Las Matemáticas del Aprendizaje Automático Conexionista y su relación con las TIC's

Dra. M. Pilar Gómez Gil

Coordinación de Computación Instituto Nacional de Astrofísica, Óptica y Electrónica

<u>pgomez@inaoep.mx</u>

Oficina 8228

ccc.inaoep.mx/~pgomez

Algo sobre mi lugar de trabajo

- El Instituto Nacional de Astrofísica, Óptica y Electrónica es uno de los 27 "centros Conacyt"
- Su misión es:
 - "contribuir a la generación, avance y difusión del conocimiento para el desarrollo del país y de la humanidad, por medio de la identificación y solución de problemas científicos y tecnológicos y de la formación de especialistas en las áreas de Astrofísica, Óptica, Electrónica, Ciencias Computacionales y áreas afines"

El Gran Telescopio Milimétrico, un proyecto del INAOE

http://www.lmtgtm.org/images/sitepicsInauguration/GTM-22-11-06.jpg

La coordinación de Computación

- Formada por 21 investigadores, 2 investigadores visitantes, 2 técnicos en investigación, 40 alumnos de maestría y 30 de doctorado
- LÍNEAS Y LABORATORIOS DE investigación.
 - Aprendizaje Computacional y Reconocimiento de Patrones
 - > Cómputo Reconfigurable y de Alto Rendimiento
 - Cómputo y Procesamiento Ubicuo
 - > Procesamiento de Bioseñales y Computación Médica
 - > Robótica
 - > <u>Tecnologías del Lenguaje</u>
 - Visión por Computadora

(c) P. GOMEZ, INAOE 2013

Laboratorio "Machine Learning and Pattern Recognition" - MLPR (Aprendizaje Computacional y Reconocimiento de Patrones)

 Enseñar a las computadoras a realizar tareas complejas que serían difíciles de programar directamente

 Identificar información y/o conocimiento útil a partir de datos

Objetivos del MLPR

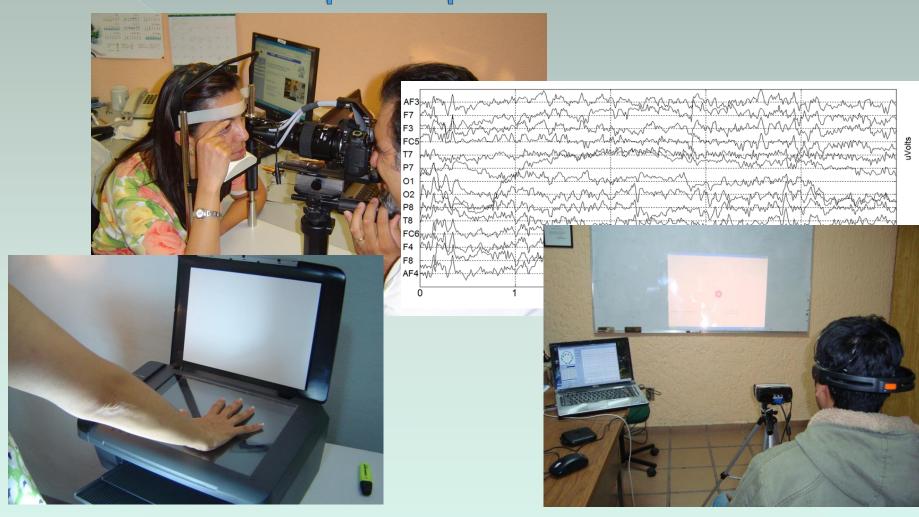
- Analizar grandes cantidades de datos
- Extraer y utilizar automáticamente conocimiento
- Facilitar la programación
- Proveer capacidad de adaptación
- Aprender tareas difíciles

Ejemplos de Aplicaciones

 Biología: entender los procesos que dan origen a la vida

• Banca: detección automática de fraudes, asignación de calificaciones crediticias y pronóstico de tendencias en las bolsas de valores

 Industria: identificación de factores que afectan la calidad de sus productos


 Medicina: diagnóstico y tratamiento d enfermedades

Machine Learning and Pattern Recognition Lab Sensando Datos para experimentos...

Sensando datos para experimentos

(c) P. GOMEZ, INAOE 2013

Integrantes del MLPR participando en seminarios...

Dr. Francisco Martínez Trinidad, miembro del MLPR durante la ceremonia de entrega del Premio Estatal de Ciencia y Tecnología 2011

Segundo lugar en el premio nacional de la bolsa mexicano de valores 2009, categoría de investigación, otorgado a la Infloe Dra. Pilar Gómez Gil y al Dr. Alfonso Mendoza, del Centro de Inteligencia de Negocios - UPAEP

Los miembros del laboratorio participan en multiples eventos con organizaciones, universidades y escuelas de la región, nacionales e internacionales

La tecnología de información

- El concepto "TIC" en la actualidad cubre un gran número de facetas y diferentes áreas del conocimiento.
- México enfrenta problemas que pueden solucionarse a través de tecnologías de información en muy diversas áreas:
 - > Toma de decisiones
 - > Medicina
 - > Educación
 - > Seguridad
 - > Desarrollo urbano
 - > Desarrollo de tecnología propia

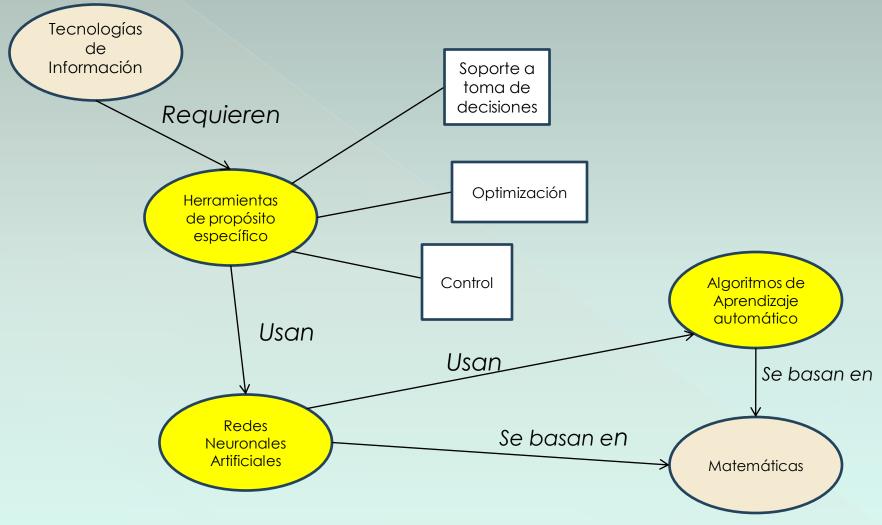
Las TIC y sus herramientas de trabajo (1/2)

- La creación, uso y perfeccionamiento de tecnologías de información requiere de herramientas de muy diversos índoles:
 - > Abstractas (Matemáticas, Lógica)
 - De comunicación (Teorías de redacción y estilos de expresión, difusión de conocimiento)
 - De diseño (Modelos de Ingeniería de HW y Software, programación, redes)
 - De gestión (Administración de Proyectos)
 - De propósito específico (manejadores de bases de datos, lenguajes de programación, simuladores, optimizadores, clasificadores etc..)

Las TIC's y sus herramientas de trabajo (2/2)

- Para resolver los retos que enfrentamos de manera no solo eficaz (que resuelven) sino también eficiente (que resuelven al mínimo costo) estas herramientas deben aplicarse de manera integral.
- Para usar las herramientas hay que conocerlas y perfeccionar su dominio de manera incremental.

Las TIC's y las Matemáticas


- Una de estas herramientas, las matemáticas, son de especial utilidad para la solución de un gran número de retos.
- Las matemáticas son herramientas que permiten construir otras de las herramientas nombradas anteriormente.

Las matemáticas

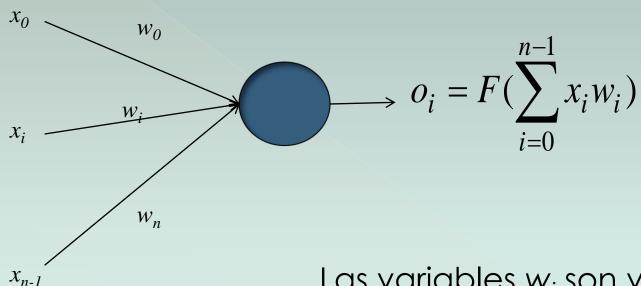
 "Grupo de ciencias relacionadas que tratan con la lógica de la cantidad, la forma y el arreglo" (Wordweb Dictionary)

Pitágoras. Foto tomada de: http://en.wikipedia.org/wiki/Mathematics

Una Relación (de tantas) entre Tly Matemáticas


Las Redes Neuronales Artificiales (1/2)

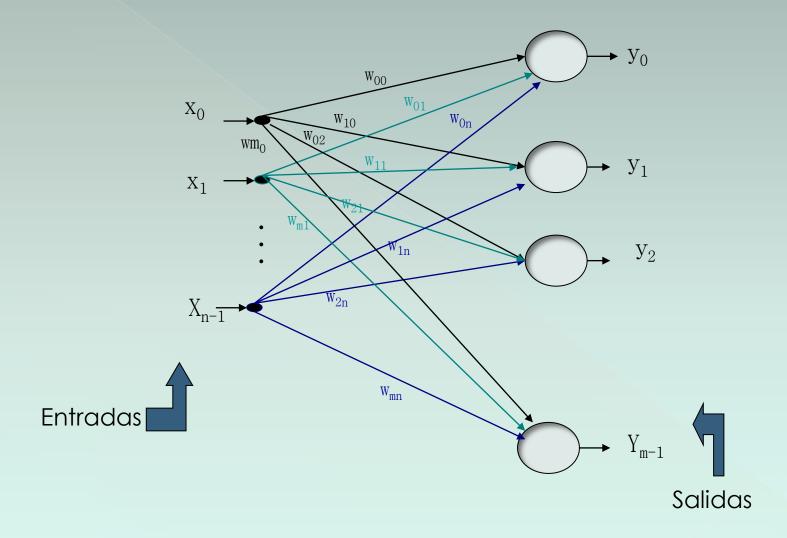
 Son modelos matemáticos capaces de adaptar su comportamiento en respuesta a ejemplos presentados por el medio ambiente de manera supervisada o no supervisada (esto es aprendizaje automático!)


Las Redes Neuronales Artificiales (1/2)

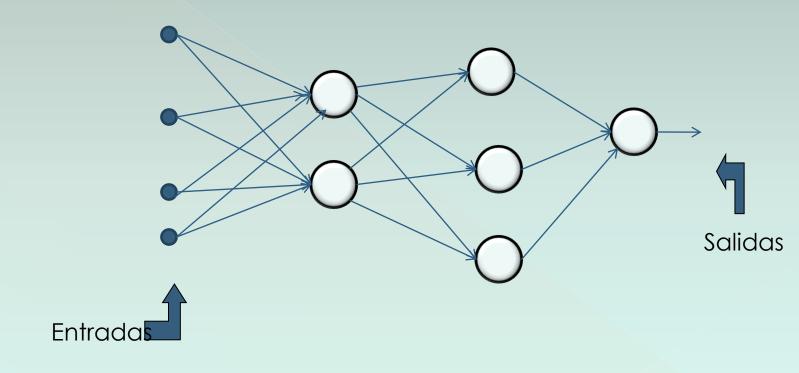
- Están inspiradas en la construcción del cerebro y las neuronas biológicas.
- Una red neuronal artificial es un procesador paralelo y distribuido, hecho de varios procesadores simples, que puede almacenar y utilizar conocimiento adquirido de la experiencia (Haykin 2009).

El Contexto de Redes Neuronales (Gómez-Gil, 2009)

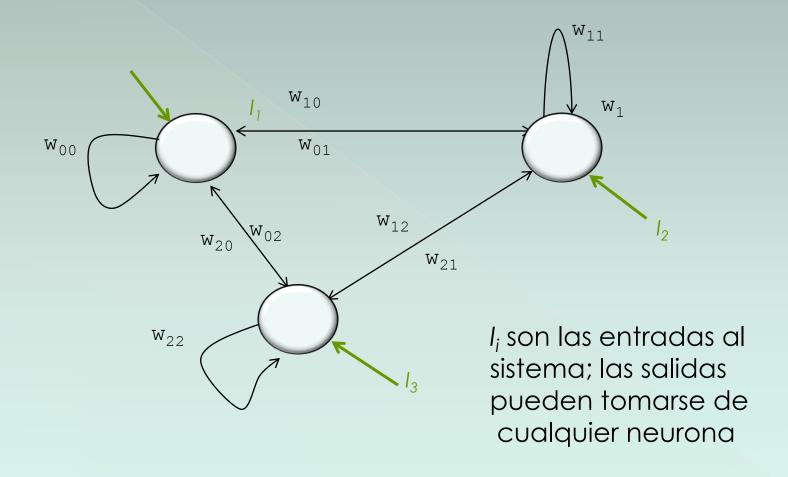
El componente fundamental: neurona



Las variables w_i son valores reales que contienen el conocimiento de la red neuronal


Topologías principales de redes neuronales artificiales

- El modelo paralelo y distribuido de una red neuronal puede tener varias formas, conocidas como:
 - > Redes de un nivel
 - > Redes de varios niveles
 - > Redes recurrentes


Redes de un nivel

Redes de varios niveles

Redes Recurrentes

Aprendizaje basado en ejemplos

- Las redes neuronales son capaces de modificar su comportamiento en respuesta al medio ambiente, el cual es "presentado a la red" a través de ejemplos significativos del problema.
- Para una Red Neuronal, aprender significa modificar los valores de los pesos (números reales), siguiendo una estrategia determinada conocida como "algoritmo de aprendizaje."

Tipos de algoritmos de aprendizaje para RNA

- Basados en corrección de errores
- Basados en memoria
- Basados en la regla de Hebb
- Aprendizaje competitivo
- Aprendizaje Boltzmann

Un ejemplo de Aprendizaje basado en corrección de error: Retropropagación

- Es un modelo de entrenamiento supervisado, esto es, la red neuronal conoce explícitamente qué es lo que debe aprender
- El algoritmo consiste en hallar los pesos que minimizan el cuadrado del error promedio entre la salida real y la salida deseada en la red. Es una técnica de gradiente descendente.
- La función de error total ET a minimizar, es la suma acumulada de los errores generados por cada ejemplo del conjunto de entrenamiento:

Minimización de Error

$$ET = \sum_{p} E_{p}$$
 donde:

$$E_{p} = \frac{1}{2} \sum_{j=1}^{n} (T_{pj} - O_{pj})^{2}$$

- T_{pj} = Valor de salida deseado para el j-ésimo neurón de la última capa de la red.
- O_{pj} = Valor de salida real en el j-ésimo neurón de la última capa de la red.

Algoritmo de Retropropagación (Gómez-Gil, 2009)

Sean:

W_{ji} = Peso que conecta hacia el neurón j en la capa k
 desde el neurón i en la capa k-1.

F = Función de activación (contínua y diferenciable)

 $O_{pi} = F(NET_{pi})$ Salida del j-ésimo neurón.

 $NET_{pj} = \sum W_{ji}O_{pi}$ Donde O_{pi} corresponde a la entrada de la red (X_i) si el neurón i está en la primera capa de la red.

 ΔpW_{ji} = Incremento en el peso W_{ji} provocado por el p-ésimo patrón.

Algoritmo de Retro- propagación (cont.)

- 1.- Inicialice todos los pesos y valores umbrales de la red con número reales pequeños generados al azar.
- 2.- Repita lo siguiente hasta que el error ET del conjunto de entrenamiento sea aceptablemente pequeño, o alguna condición predeterminada de "fin de entrenamiento" sea verdadera:
 - 2.1 Por cada patrón p en el conjunto de entrenamiento:
 - 2.1.1 Lea el vector de entrada \mathbf{X}_p y el vector de la salida deseada \mathbf{T}_p .
 - 2.1.2 Calcule la salida de la red.
 - 2.1.3 Calcule el error E_p generado por el patrón p.

Algoritmo de Retropropagación (cont.)

2.1.4 Ajuste todos los pesos de la red aplicando la siguiente regla (regla delta generalizada) a cada uno de los pesos W_{ji} $W_{ji}(t+1) = W_{ji}(t) + \Delta p W_{ji}$ donde $\Delta p W_{ji} = \eta \delta_{pj} O p_i$ $\eta = Coeficiente de aprendizaje (0 < \eta < 1)$ δ Se calcula de la siguiente manera:

a) Si j corresponde a un neurón en la capa de salida de la red:

$$\delta_{pj} = (T_{pj} - O_{pj}) F' (NET_{pj})$$

Algoritmo de Retropropagación (cont.)

si la función de activación es la sigmoide, entonces:

$$F'(x) = F(x)(1 - F(x)), y$$

 $\delta_{pj} = (T_{pj} - O_{pj}) O_{pj} (1 - O_{pj})$

b) Si j no corresponde a un neurón de salida, es decir, está en una de las capas escondidas entonces:

$$\delta_{pj} = F'(NET_{pj}) \sum_{k} \delta_{pk} w_{kj}$$

donde la sumatoria acumula el error propagado hacia atrás.

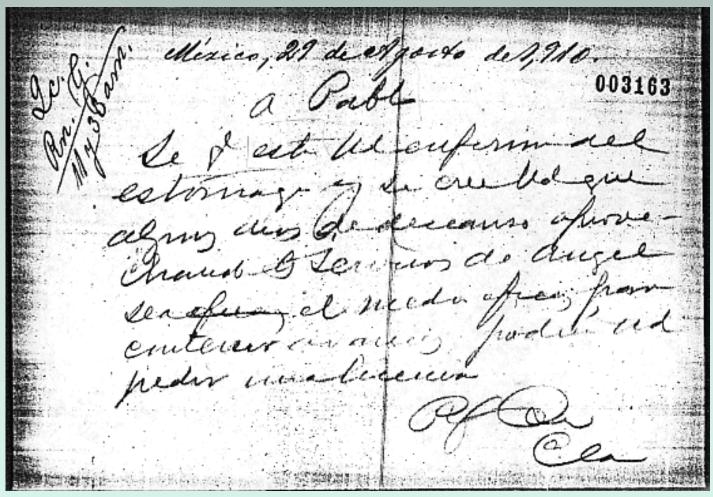
- 2.1.5 Regrese al paso 2.1
- 3.- Regrese al paso 2.

?De donde salió todo eso?

 Un pedazo de la explicación de deducción del algoritmo de retropropagación, tomada del libro de texto de (Haykin 1999):

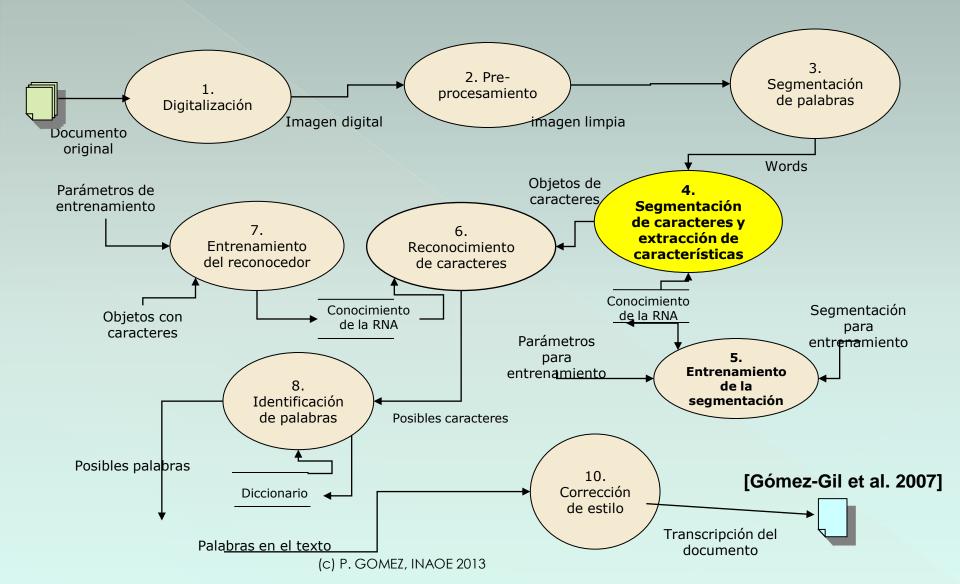
In a manner similar to the LMS algorithm, the back-propagation algorithm applies a correction $\Delta w_{ji}(n)$ to the synaptic weight $w_{ji}(n)$, which is proportional to the partial derivative $\partial \mathcal{E}(n)/\partial w_{ji}(n)$. According to the *chain rule* of calculus, we may express this gradient as:

$$\frac{\partial \mathcal{E}(n)}{\partial w_{ji}(n)} = \frac{\partial \mathcal{E}(n)}{\partial e_j(n)} \frac{\partial e_j(n)}{\partial y_j(n)} \frac{\partial y_j(n)}{\partial v_j(n)} \frac{\partial v_j(n)}{\partial w_{ji}(n)}$$
(4.6)

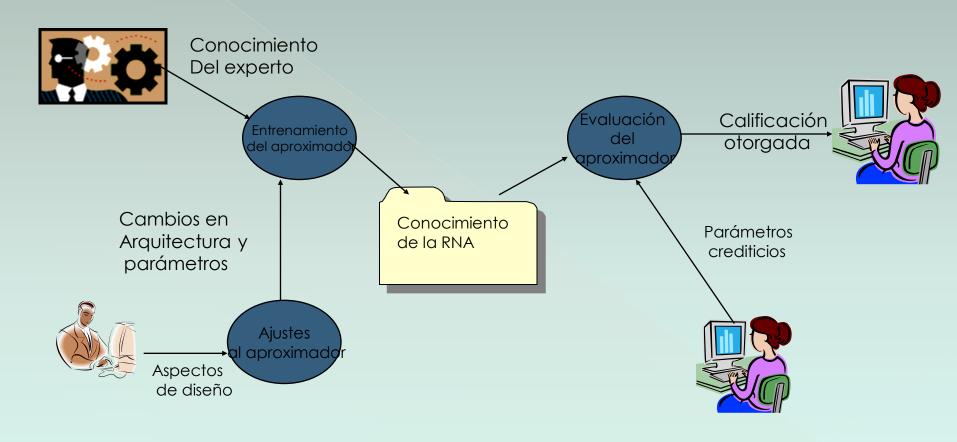

Algunos Ejemplos de Aplicaciones de RNA

- Reconocimiento de caracteres manuscritos, impresos, de font antiguo, etc. .
- Construcción de Memorias asociativas.
- Reconocimiento de voz
- Control de robots
- Toma de decisiones administrativas, financieras etc.
- Reconocimiento de enfermedades
- Reconocimiento de señales de radio
- Predicción de Señales y series de tiempo Caóticas
- Generación de reglas para sistemas expertos
- Aplicaciones en economía para predicción
- Aplicaciones en geología, meteorología, astronomía
- Aplicaciones en

Algunos de los problemas que nosotros estudiamos...


- Predicción de series de tiempo caóticas y de otros tipos utilizando Redes Neuronales Complejas
- PRISCUS: Reconocimiento automático de escritura manuscrita en documentos antiguos
- Aproximadores de funciones basados en redes neuronales para la estimación futura de
- calificaciones crediticias en gobiernos locales mexicanos
- Sistemas de biometría multimodal utilizando modelos adaptivos

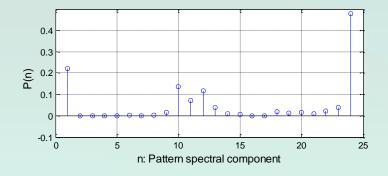
El reconocimiento de manuscritos es un reto!



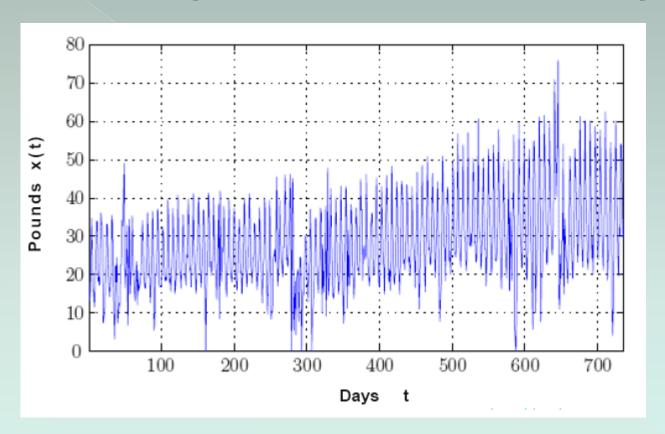
[Spinola & Linares 2000]

Un OCR para documentos manuscritos

Estructura de un aproximador crediticio (Mendoza & Gómez-Gil 2010)



Biometría multimodal (Ramírez-Cortés et al. 2008)



Extracción de características: Imágenes en niveles de gris e imagen binarizada

Extracción de caracteristicas: Modelo pecstrum

Predicción a largo plazo de señales caóticas (García-Pedrero & Gómez-Gil 2010)

Serie de tiempo NN5-1 de la NN5 Forecasting Competition for Artificial Neural Networks and Computational Intelligence. (Crone, 2008).

Para conocer un poco mas de estos y otros proyectos consulta:

http://ccc.inaoep.mx/~pgomez/publicaciones.htm

Conclusiones

- Las TI son una excelente oportunidad para solucionar una gran cantidad de problemas actuales
- Su uso eficiente y eficaz requiere de conocer y dominar varias herramientas, entre ellas las matemáticas
- Las matemáticas son una herramienta para la construcción de modelos basados en aprendizaje automático y redes neuronales artificiales
- Las Redes Neuronales Artificiales tienen aplicaciones de diversas áreas donde TI se aplica contínuamente

Muchas gracias por su atención!

Estas diapositivas están disponibles en:

http://ccc.inaoep.mx/~pgomez/VeranoINAOE-13.pdf

pgomez@acm.org

pgomez@inaoep.mx

Bibliografía

- Crone S.F.: "NN5 Forecasting Competition for Artificial Neural Networks & Computational Intelligence." Available since 2008 at: http://www.neural-corecasting-competition.com/. Last consulted at March, 2009. (2008).
- García-Pedrero, A and P. Gómez-Gil. "Time Series Forecasting using Recurrent Neural Networks and Wavelet Reconstructed Signals". Proceedings of the 20th. International Conference on Electronics, Communications and Computers. CONIELECOMP 2010.
- Gómez-Gil, P. Tutorial: An introduction to the use of Artificial Neural Networks. 8th. Mexican International Conference on Artificial Intelligence. MICAI 2009. Disponible en: http://ccc.inaoep.mx/~pgomez/cursos/redes%20neuronales%20artificiales/index_archivos/Pag e530.htm
- Gómez-Gil, P. De-Los-Santos Torres G., Navarrete-García J. Ramírez-Cortés M.. "The Role of Neural Networks in the interpretation of Antique Handwritten Documents." in Hibrid Intelligent Systems. Analysis and Design Series: Studies at Fuzziness and Soft Computing. Vol. 208. Editors: Castillo, O. Melin, P. Kacprzyk W. Springer. ISBN-10: 3-540-37419-1. Pags. 269-281. 2007
- Mendoza, A. y Gómez-Gil, P. "Herramientas para el Pronóstico de la Calificación Crediticia en las Finanzas Públicas Estatales en México: Redes Neuronales Artificiales, Modelo Probit Ordenado y Análisis Discriminante." A publicarse en Herramientas de Diagnóstico y Respuesta de las Finanzas Públicas Locales en México en un Entorno de Crisis" Editor: Mendoza, A. Editorial Porrúa. 2010.
- S. Haykin. Neural Networks, A comprehensive Foundation. MacMillan College Publishing Company. 1999
- Ramírez-Cortés, JM., P. Gómez-Gil, Sánchez-Perez, G. Prieto-Castro, C. <u>"A shape-based hand recognition approach using the pattern spectrum."</u> Journal of Electronic Imaging. Jan-March 2009. Vol. 18, No. 1. ISSN 1017-9909. Digital version: Vol. 18, 013012 (2009); DOI:10.1117/1.3099712