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Is it possible to automatically
read thiS? (Gomez-Gil et al. 2007)
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Few words about handwritten
recognition

* There is a huge amount of non-digital manuscript
documents that are required to be read and translated
to digital form.

* Important problems are faced during off-line, write-
independent manuscript recognition, as:

— Different writing styles
— Segmentation 1sSues
* Automatic reading of manuscripts may be handled
by
— Character recognition
— Word recognition
— Text line recognition
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Examples ot different writing styles
for the word “and”
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From IAM database (Marti & Bunke 2002)
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The main problem using character
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About Word recognition

* Word recognition consists of finding the
word that 1s most compatible to a specitic

image, with respect to a previously
defined lexical set (Vinciarelli 2002).

* Word recognition may be treated as a
temporal classification problem, that 1s, a
problem where the assigned class depends
upon a sequence of events occurring in
the past. (cont.)
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ach event 1s
fed one at the

A system for temporal
classification
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Identitying patterns in sequences

Signal 1
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What about this?
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*/  Words as sequences

(¢

* To identity words as sequences, each
element of the sequence has to be
defined. This may be a character, but...

* Sayre paradox:

“a character can not be segmented before being

recognized, and it cannot be recognized before
being segmented”
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Seomentation 1ssues

Mote that same class “a”", has different

E shape, depending on the position in the
’63’14""‘4 Word and among different words

“Carmelita”

M

“ruido™

(Gomez-Gil & Navarrete 2004)

Lettar i

“I"and "n" are
embedded
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Segmentation issues (cont.)

* We may try to segment a word in “chunks”
that may or may not be characters, but that
are fairly consistent in a word.

* Chunks of different writers using different
words, may be clustered in a unsupervised
way, creating prototypes.

* Given a chunk, we can identify their k-most
similar prototypes and measure these
relationships.

e This information will create feature vectors
F,to be used in temporal classification
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2. A system for temporal
classification
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Components of such classifier

* Chunks (segments) information
represented in a self-organizing map
(SOM) trained with segments of words,

* A metric to represent the probability of a
segment to belong to a specific cluster

defined by the SOM and to its neighbors,

* A simple recurrent network (SRN), which
memorizes the temporal relationships
among all segments

(c) Gémez-Gil, INAOE 2012
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Architecture of this classifier

l 74 (Luna-Perez 2011)
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Preprocessing

* Noise elimination
e Binarization

e Slant correction

Zadl] 2l

before after
(Luna-Perez 2011)
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Segmentation

* The lowest pixel in each column is found

* A cut point is located where the pixel 1s
higher than their neighbors

= — | o~

(Luna-Perez 2011)
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3. Self-Organizing Map (1/2)

(Kohonen 2001)

* SOM is able to generate groups with no
supervision.

* Once trained, the output layer of a SOM
forms a two-dimensional map, where each
node contains a prototype of a cluster.

* Hach neuron represents a cluster similar
to clusters represented by neuron’s

neighbors.
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Self-Organizing Map (2/2)

(Kohonen 2001)

Output layer

Input layer

=[ x4
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Clustering segments
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Feature map generated by a SOM using several “types” of segments
(Luna-Perez, 2010)
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Generation of feature vectors F, (7/3)

1. Each segment ¢ is fed 1o SOM, getting a winning
neuron ¢,, a 2-D vector containing the
coordinates of the winning neuron

2. the k-1 neurons, each identified as m; i=2..k,
with highest activations in the map are also
1dentified.

3. Letm,;= c, (neuron with highest activation)

More. ..
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Generation of feature vectors F, (2/3)

4. A measure of the probability of each of these neurons
to represent best the segment 1s calculated as:

exp(—llmg — ¢l
Zitq exp(—[|my — i)

b, (my) =

where:

¢, 1s a 2D vector defined by the coordinates of the
winning neuron at SOM

m,; 1s the 2D vector defined by the coordinates of
the z-neuron with highest activation at the SOM, i=
1..k, obtained when segment t is applied.
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Generation of feature vectors F, (3/3)

* Then feature vector F, for each #- segment is

defined as:

F=(m,;;, m, p(m,), My, My, p(my,), ..., My,
My, P(My))

* F,is 3k-dimensional

(kis a free parameter of this system, representing the
number of best nodes in SOM involved )

(c) Gémez-Gil, INAOE 2012
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The classifier

l et (Luna-Perez 2011)
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temporal classification

F, [ word
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Classification

* Itis carried out using a Simple Recurrent Network

(SRN) (Elman 1990)

* The algorithm back propagation through time is used
to train the SRN (supervised training).
* The SRN network used here consists of 3 layers:
— an input layer with 3£ neurons
— a bidden layer with recurrent connections

— an output layer with as many nodes as the number of
words to be recognized.

* Each feature vector, corresponding to each segment
in the world, is fed to SRN once at the time,
generating a network s output once at the time

(c) Gémez-Gil, INAOE 2012 30




4. Simple Recurrent Network
(SRIN) (Elman 1990)
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'Other Characteristics of this SRN

* Output nodes use the activation function
Softmax:

exp(out;)
2=y OUt;

softmax(out) =

* SRN is trained to receive each segment F, of
each word .

(c) Gémez-Gil, INAOE 2012
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Desired values for each sequence? (1/2)

O o
- Y
-  —Y
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Desired values for each sequencer (2/2)

1. The desired value of each output node i
when segment /), is input, is calculated as

d; = {x/n if { = corresponding word of F;
0 otherwise

x 1s the position of segment F, in the
word and 7 is the number of segments
in the word.
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A 5. Experiments (1/2)

The proposed method was tested using a lexical with
10 words taken from database IAM [5]

o Tand Jare as L |be Lbur [bye lcan |for

The proposed method (identified as SOM-SRN )

was compared with other two neural classifiers:
— A feed-forward network (identified as FF in table)
— FFE-SOM network. (identified as SOM-FF in table)

20 experiments were executed for each network case

150 ditferent configurations for each network were
tested in order to find the best configuration.
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Experiments (1/2)

* Performance was measured in two ways:

1. Classification Error (a percentage, best value = 0)

number of words incorrectly classified
error = X 100
total number of words

2. Word accuracy metric (Graves et al. 2009)
(best value = 1)

insertions + substitutions + eliminations
WA =100 x

size set

(c) Gémez-Gil, INAOE 2012
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Results (2/2)

Classification error obtained by the three cases

Error in training set Error in testing set

46.95% £27.32% 68.80% +14.68%

_

3

' SOM-FF 7.93% *£1.68% 36.80% £5.13%
SOM-SRN 5.75%11.34% 24.30%x5.12%

Word accuracy obtained by the three cases

55.52 +27.14 32.92 £15.51
93.03 £1.5 66.21 £5.85
95.42+1.21 78.2513.25

(c) Gémez-Gil, INAOE 2012

Word Accuracy using training set Word accuracy using testing set
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6 .Conclusions

* This classifier is based on the use of three main
components:
— a feature extractor based on non-supervised clustering,

— measures of the probability that a segment of a word
belongs to the & most probable clusters,

— a SRN able to classify sequences of features representing
the words.

e This method showed to overcome two other neural
classifiers when tested over a set of 10 words, that
were written by different people and showing very

different styles.
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Future work

* Programming all of these in a parallel
system (GPU)

* Find a better way to define the “desired
output”

* Try a more powerful RNN

* Consider “future chunks” to assign the
best class

(c) Gémez-Gil, INAOE 2012
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