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Abstract— In this paper a novel neural network architecture
for medium-term time series forecasting is presented. The
proposed model, inspired on the Hybrid Complex Neural Net-
work (HCNN) model, takes advantage of information obtained
by wavelet decomposition and of the oscillatory abilities of
recurrent neural networks (RNN). The prediction accuracy of
the proposed architecture is evaluated using 11 economic time
series of the NN5 Forecasting Competition for Artificial Neural
Networks and Computational Intelligence, obtaining an average
SMAPE of 27%. The proposed model shows a better mean
performance in time series prediction of 56 values than a feed-
forward network and a fully recurrent neural network with a
similar number of nodes. 1

I. INTRODUCTION

Forecasting consists of the evaluation of future values of
a time series, xt+h, h ≥ 1 based on the observations of
its past values x1, x2, . . . , xt [1]. This is a problem with
a wide range of applications in control, signal processing,
meteorology and economy. Although several methods have
been developed to obtain accurate predictions, nowadays,
forecasting is still an open problem. Neural networks are
a popular method to model temporal processes, because
of their ability to capture essential functional relationships
among data. Particularly in some prediction applications [2],
among the best performances have been obtained by RNNs.

In the last years, an important number of works related
to the use of RNNs for time series prediction have been
published. For example, Cai et al. [3] proposed a learning
algorithm based on particle swarm optimization and evolu-
tionary algorithms (PSO-EA). That algorithm is employed to
train an Elman network to predict time series and tested with
the CATS Benchmark, an artificial time series containing
5,000 values. CATS contains 100 missing values distributed
in 5 sections. The forecasting of the missing values is made
using 5 networks; each network predicts 20 values. The
prediction of all missing values with respect to real values
has a mean squared error (MSE) of 351. Beliave et al. [4]
implemented a chaotic neural network based on a biological
model called KIII set. This network, able to oscillate in
a complex non-periodic way, is trained using a Hebbian
learning rule. The results of the network are combined
with nearest neighbors to predict missing values of CATS
Benchmark. Training set is composed by 45 input samples,
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each containing 10 values of the time series. The obtained
predictions have a MSE of 73. Hybrid complex neural
network (HCNN) is a recurrent neural model for long-term
time series prediction proposed by Gomez-Gil [5]. HCNN
uses Fourier analysis to get information about time series
behavior to train several harmonic generators. A harmonic
generator is a fully connected neural network with the ability
of generating sinusoidal series in a autonomous way. Each
harmonic generator is connected to other recurrent neurons
using feed-forward connections. This network is trained
using backpropagation through time algorithm. The capacity
of HCNN for time series forecasting is tested using 512
values of an electrocardiogram. The results point out a MSE
of 2.5E−3

The main key points involved with neural networks for
time series prediction include data preprocessing, learning
algorithms, neural architecture design/modifications and pa-
rameter selection. In this paper, we propose a novel neural
architecture, inspired on the previous work of the HCNN [1],
that takes advantage of both the time-frequency information
obtained by wavelet decomposition of the training signal and
the oscillatory abilities of recurrent neural networks.

This paper is organized as follows: Section II introduces
key concepts about the design of the proposed neural ar-
chitecture. Section III presents a description of time series
employed. Some results are presented in Section IV. Finally,
Section V presents some conclusions.

II. FORECASTING MODEL

A. Recurrent Neural Networks (RNN)

A RNN may be defined as:

yj(t + 1) = ϕ(
m+n∑
i=1

wjizi(t)) (1)

zi(t) =

{
yi(t), i ≤ n

ui−n, i > n

where m is the number of inputs, n is the number of hidden
and output neurons, ϕ(.) is an arbitrary differential function,
commonly a sigmoid, yj denotes the output of the j-th
neuron and wji the connection from i-th to j-th neuron. The
external inputs ui and recurrent inputs yi are represented as
zi for convenience.

There are many RNN models; some examples include
the proposed by Elman, Hopfield and the fully-connected
recurrent neural networks. RNNs are able to create a rich



representation about past information [6], so they are selected
for this work.

B. Discrete Wavelet Decomposition

Discrete Wavelet Transform (DWT) can break down a sig-
nal into many lower resolution components using a wavelet
function. Decomposition consists of filtering and decimating
operations. During decomposition, low-pass (L) and high-
pass (H) filters are applied over the signal. L and H
filters are known as decomposition filters and their outputs
are commonly called approximation (cA) and detail (cD)
coefficients, respectively. This process is also known as
wavelet decomposition tree.

A wavelet decomposition tree produces signals that may
contain important information about the behavior of the
original signal. The decomposition process may be applied
iteratively; the level of decomposition applied to a signal
depends on the specific problem to be tackled. Fig. 1 shows
a wavelet decomposition tree with three levels.

Fig. 1. Wavelet decomposition tree with 3 levels

This reconstruction process, also known as Inverse Dis-
crete Wavelet Transform (iDWT), is performed using undeci-
mating and filtering. Undecimating consists of inserting zeros
between values of the input signal; the filtering operation is
carried out using synthesis filters based on decomposition
filters. The reconstructed signal is obtained by adding the
outputs of synthesis filters. Fig. 2, shows the reconstruction
process; inputs to L′ and H ′ synthesis filters are the approx-
imation and detail coefficients, respectively.

Fig. 2. Reconstruction process of a signal.

The original signal can be reconstructed from approxima-
tion and detail coefficients without losing information. Also,
it is possible to reconstruct approximation and detail signals
using their coefficients. For example, an approximation sig-
nal can be reconstructed using cA1 (see Fig. 1) and replacing
cD1 coefficients by zeros. Approximation signals contain
low-frequency information and so more information about
long-term behavior. On the other hand, detail signals have
high-frequency information that denotes short-term changes.

C. Proposed Architecture

The proposed architecture in this work contains one input
layer, two hidden layers and one output layer (see Fig. 3).
The input layer is composed by 5 neurons and is directly
connected to both hidden layers. The first hidden layer is
formed by three fully RNNs. Each RNN receives 5 inputs
from the input layer and produces one output. The input val-
ues correspond to five values coming from the reconstructed
embedded system of the original signal. The second hidden
layer is fully recurrent; it has 10 neurons and receives inputs
coming from the output neurons of each RNN located at first
hidden layer and from the input layer. The output layer has

only one neuron and receives inputs only from the second
hidden layer. This output neuron represents the prediction
of one point ahead of the reconstructed embedded system
of the signal. Hyperbolic tangent is used in the network as
activation function.

Fig. 3. Proposed Architecture.

The aim of the fully recurrent sub-networks located at the
first hidden layer is to represent time-frequency relationships
that compose the original signal. To do this, each sub-
network is trained to predict one point ahead of reconstructed
signals obtained from wavelet decomposition and reconstruc-
tion. Daubechies (db) wavelet function set is employed to
decompose and to reconstruct these signals. Reconstructed
signals were obtained using coefficients cA3, cD3, cD2 and
cD1 (see Fig. 1) labeled A, B, C and D respectively. To
reduce the total number of neurons in the proposed architec-
ture and consequently training time, only three reconstructed
signals out of the four are used to train three sub-networks.
All possible sets with combinations of three reconstructed
signals are created, and the best combination is selected as
follows: for each set, their signals are added and this result is
subtracted from the original signal to obtain the Mean Square
Error (MSE) of the combination. The combination with the
smallest MSE is selected. The number of nodes of each sub-
network is experimentally determined evaluating its capacity
to forecast 56 values ahead of a reconstructed signal. Real
time real learning based on extended Kalman filter (RTRL-
EKF) algorithm [7] is employed to train the sub-networks.
The training is made around 500 epochs.

After sub-networks are trained, they are integrated into
the whole architecture and their weights are set fixed. Then,
the complete architecture is trained about 50 epochs using
RTRL-EKF algorithm.

During the prediction phase, the inputs to the architecture
at each time are the outputs of the architecture at previous
time (known as recurrent prediction). Therefore, external
inputs are not necessary during this process, except for a
set the initial conditions defined during training phase. Also,
it must be noticed that in this phase, sub-networks work as
autonomous generators being fed each time with their own
outputs at previous times.

III. DATA PREPROCESSING

The forecast ability of this architecture was tested using
a prediction problem proposed at the website of the NN5
Forecasting Competition [8]. This dataset contains 111 daily
valued time series. Fig. 4 shows the first time series of
NN5 dataset. Each time series has 791 values and may
present missing values, outliers and/or seasonality. For the
experiments presented here, missing values were substituted
by the mean of the two nearest neighbors, whose values were
known.

Due to the fact that the activation function of this neural
network is defined for (−1, 1), training data is scaled into



this interval to improve learning. As suggested by Crone [9]
for this class of data, linear scaling was employed, which is
defined as:

Zt = lb +
xt −min(X)

max(X)−min(X)
(ub− lb) (2)

where lb and ub are lower and upper bounds of interval in
the data to be scaled and xt represents a point of time series
X to be scaled.

IV. RESULTS
Several experiments were done using a subset of 11

series taken from NN5 dataset [8]. Such subset was chosen
according with the rules given by the NN5 competition,
and it is used to compare the performance of the proposed
model with results published by the competition website and
with other two neural net models. For each time series and
each neural model, 12 experiments were executed, each with
different random initial weights, but the same corresponding
neural model configuration. The first 635 values of each
series were employed to train all models. The next 56 values
were used as a testing set to compare the performance of
the proposed architecture with respect to other two models:
a fully connected recurrent neural network and a three-layer
feed-forward neural network. The last 56 values of the series
were used as a validation set to compare the performance of
this architecture with respect to the competition results.

Fig. 4. The first time series of NN5 dataset.

Prediction performance is evaluated using two error mea-
sures: MSE and Symmetric Mean Absolute Percentage Error
(SMAPE). SMAPE is employed in NN5 time series fore-
casting competition as the criteria to determine the winner.
SMAPE is defined as:

SMAPE =
1
n

n∑
t=1

(
|xt − x̂t|

(xt + x̂t)/2
)(100%) (3)

where xt is the real value, x̂t is the forecasted value and n
is the number of predicted values.

Both the fully-connected and the feed-forward networks
used to compare results have 5 neurons in the input layer,
26 neurons in the hidden layer and one neuron as output
layer. One network for each model and each time series is
trained and tested. The performance of each model for all
time series is calculated using the mean of MSE and SMAPE
for all the 12 prediction experiments obtained by the three
models. It must be pointed out that, before the measurements
are calculated, the predictions are linearly re-scaled to the
original signal interval.

The results obtained by the proposed and the other two
models are analyzed with respect to the best case, worst case
and average behavior. Best and worst cases are selected in
terms of the lowest and highest values respectively, of the
mean SMAPE gotten by the proposed network. For best and
worst cases, the wavelet db10 function was used to build
reconstructed signals A, B and C, that were employed to

train sub-networks with 11, 8 and 4 neurons in their hidden
layers, respectively.

Table I shows the mean performances of the three network
models obtained using the time series that best predicted the
proposed architecture. Table II shows the mean performances
obtained using the time series that was predicted worst by
the proposed architecture. Table III shows the average of all
experiments using all time series. Also, Fig. 5 shows a plot
of the results of the experiment with best predictions and
compared to real values of the testing set. In the other hand,
Fig. 6 shows the results of the experiment with the worst
predictions.

Fig. 5. Predictions of the three models for the best case.

It may be observed that, in the worst case, the predictions
of the proposed architecture are better than feed-forward and
fully recurrent neural network models.

Fig. 6. Predictions of the three models for the worst case.

In the three tables may be observed that the proposed
architecture obtains better MSE and SMAPE that the feed-
forward and fully recurrent models. In average, the proposed
network obtained a MSE of 34.0 ± 20.1 compared to the
MSE of 198.7 ± 131.1 obtained by the fully recurrent and
the MSE of 250.1 ± 226.0 obtained by the feed-forward
model. In order to compare results with the NN5 forecasting
competition, the following was done: for each time series,
the proposed architecture getting the lowest SMAPE over the
testing set was selected; using that model, a new SMAPE
using the validation test was obtained; after that, the average
SMAPE of the 11 time series was calculated getting 28.5%.
This value locates the proposed model between the 25th.
and 26th. place in the NN5 forecasting competition, with
respect to the rank of statistical and neural networks methods.
This result is located between the 16th and 17th place in
the rank of neural networks and computational intelligence
methods [8].

V. CONCLUSIONS
A new neural network architecture that is able to predict

future values of time series, using a recurrent prediction
fashion is presented. The proposed neural network is based
on recurrent neural sub-networks that are able to learn
reconstructed signals built by wavelet coefficients, and then
combine them using a recurrent hidden layer and a feed-
forward output layer. The performance of the proposed
architecture was compared with other two neural models:
a feed-forward and a fully recurrent neural network using
11 series of NN5 competition. The obtained results point
out that the proposed method is better than the three other
analyzed models in the prediction of 56 values of the time
series previously mentioned.



TABLE I
PERFORMANCE OF THE THREE NEURAL MODELS FOR THE BEST

PREDICTION CASE

Network MSE SMAPE
Feed-forward 240.7± 493.7 32.6± 25.0%

Fully recurrent 224.5± 198.0 46.7± 23.9%
Proposed model 31.5± 3.5 20.6± 23.9%

TABLE II
PERFORMANCE OF THREE NEURAL MODELS FOR THE WORST

PREDICTION CASE

Network MSE SMAPE
Feed-forward 187.6± 114.1 62.2± 21.7%

Fully recurrent 107.9± 64.3 53.9± 14.1%
Proposed model 60.3± 91.8 40.5± 25.5%

TABLE III
AVERAGE PERFORMANCE OF THE THREE NEURAL MODELS

Predictors MSE SMAPE
Feed-forward 250.1± 226.0 49.3± 12.4%

Fully recurrent 198.7± 131.1 60.8± 13.0%
Proposed model 34.0± 20.1 27.2± 8.3%
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