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Abstract: An experiment on the detection of a P-300 rythm for potential applications on 

brain computer interfaces (BCI) using an Adaptive Neuro Fuzzy algorithm 
(ANFIS) is presented. P300 evoked potential is an electroencephalographic 
(EEG) signal obtained at the central-parietal region of the brain in response to 
rare or unexpected events. The P300 evoked potential is obtained from visual 
stimuli followed by a motor response from the subject. The EEG signals are 
obtained with a 14 electrodes Emotiv EPOC headset. Preprocessing of the 
signals includes denoising and blind source separation using an Independent 
Component Analysis algorithm. The P300 rhythm is detected using the discrete 

wavelet transform (DWT) applied on the preprocessed signal as a feature 
extractor, and further entered to the ANFIS system. Experimental results are 
presented. 
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1. INTRODUCTION 

This article presents a revised and extended version of a paper presented at 

the World Congress on Engineering and Computer Science 2011, 

International Conference on Signal Processing and Imaging Engineering [1]. 

In recent years, there has been a growing interest in the research community 

on signal processing techniques oriented to solve the multiple challenges 

involved in Brain Computer Interfaces (BCI) applications [2-4]. Brain 

Computer Interfaces (BCIs) are systems which allow people to control some 

devices using their brain signals. An important motivation to develop BCI 

systems, among some others, would be to allow an individual with motor 

disabilities to have control over specialized devices such as computers, 

speech synthesizers, assistive appliances or neural prostheses. A dramatic 

relevance arises when thinking about patients with severe motor disabilities 

such as locked-in syndrome, which can be caused by amyotrophic lateral 

sclerosis, high-level spinal cord injury or brain stem stroke. In its most severe 

form people are not able to move any limb. BCIs would increase an individual’s 

independence, leading to an improved quality of life and reduced social 

costs. Among the possible brain monitoring methods for BCI purposes, the 

EEG constitutes a suitable alternative because of its good time resolution, 

relative simplicity and noninvasiveness when compared to other methods 

such as functional magnetic resonance imaging, positron emission 

tomography (PET), magnetoencephalography or electrocorticogram systems.  

     There are several signals which can be extracted from the EEG in 

order to develop BCI systems, including the slow cortical potential [4], µ and 

β rhythms [6,7], motor imagery [8], static-state visually evoked potentials 

[9,10], or P300 evoked potentials [11-13]. P300 evoked potentials occur with 

latency around 300 miliseconds in response to target stimuli that occur 

unexpectedly. In a P300 controlled experiment, subjects are usually instructed 

to respond in a specific way to some stimuli, which can be auditory, visual, 

or somatosensory. P300 signals come from the central-parietal region of the 

brain and can be found more or less throughout the EEG on a number of 

channels. The P300 is an important signature of cognitive processes such as
 

attention and working memory and an important clue in the field of 

neurology to study mental disorders and other psychological 

disfunctionalities [14]. 
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     In this work, an experiment on P-300 rhythm detection using wavelet-

based feature extraction, and an ANFIS algorithm is presented. The 

experiment has been designed in such a way that the P300 signals are 

generated when the subject is exposed to some visual stimuli, consisting of a 

sequential group of slides with a landscape background. Images of a ship are 

inserted using a controlled non-uniform sequence, and the subject is asked to 

press a button when the ship unexpectedly appears.  The EEG signals are 

preprocessed using an Independent Component Analysis (ICA) algorithm, 

and the P300 is located in a time-frequency plane using the Discrete Wavelet 

Transform (DWT) with a sub-band coding scheme. The rest of the paper is 

organized as follows: Section 2 presents the theory associated to the wavelet 

sub-band coding algorithm. Section 3 describes Independent Component 

Analysis (ICA) as part of the pre-processing stage. Section 4 reports the 

evoked potential experiment and the proposed method on P300 signal 

detection. Section 5 describes the ANFIS model and its application to the 

EEG signals. Section 6 presents obtained results, and section 7 presents 

some concluding remarks, perspectives, and future direction of this research 

oriented to the implementation of a BCI system. 

2. DISCRETE WAVELET TRANSFORM 

      The Discrete Wavelet Transform (DWT) is a transformation that can 

be used to analyze the temporal and spectral properties of non-stationary 

signals. The DWT is defined by the following equation [15]:
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The set of functions )(, nkjψ is referred to as the family of wavelets 

derived from )(nψ , which is a time function with finite energy and fast 

decay called the mother wavelet. The basis of the wavelet space corresponds 

then, to the orthonormal functions obtained from the mother wavelet after 

scale and translation operations. The definition indicates the projection of the 

input signal into the wavelet space through the inner product, then, the 

function ����  can be represented in the form: 
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where ����� are the wavelet coefficients at level j. The coefficients at 

different levels can be obtained through the projection of the signal into the 

wavelets family as expressed in equations (3) and (4). 
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    The DWT analysis can be performed using a fast, pyramidal algorithm 

described in terms of multi-rate filter banks. The DWT can be viewed as a 

filter bank with octave spacing between filters. Each sub-band contains half 

the samples of the neighboring higher frequency sub-band. In the pyramidal 

algorithm the signal is analyzed at different frequency bands with different 

resolution by decomposing the signal into a coarse approximation and detail 

information. The coarse approximation is then further decomposed using the 

same wavelet decomposition step. This is achieved by successive high-pass 

and low-pass filtering of the time signal and a down-sampling by two [16], 

as defined by the following equations (5) and (6): 
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     Figure 1 shows a two-level filter bank. Signals aj(k), and dj(k) are 

known as approximation and detail coefficients, respectively. 
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Figure -1. Two-level wavelet filter bank in the sub-band coding algorithm. 

     This process may be executed iteratively forming a wavelet decomposition tree 
up to any desired resolution level. In this work the analysis was carried out up to the 
11 decomposition level (16 second windows with sampling frequency of 128 sps) 
applied on the signals separated from the ICA process described in the next section. 

3. PREPROCESSING OF EEG SIGNALS USING 

INDEPENDENT COMPONENT ANALYSIS  

Independent Component Analysis (ICA), an approach to the problem 

known as Blind Source Separation (BSS), is a widely used method for 

separation of mixed signals [17, 18]. The signals )(txi are assumed to be the 

result of linear combinations of the independent sources, as expressed in 

equation 7. 

)7(,)()()()( 221 tsatsatsatx niniiii +⋅⋅⋅++=  

or in matrix form: 

 

)8(,Asx =  
 

where A is a matrix containing mixing parameters and S the source signals. 

The goal of ICA is to calculate the original source signals from the mixture 

by estimating a de-mixing matrix U that gives: 

)9(Uxs =
)
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     This method is called blind because both the mixing matrix A and the 

matrix containing the sources S are unknown, i.e., little information is 

available. The de-mixing matrix U is found by optimizing a cost function. 

Several different cost functions can be used for performing ICA, e.g. 

kurtosis, negentropy, etc., therefore, different methods exist to estimate U. 

For that purpose the source signals are assumed to be non-gaussian and 

statistically independent. The requirement of non-gaussianity stems from the 

fact that ICA relies on higher order statistics to separate the variables, and 

higher order statistics of Gaussian signals are zero [19].  

     EEG consists of measurements of a set of N electric potential 

differences between pairs of scalp electrodes. Then the N-dimensional set of 

recorded signals can be viewed as one realization of a random vector process. 

ICA consists in looking for an overdetermined (N × P) mixing matrix A 
(where P is smaller than or equal to N ) and a P-dimensional source vector 

process whose components are the most statistically independent as possible. 

In the case of the P300 experiment described in this paper, ICA is applied 

with two objectives; denoising the EEG signal in order to enhance the signal 

to noise ratio of the P-300, and separating the evoked potential from some 

artifacts, like myoelectric signals derived from eye-blinking, breathing, or 

head motion. 

4. EXPERIMENTAL SETUP AND PROPOSED 

METHODOLOGY FOR P-300 SIGNAL 

DETECTION 

In this work the EPOC headset, recently released by the Emotiv 

Company, has been used [20]. This headset consists of 14 data-collecting 

electrodes and 2 reference electrodes, located and labeled according to the 

international 10-20 system [19]. Following the international standard, the 

available locations are: AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, 

F8 and AF4. The EEG signals are transmitted wirelessly in the frequency of 

2.4 GHz to a laptop computer. This experiment consists of presenting a non-

persistent image to cause a P300 response from the user. The block diagram 

of the system to evoke and capture P300 signals, and a picture of the 

described setup are shown in Figures 2 and 3, respectively. The subject is 
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resting in a comfortably position during the testing. A simple graphical 

application shows in the screen a starship attacking a neighborhood in a fixed 

time sequence not known by the subject, as represented in Table I. 

Recognition of the ship by the subject, when it suddenly appears in the 

screen, is expected to generate a P300 evoked potential in the brain central 

zone. The serial port is used for sending time markers to the Emotive 

testbench, in synchrony with the moments when the ship appears in the 

screen. The Testbench application provided by Emotiv System Co., is used to 

capture raw data from the 14 electrodes, as shown in Figure 8. 

Stimulus
application

Subject using
EEG headset

Capture
System

Serial
Comm

Bluetooth

 

Figure -2. Block diagram of the experimental setup used during the P300 signals detection. 

 



8 Chapter 

 

Published as: Chapter 27 in “Intelligent Automation and Systems 

Engineering”, Editors: Ao S, Amouzegar M and Rieger BB, Lecture Notes in 

Electrical Engineering, Springer New York, ISBN:978-1-4614-0373-9 pp. 

353-365,Vol.103, DOI:10.1007/978-1-4614-0373-9_27. 

 

 

 

Figure -3. Headset and stimulus used for the experiment on P300 signal detection. 

Table -1. Event time sequence examples. 

 
Event Time difference Time (mS) 

1 4000 4000 

2 3000 7000 

3 4000 11000 

4 3000 14000 

5 5500 19500 

6 3000 22500 

7 4000 26500 

8 4500 31000 

 

 

The operations proposed to detect the P300 rhythm are summarized in the 

block diagram of Figure 4. First, a band-pass filter selects the required 

frequency components and cancels the DC value. Then, ICA blind source 

separation is applied with the purpose of denoising the EEG signal and 

separating the evoked potential from artifacts, like myoelectric signals 

derived from eye-blinking, breathing, or head motion, as well as cardiac 

signals. 
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Figure -4. Block diagram of the proposed system for ANFIS-based P-300 signal detection. 

 

The P300 is further located in time and scale through a wavelet sub-band 

coding scheme. This information is further fed into an Adaptive Neurofuzzy 

Inference System (ANFIS), as described in the next section. 

5. ADAPTIVE NEUROFUZZY INFERENCE 

SYSTEM  

Adaptive Neuro Fuzzy Inference Systems (ANFIS) combine the learning 

capabilities of neural networks with the approximate reasoning of fuzzy 

inference algorithms. Embedding a fuzzy inference system in the structure of 

a neural network has the benefit of using known training methods to find the 

parameters of a fuzzy system. Specifically, ANFIS uses a hybrid learning 

algorithm to identify the membership function parameters of Takagi-Sugeno 

type fuzzy inference systems. In this work, the ANFIS model included in the 

MATLAB toolbox has been used for experimentation purposes. A 

combination of least-squares and backpropagation gradient descent methods 

is used for training the FIS membership function parameters to model a given 

set of input/output data through a multilayer neural network. ANFIS systems 

have been recently used for optimization, modeling, prediction, and signal 

detection, among others [22-24]. In this paper, the ANFIS system is proposed 
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to be used for the detection of the P-300 rhythm in an EEG signal, for BCI 

applications. Frequency bands with the most significant energy content, in 

the range of the P-300 signal, are selected from the wavelet decomposition, 

as the input for the ANFIS system. These bands are 8-4, 4-2, 2-1, and 1-0.5 

Hertz, which are considered as the linguistic variables B1, B2, B3 and B4, 

respectively. The ANFIS structure is depicted in Figure 5. Figure 6 shows the 

control surfaces corresponding to inputs B1 and B2 related to the output. 

Figure 7 shows the input Gaussian membership functions for input B1.  

 

 

Figure -5. ANFIS structure. 
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Figure -6. Control surfaces of input B1 and B2 related to the output. 

 

The ANFIS is used to map the P300 signal composition to a triangle 

pulse occurring simultaneously during the training stage. Figure 8 shows the 

ANFIS output following triangle pulses after a 400 epochs training. A 

trained ANFIS is further used during a verification stage, using the EEG 

signals obtained from 8 test subjects performing the same experiment with 

10 trials of 16 seconds each. 
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Figure -7. Gaussian membership functions corresponding to the input B1. 

 

 

Figure -8. ANFIS output and triangle pulses. 

 

6. RESULTS 

The captured signals were analyzed using a time window of 16 seconds, 

with a sampling frequency of 128 samples per second. Figure 9 shows the 14 

electrodes raw signals obtained from the emotive headset. As described 
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before, a band-pass filtering stage is applied to the raw data. Figure 10 

shows information from the electrodes T8, FC6, F4, F8 and AF4 signals, 

after the filter is applied. 

 

 

Figure -9. Raw data obtained from the EEG headset. 

 

 

Figure -10. Prefiltered EEG signals. 
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Figure -11. 14 channels entered to the ICA algorithm. 

 

Figure -12. Separated signals obtained from the ICA algorithm. 
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Figure -13. Scalogram of signal obtained from channel 2. 

 

Figure -14. ANFIS output showing detection of P-300 events. 

Table -2. Results obtained on the P300 rhythm detection. 

Result Rate 

Detected 85% 

Undetected 15% 

Detected taking account false positive events 60% 

 

 

The P300 signals are predominant in the brain central area, thus the P300 

is typically measured from the Pz, Cz, Fz electrodes. The Emotive headset 
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does not include specific electrodes over the brain central area, however, the 

headset can be positioned in such a way that the electrodes AF3, AF4, F3, 

and F4, are able to collect the EEG signals relevant to the P300 experiment 

described in this work. The EEG signals obtained from the 14 electrodes are 

then processed through the ICA algorithm. The 14 channels are shown in 

Fig. 11. Typically, the P300 signals are embedded in artifacts, and they 

appear in two different channels; in this case channel 2 and 3. After the 

blind source separation applied to electrodes AF3, AF4, F3, and F4 signals, 

it can be noticed that P300 signals are visible on channel 2, while the others 

separated channels show some artifacts such as the myoelectric signal from 

blinking, which is predominant in AF3 and AF4 electrodes, cardiac rhythm, 

and system noise. The signals obtained after the ICA separation, are shown 

in Figure 12.  

A time-scale analysis in the wavelet domain was then performed in order 

to locate the energy peaks corresponding to the P300 rhythm. DWT sub-

band coding with 11 decomposition levels, using a Daubechies-4 wavelet 

was applied to channel 2, as shown in Fig. 13. It can be seen that the P300 

peaks are easily distinguished in the wavelet domain. The energy peaks in 

the scalogram of Fig. 13, are located in the bands 0.5-1Hz and 1-2Hz, as 

expected. It was noted that P300 rhythms were distinguished better in the 

EEG signals corresponding to the 8 first events in the experiment. After that 

time lapse, the experiment became tedious for most of the users, with the 

consequence of generating low-level P300 signals, undetectable in the 

experiments. Figure 14 shows a typical obtained signal, corresponding to 

the detection of P300 rythms, as the output of the ANFIS system. Table II 

summarizes the total detection accuracy obtained with the proposed system. 

7. CONCLUDING REMARKS 

This paper presented an experiment on P300-rhythm detection based on ICA-

based blind source separation, wavelet analysis, and an ANFIS model. The results 

presented in this paper are part of a project with the ultimate goal of designing and 

developing brain computer interface systems. These experiments support the 

feasibility to detect P300 events using the Emotiv headset through an ANFIS 

approach. The proposed method is suitable for integration into a brain-computer 

interface, under a proper control paradigm. DWT coefficients could be used further 
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as input to a variety of classifiers using different techniques, such as distance-based, 

k-nearest neighbor or Support Vector Machines (SVM).  
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