). The degree
of symmetry in a wavelet is important in reducing the phase
shift of features during the wavelet decomposition. If the phase
shift is large, it can lead to distortions in the location of
features in the transform coefficients [19].

Figure 3 illustrates the decomposition of a EEG time series
using a four-level MODWT extracting five physiological sub-
bands [10]. Figure 4 shows the delta (0-4 Hz) and alpha (8-12
Hz)sub-bands of a EEG segment of a healthy subject, obtained
using MODWT (Db2). Plots on the left side of the figure
correspond to sub-bands and plots on the right side correspond
their frequency components. Figure 5 shows the same for a
epileptic subject. Each segment of EEG was represented by
a feature vector of six components, built using the mean,
absolute median and variance of both delta and alpha sub-
bands. These features were also used in the work reported in
[13].

D. Classification

A FF-ANN with one hidden layer was used to build the
classifier. The network has 6 input nodes (one for each feature)
and 2 output nodes (one for each class). The experiments
reported here were executed using the code provided by [20],
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Fig. 3. Decomposition of EEG in physiological sub-bands by MODWT. The
figure shows the name of sub-bands and its respective frequency ranges [10].
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Fig. 4. Delta and Alpha sub-bands of an EEG signal obtained by MODWT
(Db2) of a healthy subject (normal). The graphs on the left side show the
obtained sub-bands and the graphs on the right side show its corresponding
frequency spectrum.

which is implemented in Matlab 2010a using the Neural
Network Toolbox Version 6.0.3 The stopping criterion for
learning algorithm was set to a value of 0.01 in the Mean
Square Error (MSE); the learning rate was fixed at 0.5. The
number of training epochs was fixed at 1,000 and the activation
function for all nodes was a sigmoid. These values were
experimentally chosen and similar to the ones reported by
[20]. In order to find the best number of hidden nodes for
the network, several tests were done using 6, 9, 12, 15, 16,
18, 21 and 24 nodes in the hidden layer of the FF-ANN. The
network was trained using 200 segments of EEG signals of
the database of University of Bonn [11], [12].

IV. RESULTS

Two experiments were carried out. In the first experiment,
feature vectors to train the network were obtained using the
whole segments coming from sets Z and S in the database
(see Section II-A). Note that in order to use a training set
with a total number of elements divisible by three, the last
two segments were eliminated. A total of 198 samples were
generated; 132 samples were used for training and 66 patterns
were used for testing the FF-ANN. For the second experiment,
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Fig. 5. Delta and Alpha sub-bands of an EEG signal by MODWT (Db2)
of an ictal subject (seizure). The graphs on the left side show the obtained
sub-bands and the graphs on the right side show its corresponding frequency
spectrum.

features are obtained using portions of EEGs available in
the database. We divided each EEG segment into 23 sub-
segments (1 second) for decomposition by DWT, whereas that
for decomposition by MODWT each segment was divided
into 32 sub-segments (0.7375 seconds). This is done in order
to provide the classifiers with more data to be learned. A
total of 4,599 patterns (3,066 for training and 1,533 for
testing) are used for the classification when DWT is used,
and 6,399 patterns (4,266 for training and 2,133 for testing)
when MODWT is applied.

Each experiment was tested using 3-fold cross validation.
Besides, in order to avoid bias generated by the randomness
of initial weights in the networks, each case was executed
five times, and an average of the performance is reported.
The results are evaluated in terms of classification accuracy,
sensitivity and specificity. Sensitivity (also called the recall
rate) measures the proportion of actual positive results which
are correctly identified as such. Specificity measures the pro-
portion of negative results which are correctly identified as
such [21]. Sensitivity and specificity are calculated as follows:

sensitivity =
TP

TP + FN
× 100% (1)

specificity =
TN

TN + FP
× 100% (2)

where TP (True positive) = correctly identified; FP (False pos-
itive) = incorrectly identified; TN (True negative) = correctly
rejected and FN (False negative) = incorrectly rejected [21].

A. Experiment I

As explained previously, during this experiment FF-ANN
classifiers were trained using patterns coming from whole
segments of EEG. The EEG were filtered using [16]: low-pass
IIR Chebyshev type II and Elliptic; low-pass FIR Equiripple
and Least Squares. Table II shows the results obtained in
each case using the FF-ANN classifier with different number
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TABLE II
EXPERIMENT I: RESULTS OF THE FF-ANN CLASSIFIER USING WHOLE

SEGMENTS

Filter Wavelet Hidden Accuracy Standard Sensitivity Specificity
nodes % deviation % %

Chebyshev II DWT - Haar 9 82.82 21.10 82.79 74.64
Chebyshev II DWT - Db2 15 83.73 21.52 82.56 82.04
Chebyshev II DWT - Db4 6 91.11 14.59 91.72 88.37
Chebyshev II MODWT - Haar 9 53.83 15.58 37.92 48.44
Chebyshev II MODWT - Db2 6 85.85 22.14 82.76 88.67
Chebyshev II MODWT - Db4 18 84.44 21.33 86.44 85.74

Elliptic DWT - Haar 21 88.38 16.76 86.46 91.58
Elliptic DWT - Db2 6 80.30 21.73 79.87 76.85
Elliptic DWT - Db4 9 82.82 20.20 80.19 87.61
Elliptic MODWT - Haar 21 59.09 21.31 30.05 56.12
Elliptic MODWT - Db2 6 90.00 12.91 88.17 96.32
Elliptic MODWT - Db4 24 87.17 14.85 87.22 85.61

Equiripple DWT - Haar 18 87.17 19.09 85.47 90.96
Equiripple DWT - Db2 12 83.03 20.57 81.48 85.36
Equiripple DWT - Db4 18 86.56 17.05 85.90 91.14
Equiripple MODWT - Haar 6 87.07 17.66 84.83 92.02
Equiripple MODWT - Db2 6 88.88 18.52 89.17 82.80
Equiripple MODWT - Db4 6 85.52 19.04 83.71 84.74

Least Squares DWT - Haar 6 84.44 21.32 80.00 82.82
Least Squares DWT - Db2 6 93.23 14.85 93.87 90.07
Least Squares DWT - Db4 18 82.72 20.13 91.24 81.42
Least Squares MODWT - Haar 9 83.73 18.32 82.71 90.97
Least Squares MODWT - Db2 21 84.14 15.96 82.76 87.16
Least Squares MODWT - Db4 21 87.37 15.82 85.88 90.89

of hidden nodes. The best result obtained in this experiment
was 93.23 % of accuracy using features calculated by a Least
Squares FIR filter and by DWT (Db2) with 6 hidden nodes in
the FF-ANN.

B. Experiment II

For this experiment low-pass filters Digital Chebyshev type
II and digital Elliptic were used [16]. Table III shows the best
results obtained in each case using the FF-ANN classifier for
different filters and number of hidden nodes. The best result
obtained in this experiment was 99.26 % of accuracy using
features calculated by a Chebyshev II filter and by DWT
(Haar) with 18 nodes in the hidden layer of the FF-ANN.
The fact that Haar wavelet has compact support and only one
vanishing moment compared with others wavelets that have
more vanishing moments may be a reason for obtaining the
best result using this type of wavelet. That is, the resulting
wavelet basis functions are unsuitable as basis functions for
classes of smoother functions and the EEG signals are not
smooth signals. Notice that the second and third best results
were 99.24 % and 99.12 % of accuracy, respectively. These
results were obtained with features calculated by MODWT.
The values about standard deviation, sensitivity and specificity
are similar to the best result of this experiment.

V. CONCLUSION

In this work, we present the results of a model based on
wavelet analysis and neural networks for identification of
seizures events of epilepsy. Inspired from previous results
reported in [10], and [13], and in order to find a suitable
combination to improve the results reported for this problem
we tested several filters, wavelets and wavelet transformations.
In addition, we tested the use of segments and sub-segments
for training the classifier. Two types of wavelets transforms
(DWT and MODWT) with Haar, Db2 and Db4 were used

TABLE III
EXPERIMENT II: RESULTS OF THE FF-ANN CLASSIFIER USING

SUB-SEGMENTS

Filter Wavelet Hidden Accuracy Standard Sensitivity Specificity
nodes % deviation % %

Chebyshev II DWT - Haar 18 99.26 0.26 98.93 99.59
Chebyshev II DWT - Db2 18 99.03 0.27 98.75 99.32
Chebyshev II DWT - Db4 15 96.57 5.87 95.38 98.91
Chebyshev II MODWT - Haar 24 99.24 0.32 98.86 99.64
Chebyshev II MODWT - Db2 24 95.80 12.84 94.77 96.19
Chebyshev II MODWT - Db4 24 97.72 4.55 96.76 99.13

Elliptic DWT - Haar 21 95.49 11.10 97.48 95.30
Elliptic DWT - Db2 21 95.96 12.33 96.65 96.23
Elliptic DWT - Db4 9 98.44 1.26 97.91 99.06
Elliptic MODWT - Haar 18 95.98 12.52 95.49 99.74
Elliptic MODWT - Db2 6 99.12 0.40 98.73 99.51
Elliptic MODWT - Db4 24 95.34 12.62 91.27 96.14

for decomposition of EEG segment and sub-segments. Six
features were used to train a FF-ANN: mean, absolute median
and variance of Delta and alpha sub-bands. When using whole
segments for training, 93.23 % of accuracy was achieved.
Whereas when using sub-segments for training, 99.26 % of
accuracy was achieved. The result of this experiment improved
the 98% obtained in [13]. As future work we will analyze the
use of a classifier based on a Self Recurrent Wavelet Neural
Network (SRWNN) [21],[22] for classification and EMD for
feature extraction. Furthermore, other training algorithms and
features will be explored.
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