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¿Is it possible to automatically 

read this? 
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(Gomez-Gil et al. 2007) 



Few words about handwritten 

recognition 
• There is a huge amount of non-digital manuscript 

documents that are required to be read and translated 
to digital form. 

• Important problems are faced during  off-line, write-
independent manuscript recognition, as: 

– Different writing styles 

– Segmentation issues 

• Automatic reading of manuscripts may be handled  
by: 

–  Character recognition 

– Word recognition  

– Text line recognition 
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Examples of  different writing styles 

for the word “and” 

From IAM database (Marti & Bunke 2002) 
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The main problem using character 

recognition 

Segmentation 
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isolated characters 
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About Word recognition 

• Word recognition consists of finding the 

word that is most compatible to a specific 

image, with respect to a previously 

defined lexical set (Vinciarelli 2002). 

• Word recognition may be treated as a 

temporal classification problem, that is,  a 

problem where the assigned class depends 

upon a sequence of events occurring in 

the past.                             (cont.) 
(c) Gómez-Gil, INAOE 2012 9 



 

   t = 1 
 

 

          w                                     ¿? 

 

 t = 2 

 

 

         o                                    ¿? 

 

 t = 3 

 

 

         r                                 ¿? 

 

 t = 4 

 

 

         d                                   word 

A system for temporal 

classification  
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Each event is 

fed  one at the 

time 



Identifying patterns in sequences  
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(signal 1,signal 2) Pattern 

Signal 1 

Signal 2 

Pattern 
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What about this?  
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Words as sequences 

• To identify words as sequences, each 

element of the sequence has to be 

defined. This may be a character, but… 

• Sayre paradox: 

 “a character can not be segmented before being 

recognized, and it cannot be recognized before 

being segmented” 
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Segmentation issues 

(Gómez-Gil & Navarrete 2004) 
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Segmentation issues (cont.)  

• We may try to segment a word in ¨chunks” 
that may or may not be characters, but that 
are fairly consistent in a word. 

• Chunks of different writers using different 
words, may be clustered in a unsupervised 
way, creating prototypes. 

• Given a chunk, we can identify their k-most 
similar prototypes and measure these 
relationships. 

• This information will create feature vectors 
Fi to be used in temporal classification   
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2. A system for temporal 

classification  
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Components of such classifier 

• Chunks (segments) information 
represented in a self-organizing map 
(SOM) trained with segments of words,  

• A metric to represent the probability of a 
segment to belong to a specific cluster 
defined by the SOM and to its neighbors, 

• A simple recurrent network (SRN), which 
memorizes the temporal relationships 
among all segments  
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Architecture of this classifier 
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(Luna-Perez 2011) 



Preprocessing 

• Noise elimination  

• Binarization  

• Slant correction 

 

 

               before                     after 
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(Luna-Perez 2011) 



Segmentation 

• The lowest pixel in each column is found 

• A cut point is located where the pixel is 

higher than their neighbors 
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(Luna-Perez 2011) 
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3. Self-Organizing Map (1/2) 
(Kohonen 2001) 

• SOM is able to generate groups with no 

supervision. 

• Once trained, the output layer of a SOM 

forms a two-dimensional map, where each 

node contains a prototype of a cluster. 

• Each neuron represents a cluster similar 

to clusters represented by neuron’s 

neighbors. 
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Self-Organizing Map (2/2) 
(Kohonen 2001) 

Input layer 

Output layer 

X=[    x 1,          x 2,            …                 xn   ] 

… 
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Clustering segments  

24 

Feature map generated by a SOM using several “types” of segments 

(Luna-Perez, 2010) 
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Generation of feature vectors Fi  (1/3) 

1. Each segment t is fed to SOM, getting a winning  
neuron ct ,  a 2-D vector containing the 
coordinates of the winning neuron 

2. the k-1 neurons, each identified as mti i=2..k, 
with highest activations in the map are also 
identified.  

3. Let mt1= ct  (neuron with highest activation) 

 

 

More… 
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Generation of feature vectors Fi  (2/3) 

4. A measure of the probability of each of these neurons 

to represent best the segment is calculated as: 

 

 where: 

 ct is a 2D vector defined by the coordinates of the 

winning neuron at SOM 

mti is the 2D vector defined by the coordinates of 

the i-neuron with highest activation at the SOM, i= 

1..k, obtained when segment t is applied. 
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Generation of feature vectors Fi  (3/3) 

 

• Then feature vector Ft for each t- segment is 
defined as: 

 

Ft=(mt11, mt12, p(mt1), mt21, mt22, p(mt2), …, mtk1, 
mtk2, p(mtk)) 

 

• Ft is 3k-dimensional  
     (k is a free parameter of this system,   representing the 

number of best nodes in SOM involved ) 
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 The classifier 
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(Luna-Perez 2011) 
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temporal classification  
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Classification 

• It is carried out using a Simple Recurrent Network 
(SRN) (Elman 1990) 

• The algorithm back propagation through time is used 
to train the SRN (supervised training). 

• The SRN network used here consists of 3 layers:  
– an input layer with 3k neurons  

– a hidden layer with recurrent connections  

– an output layer with as many nodes as the number of 
words to be recognized. 

• Each feature vector, corresponding to each segment 
in the world, is fed to SRN once at the time, 
generating a network´s output  once at the time 
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4. Simple Recurrent Network 

(SRN) (Elman 1990) 
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Other Characteristics of this SRN 

• Output nodes use the activation function 

Softmax: 

 

 

• SRN is trained to receive each segment Ft of 

each word w. 

 

(c) Gómez-Gil, INAOE 2012 32 



 

   t = 1 
 

 

   F1              ¿? 

 

 t = 2 

 

 

   F2                                    ¿? 

 

 t = 3 

 

 

        F3                                 ¿? 

 

 t = 4 

 

 

         F4                                 ”word” 

Desired values for each sequence? (1/2) 
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Desired values for each sequence?  (2/2) 

1. The desired value of each output node i 

when segment Ft is input, is calculated as 

 

 

                                                                                                    

x is the position of segment Ft  in the 

word and  n is the number of segments 

in the word. 
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5. Experiments (1/2) 

• The proposed method was tested using a lexical with 
10 words taken from database IAM [5] 

 

 

• The proposed method  ( identified as SOM-SRN ) 
was compared with other two neural classifiers: 
– A feed-forward network (identified as FF in table)  

– FF-SOM network. (identified as SOM-FF in table) 

 

• 20  experiments were executed for each network case 

• 150 different configurations for each network were 
tested in order to find the best configuration.  

a and are as at be but bye can for 
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Experiments (1/2) 

• Performance was measured in two ways:  

1. Classification Error (a percentage, best value = 0) 

 

 

2. Word accuracy metric (Graves et al. 2009) 
(best value = 1) 
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Results (2/2) 

Classification error obtained by the three cases 

Word accuracy obtained by the three cases 

Case Error in training set Error in testing set 

FF 46.95% ±27.32% 68.80% ±14.68% 

SOM-FF 7.93% ±1.68% 36.80% ±5.13% 

SOM-SRN 5.75%±1.34% 24.30%±5.12% 

Case Word Accuracy using training set Word accuracy using testing set 

FF 55.52 ±27.14 32.92 ±15.51 

SOM-FF 93.03 ±1.5 66.21 ±5.85 

SOM-SRN 95.42±1.21  78.25±3.25  
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6 .Conclusions 

 

• This classifier is based on the use of three main 
components:  
– a feature extractor based on non-supervised clustering,  

– measures of the probability that a segment of a word 
belongs to the k most probable clusters,  

– a SRN able to classify sequences of features representing 
the words. 

 

• This method showed to overcome two other neural 
classifiers when tested over a set of 10 words, that 
were written by different people and showing very 
different styles. 
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Future work 

• Programming all of these in a parallel 

system (GPU) 

• Find a better way to define the “desired 

output” 

• Try a more powerful RNN 

• Consider  “future chunks” to assign the  

best class 
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This presentation is available at:  

http://ccc.inaoep.mx/~pgomez/conferences/PggIsc12.pdf 
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