Measuring similarities in contextual maps as a support for handwritten classification using recurrent neural networks

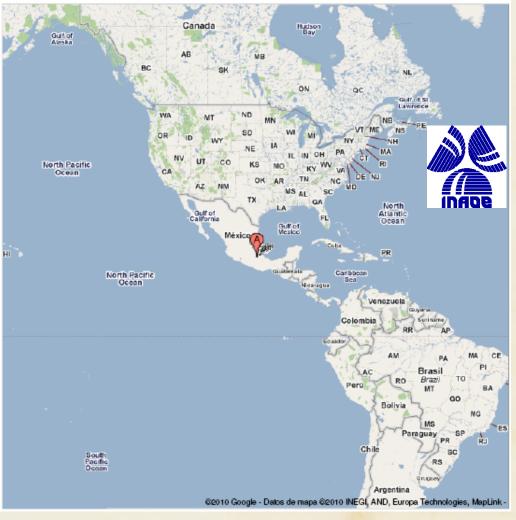
Pilar Gómez-Gil, PhD

National Institute of Astrophysics, Optics and Electronics (INAOE)

Tonantzintla, Puebla

ISCI'2012

Tonantzintla



inaoep.gob.mx

A view from office...

Outline

- 1. Few words about the problem of handwritten recognition
- 2. A system for temporal classification
- 3. Self organizing map
- 4. Simple recurrent network
- 5. Experiments
- 6. Conclusions and future work
- 7. References / future readings

¿Is it possible to automatically read this? (Gomez-Gil et al. 2007)

Minico, 27 de Agordo del 910. 003163 euferm almy dens de chand & Lerifin do duy senquerel meda officio contener in action ford hedir una licencia

Few words about handwritten recognition

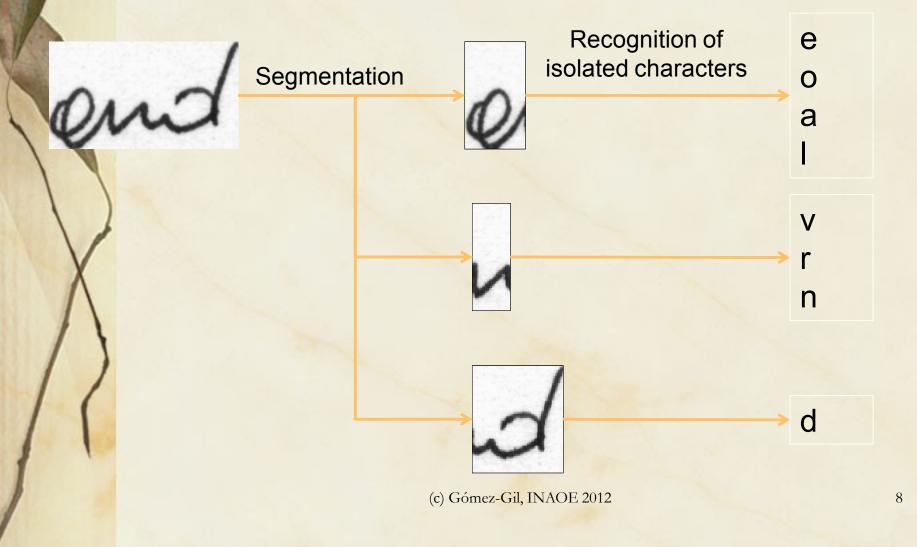
- There is a huge amount of non-digital manuscript documents that are required to be read and translated to digital form.
- Important problems are faced during off-line, writeindependent manuscript recognition, as:
 - Different writing styles
 - Segmentation issues
- Automatic reading of manuscripts may be handled by:
 - Character recognition
 - Word recognition
 - Text line recognition

Examples of different writing styles for the word "and"

and

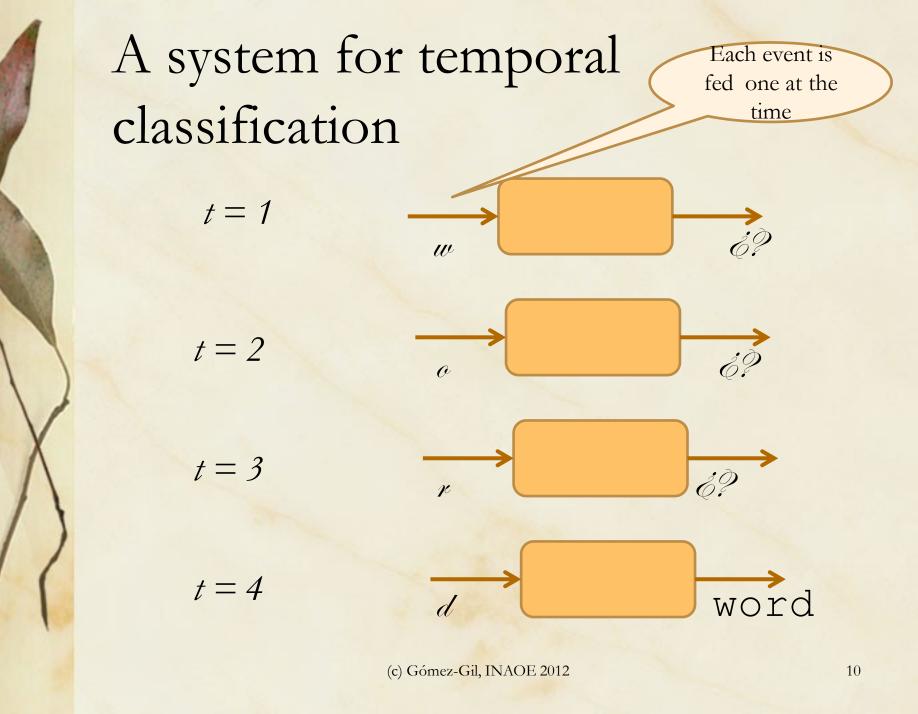
From IAM database (Marti & Bunke 2002)

The main problem using character recognition

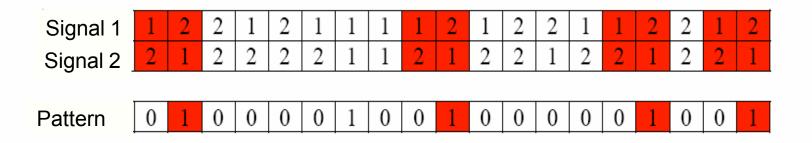


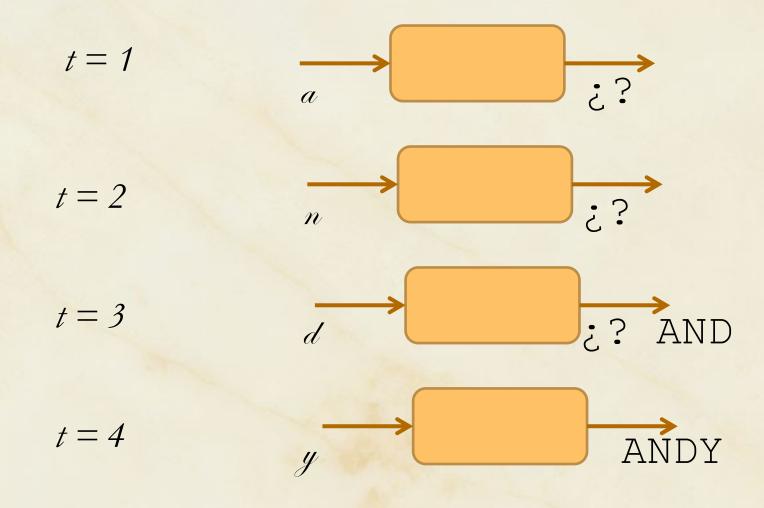
About Word recognition

- Word recognition consists of finding the word that is most compatible to a specific image, with respect to a previously defined lexical set (Vinciarelli 2002).
- Word recognition may be treated as a temporal classification problem, that is, a problem where the assigned class depends upon a sequence of events occurring in the past. (cont.)



Identifying patterns in sequences





Words as sequences

• To identify words as sequences, each element of the sequence has to be defined. This may be a character, but...

• Sayre paradox:

"a character can not be segmented before being recognized, and it cannot be recognized before being segmented"

Segmentation issues

surta

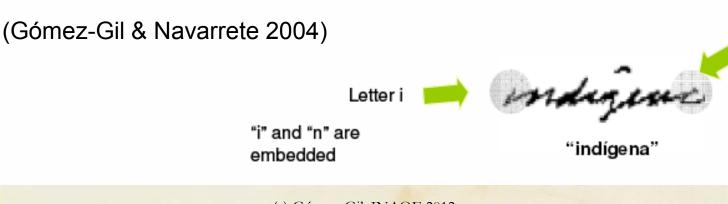
"Carmelita"

Note that same class "a", has different shape, depending on the position in the Word and among different words

Em

Letter Letter may be confused with a connection

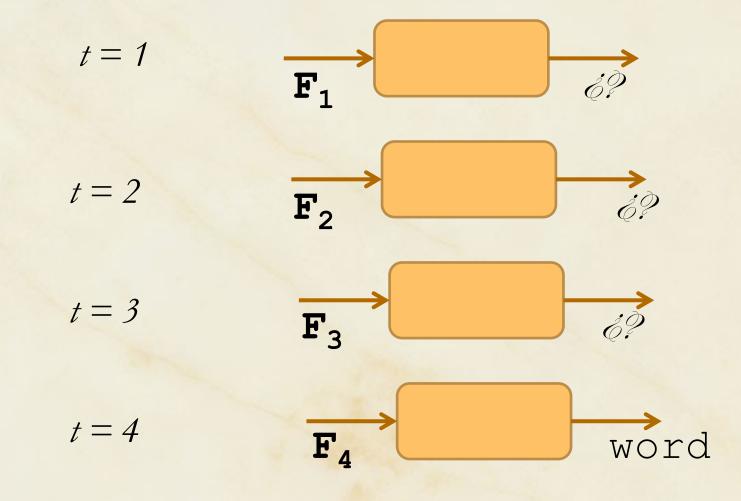
"ruido"



Segmentation issues (cont.)

- We may try to segment a word in "chunks" that may or may not be characters, but that are fairly consistent in a word.
- Chunks of different writers using different words, may be clustered in a unsupervised way, creating prototypes.
- Given a chunk, we can identify their k-most similar prototypes and measure these relationships.
- This information will create feature vectors
 F_i to be used in temporal classification

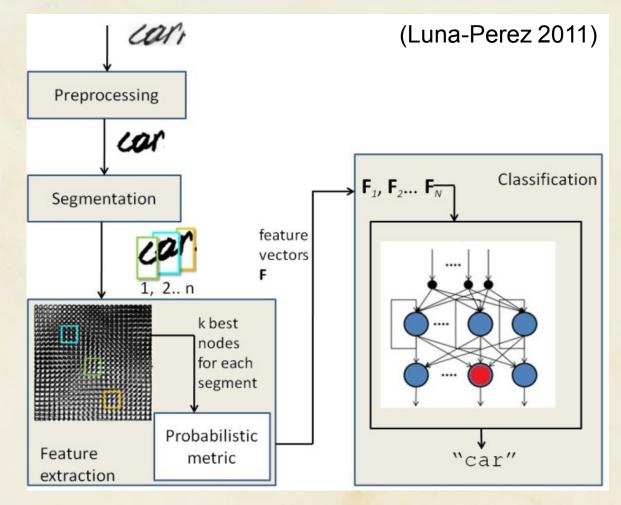
2. A system for temporal classification



Components of such classifier

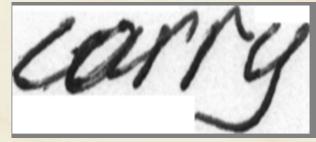
- Chunks (segments) information represented in a self-organizing map (SOM) trained with segments of words,
- A metric to represent the probability of a segment to belong to a specific cluster defined by the SOM and to its neighbors,
- A simple recurrent network (SRN), which memorizes the temporal relationships among all segments

Architecture of this classifier



Preprocessing

- Noise elimination
- Binarization
- Slant correction



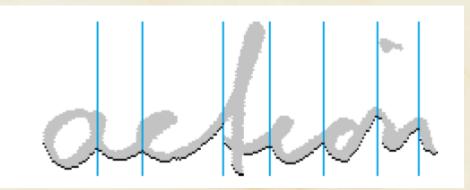
before

after

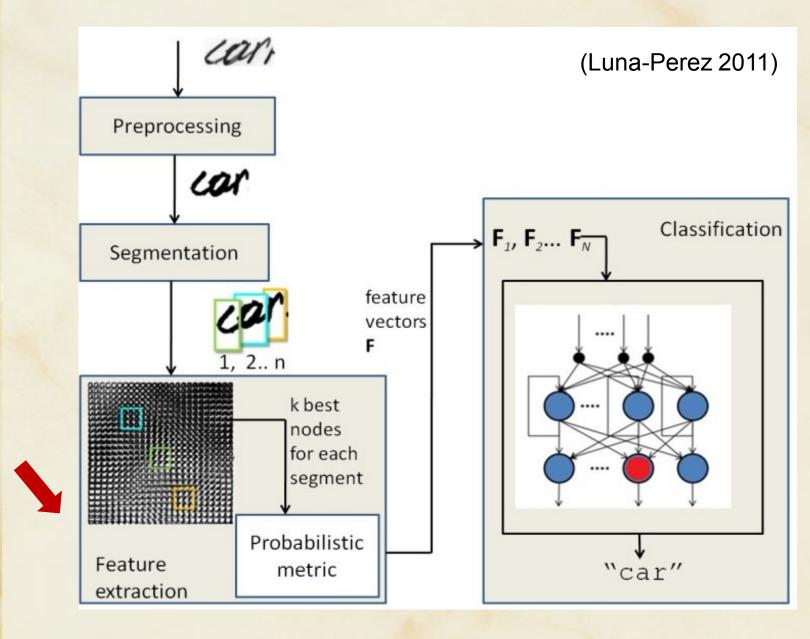
(Luna-Perez 2011)

Segmentation

- The lowest pixel in each column is found
- A cut point is located where the pixel is higher than their neighbors



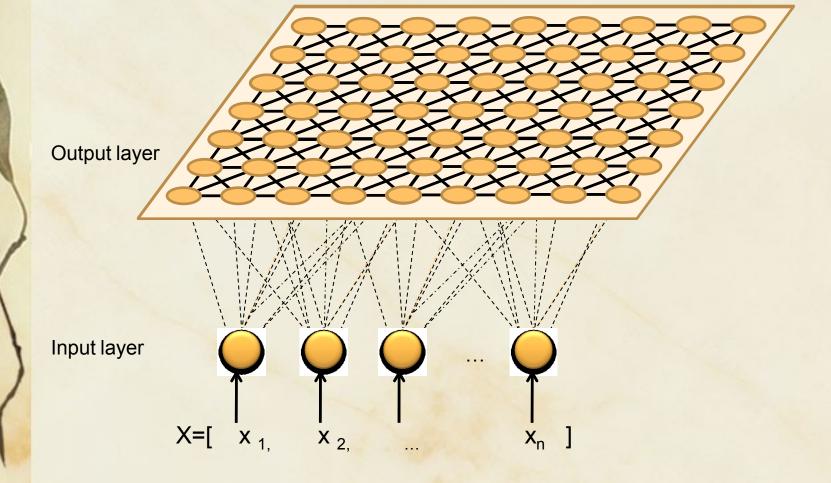
(Luna-Perez 2011)



3. Self-Organizing Map (1/2) (Kohonen 2001)

- SOM is able to generate groups with no supervision.
- Once trained, the output layer of a SOM forms a two-dimensional map, where each node contains a prototype of a cluster.
- Each neuron represents a cluster similar to clusters represented by neuron's neighbors.

Self-Organizing Map (2/2) (Kohonen 2001)



Clustering segments

Feature map generated by a SOM using several "types" of segments (Luna-Perez, 2010)

Generation of feature vectors \mathbf{F}_i (1/3)

- 1. Each segment *t* is fed to SOM, getting a winning neuron c_t , a 2-D vector containing the coordinates of the winning neuron
- 2. the *k*-1 neurons, each identified as $m_{ti} i=2..k$, with highest activations in the map are also identified.
- 3. Let $m_{tl} = c_t$ (neuron with highest activation)

More...

Generation of feature vectors $\mathbf{F}_i(2/3)$

4. A measure of the probability of each of these neurons to represent best the segment is calculated as:

$$p_t(\mathbf{m}_{ti}) = \frac{\exp(-\|\mathbf{m}_{ti} - \mathbf{c}_t\|)}{\sum_{j=1}^{k} \exp(-\|\mathbf{m}_{tj} - \mathbf{c}_t\|)}$$

where:

 c_t is a 2D vector defined by the coordinates of the winning neuron at SOM

m_{ti} is the 2D vector defined by the coordinates of the *i-neuron with highest activation at the SOM*, *i*=
 1..k, obtained when segment *t* is applied.

Generation of feature vectors $\mathbf{F}_i(3/3)$

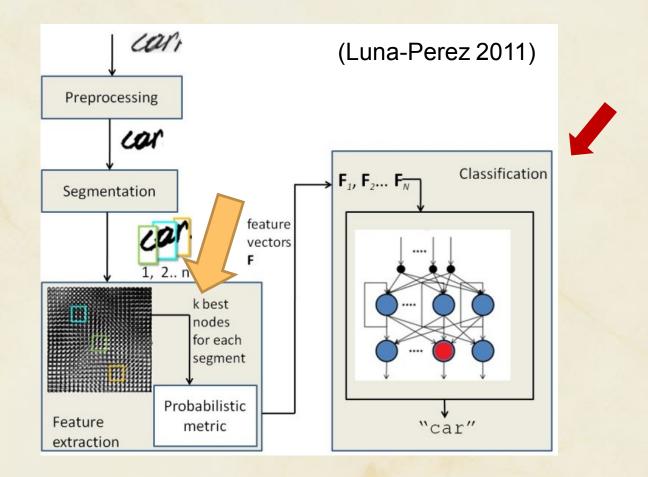
• Then feature vector F_t for each *t*-segment is defined as:

 $F_{t} = (m_{t11}, m_{t12}, p(m_{t1}), m_{t21}, m_{t22}, p(m_{t2}), \dots, m_{tk1}, m_{tk2}, p(m_{tk}))$

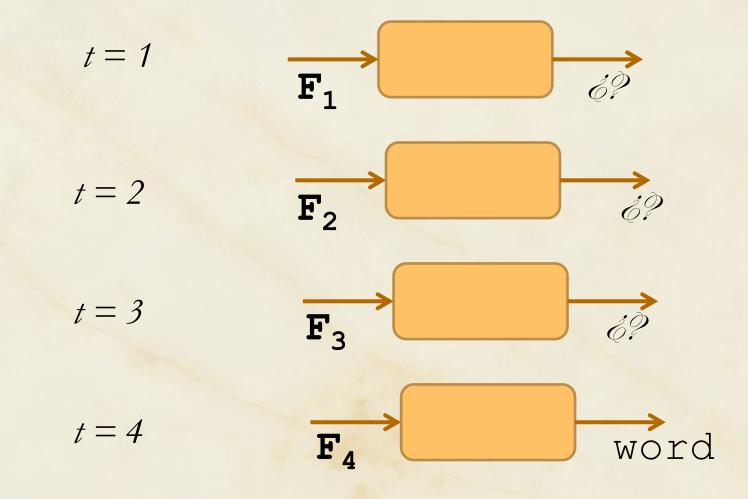
• F_t is 3k-dimensional

(k is a free parameter of this system, representing the number of best nodes in SOM involved)

The classifier



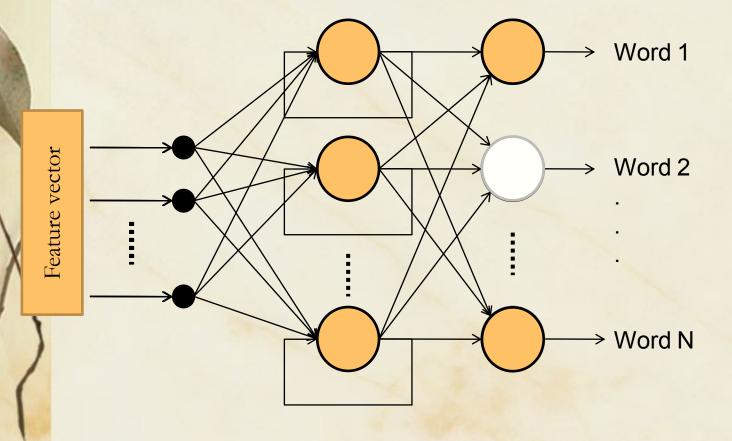
temporal classification



Classification

- It is carried out using a Simple Recurrent Network (SRN) (Elman 1990)
- The algorithm back propagation through time is used to train the SRN (supervised training).
- The SRN network used here consists of 3 layers:
 - an input layer with 3k neurons
 - a hidden layer with recurrent connections
 - an output layer with as many nodes as the number of words to be recognized.
- Each feature vector, corresponding to each segment in the world, is fed to SRN once at the time, generating a network's output once at the time

4. Simple Recurrent Network (SRN) (Elman 1990)

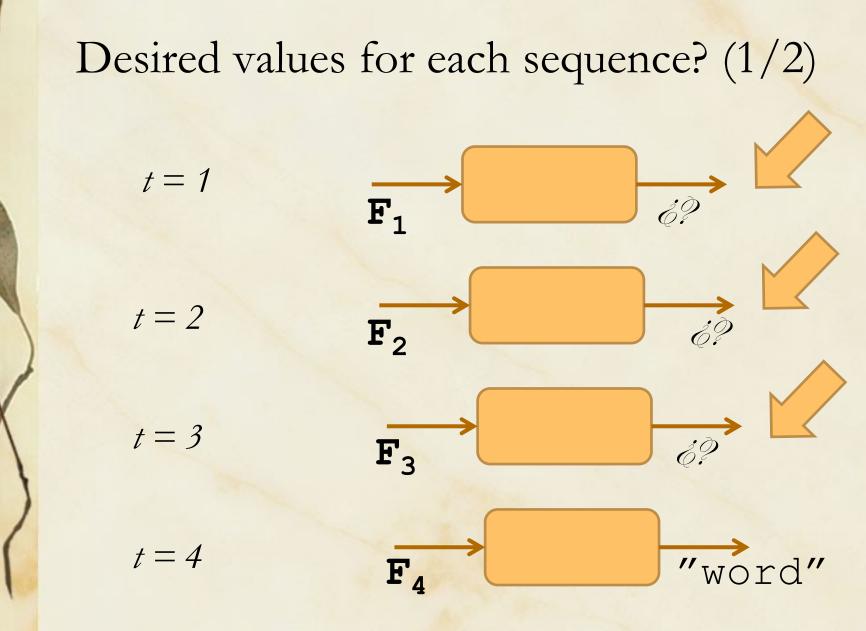


Other Characteristics of this SRN

• Output nodes use the activation function *Softmax:*

$$softmax(out) = \frac{exp(out_i)}{\sum_{j=1}^{n} out_j}$$

• SRN is trained to receive each segment F_t of each word *w*.



Desired values for each sequence? (2/2)

1. The desired value of each output node iwhen segment F_t is input, is calculated as

 $d_{i} = \begin{cases} x/n & if \ i = corresponding \ word \ of \ F_{t} \\ 0 & otherwise \end{cases}$

x is the position of segment F_t in the word and n is the number of segments in the word.

5. Experiments (1/2)

• The proposed method was tested using a lexical with 10 words taken from database IAM [5]

a and are as at be but bye can for

- The proposed method (identified as SOM-SRN) was compared with other two neural classifiers:
 - A feed-forward network (identified as FF in table)
 - FF-SOM network. (identified as SOM-FF in table)
- 20 experiments were executed for each network case
- 150 different configurations for each network were tested in order to find the best configuration.

Experiments (1/2)

Performance was measured in two ways:
1. Classification Error (a percentage, best value = 0)

 $error = \frac{number \ of \ words \ incorrectly \ classified}{total \ number \ of \ words} \times 100$

2. Word accuracy metric (Graves et al. 2009) (best value = 1)

$$WA = 100 \times \left(\frac{\text{insertions} + \text{substitutions} + \text{eliminations}}{\text{size set}}\right)$$

Results (2/2)

Classification error obtained by the three cases

Case	Error in training set	Error in testing set
FF	46.95% ±27.32%	68.80% ±14.68%
SOM-FF	7.93% ±1.68%	36.80% ±5.13%
SOM-SRN	5.75%±1.34%	24.30%±5.12%

Word accuracy obtained by the three cases

Case	Word Accuracy using training set	Word accuracy using testing set
FF	55.52 ±27.14	32.92 ±15.51
SOM-FF	93.03 ±1.5	66.21 ±5.85
SOM-SRN	95.42±1.21	78.25±3.25

6.Conclusions

- This classifier is based on the use of three main components:
 - a feature extractor based on non-supervised clustering,
 - measures of the probability that a segment of a word belongs to the *k* most probable clusters,
 - *a SRN* able to classify sequences of features representing the words.
- This method showed to overcome two other neural classifiers when tested over a set of 10 words, that were written by different people and showing very different styles.

Future work

- Programming all of these in a parallel system (GPU)
- Find a better way to define the "desired output"
- Try a more powerful RNN
- Consider "future chunks" to assign the best class

7. References

Elman, J. "Finding Structure in Time". Congnitive Science, Vol. 14, 1990, pp. 179-211.

- Gómez-Gil, P. J. Navarrete-García <u>"Analysis of a Neural-net-based Algorithm for the Segmentation of</u> <u>Difficult-to-read Handwritten Letters.</u>" WSEAS Transactions on Systems. Issue 4, Vol. 3. June 2004. ISSN: 1109-2777.pp. 1426 – 1429.
- Gómez-Gil P, De-Los-Santos Torres G, Navarrete-García J, Ramírez-Cortés JM. "<u>The Role of Neural</u> <u>Networks in the interpretation of Antique Handwritten Documents.</u>". Hybrid Intelligent Systems. Analysis and Design Series: Studies at Fuzziness and Soft Computing. Vol 208. Editors: Castillo, O. Melin, P. Kacprzyk W. 2007 Springer. ISBN-10: 3-540-37419-1. pp. 269-281.

Kohonen, T. "Self-Organizing Maps", Springer Series in Information Science, 3rd edition, 2001.

- Luna-Pérez R, Gómez-Gil P. <u>"Unconstrained Handwritten Word Recognition Using a combination of Neural Networks</u>." Lecture Notes in Engineering and Computer Science: Proceedings of the World Congress on Engineering and Computer Science 2010, WCECS 2010, 20-22 October, 2010,San Francisco, USA. pp 525 528. Eds. Ao SI, Douglas C, Grundfest WS, Burgstone J. International Association of Engineers. ISBN: 978-988-17012-0-6. ISNN: 2078-0958 (print) ISNN: 2078-0966 (online).
- Luna-Perez, R. "Reconocimiento fuera de línea de palabras manuscritas, basado en un mapa auto-organizado" Tesis de Maestría en Ciencias Computacionales. Instituto Nacional de Astrofísica, Optica y Electrónica, Febrero 2011.
- Marti U- and H.Bunke. The IAM-database: an English sentence database or offline handwritten recognition. 2002, International Journal on Document Analysis and Recognition, Vol. 5, pp. 39-46.

Vinciarelli, A "A survey on off-line Cursive Word Recognition". Pattern Recognition, The journal off pattern recognition society, vol. 35 (7), 2002, pp. 1433 - 1446.

Thank you! ccc.inaoep.mx/~pgomez

This presentation is available at: http://ccc.inaoep.mx/~pgomez/conferences/Pgglsc12.pdf