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ABSTRACT

Nowadays there is a huge amount of images available through different media sources. In many

situations all this information is useless without the appropriate tools for analysis. In this regard,

image classification is one of the most important tasks for the organization and exploitation of

visual information in different areas. The representation of images is one of the key procedures

for successful models in classification. According to the literature one of the most important

concepts for capturing visual patterns is the visual word; a visual element that represents a set

of visual-similar regions. In this regard, the Bag-of-Visual Words (BoVW) representation is

one of the most widely used approaches in computer vision. The BoVW is an histogram of the

occurrence of visual words in each image, which is in some way inspired by the Bag-of-Words

(BoW) used in Natural Language Processing (NLP).

Although the BoVW is simple and effective, facilitating its use to a wide range of problems,

it inherits some well known limitations from the traditional BoW. For example, the disregarding

of spatial and semantic information among visual words, which hinder the extraction of valuable

visual-patterns. In this regard, the information retrieval and text mining communities have

proposed several solutions for similar problems using textual features. In this thesis, we alleviate

the latter limitations by taking the analogy visual-textual words into a new higher level. This

is, by designing and evaluating methods inspired in NLP, we aim to capture the spatial context

(e.g., spatial, sequential), and high level (e.g., semantic) information among visual words. For

this purpose, we defined suitable strategies to interpret images, which allow us to obtain highly

discriminative attributes and representations.

In order to capture the spatial context, we build new simple-effective visual features inspired

in the popular idea of n-gram representations in NLP. For this, we propose building a codebook

of multi-directional visual n-grams, and use them as attributes to represent images by means of

the BoVW representation. Regarding to the semantic visual information, we propose to represent

images by adapting distributional representations. These analogous visual-textual representations

exploit statistics of visual words occurrences and co-occurrences along the dataset. Furthermore,

we also proposed two novel distributional visual feature representations, which allow to capture

intra-class and inter-class specific visual information. Finally, we also propose suitable strategies

to jointly exploit contextual and semantic information of visual words. For this, we consider the
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visual words and the new visual n-grams as different feature spaces, then we propose different

fusion strategies to better integrate such visual information.

We report experimental results in several image datasets showing the effectiveness of the

proposals over BoVW and other methods in the literature. We evaluate the proposed ideas in

the image classification task using five different datasets. Experimental results show that the

proposed strategies outperform or are competitive with; i) the traditional BoVW, ii) the BoVW

using visual n-grams under traditional fusion schemes (e.g., ensemble based classifiers) and iii)

other approaches in the literature for image classification that consider the spatial context and

semantic information.

INAOE COMPUTER SCIENCE DEPARTMENT



RESUMEN

Hoy en día existe una gran cantidad de imágenes disponibles a través de distintos medios. En

muchas situaciones toda esta información es inútil sin las herramientas apropiadas para su

análisis. En este sentido, la clasificación de imágenes es una de las tareas más importantes para

la organización y aprovechamiento de la información visual en diferentes áreas. Con respecto a

esto, la representación de imágenes es uno de los procedimientos clave para modelos exitosos

en clasificación. De acuerdo a la literatura, uno de los conceptos más importantes para capturar

patrones visuales es la palabra-visual; un elemento visual representativo de un conjunto de

regiones que son visualmente similares entre sí. En este sentido, la Bolsa de Palabras Visuales

(Bag-of-Visual Words, BoVW) es uno de los enfoques más ampliamente utilizados en visión

computacional. La BoVW es un histograma de la ocurrencia de palabras visuales en cada

imagen, la cual en cierto sentido está inspirada en la Bolsa de Palabras (Bag-of-Words) utilizada

en Procesamiento de Lenguaje Natural (Natural Language Processing, NLP).

Aun cuando la BoVW es conceptualmente sencilla y efectiva, algo que facilita su aplicabili-

dad en un amplio rango de problemas, ésta hereda algunas conocidas limitaciones de la BoW.

Por ejemplo, en la BoVW no se considera la información espacial y semántica entre las palabras

visuales, lo cual dificulta la extracción de patrones visuales valiosos. En este contexto, las comu-

nidades de recuperación de información y minería de texto han propuesto distintas soluciones

para problemas utilizando características textuales. En esta tesis, suavizamos las ya mencionadas

limitaciones llevando la analogía de palabra visual-textual a un nuevo nivel. Esto es, por medio

de el diseño y evaluación de métodos inspirados en NLP, se propone capturar la información del

contexto espacial (por ejemplo, espacial, secuencial), y de alto nivel (por ejemplo, la semántica)

que existe entre las palabras visuales. Para este propósito, hemos definido estrategias adecuadas

para interpretar imágenes, las cuales permitan obtener atributos y representaciones que sean

altamente representativas de las clases en el problema.

Para capturar el contexto espacial, se han construido nuevas características visuales que

son simples-efectivas, y que están inspiradas en la idea popular de las representaciones de

n-gramas de NLP. Para esto, se proponen construir un vocabulario de n-gramas visuales

multi-direccionales, y usarlos como atributos para representar a las imágenes por medio de

la representación de BoVW. Con respecto a la información semántica, se propone representar
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a las imágenes por medio de la adaptación de representaciones distribucionales. Estas repre-

sentaciones toman ventaja de las ocurrencias y co-ocurrencias de palabras visuales a lo largo

de todo el conjunto de datos. Además, también se proponen estrategias adecuadas para tomar

ventaja conjunta de la información contextual y semántica entre las palabras visuales. Para ello,

se consideran a las palabras visuales y los n-gramas visuales como espacios de características

distintas, luego entonces se proponen diferentes estrategias de fusión que permitan obtener una

mejor integración de la información visual.

Se reportan resultados experimentales en distintas colecciones de imágenes que muestran

la efectividad de las propuestas sobre la BoVW y otros métodos en la literatura. Las ideas

propuestas se han evaluado en la tarea de clasificación de imágenes utilizando cinco diferentes

conjuntos de imágenes. Los resultados experimentales muestran que las estrategias propuestas

superan o son competitivas con; i) la BoVW tradicional, ii) la BoVW utilizando n-gramas

visuales bajo algún esquema tradicional de fusión de información (por ejemplo, clasificadores

basados en ensambles) y iii) otros enfoques en la literatura para clasificación de imágenes que

consideran el contexto espacial y la información semántica.
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CHAPTER 1

INTRODUCTION

Nowadays the huge amount of digital information available is constantly growing. Much of

this information are images generated by image-capturing devices in a wide variety of different

domains. All this vast amount of images could be exploited for the benefit of several practical

applications, which makes important to have automated tools to assist their analysis. In general,

Image Classification (IC) aims to organize images according to predefined categories. IC is

one of the most important tasks regarding the organization and analysis of visual information.

There are several methods for IC, but the traditional approach consists in representing images

with vectors of visual features, and then building classification models using supervised learning

algorithms (Csurka et al., 2004).

The representation of images is a key procedure for IC, thus a number of different approaches

have been proposed so far. The Bag-of-Visual Words (BoVW) (Sivic and Zisserman., 2003;

Csurka et al., 2004) representation is one of the most used approaches because of its simplicity

and effectiveness, achieving outstanding performance in several computer vision tasks, for

example: medical image classification (Tommasi et al., 2007; Cruz-Roa et al., 2011a), category

level scene classification (Fei-Fei and Perona, 2005), object recognition (Zhang et al., 2007),

video retrieval (Sivic and Zisserman., 2003), image retrieval (Tirilly et al., 2009), human-activity

recognition (Wang et al., 2009), etc. The core idea behind the BoVW is very similar to the

Bag-of-Words (BoW) representation used in text mining tasks (see, e.g., (Turney and P., 2010)).

On the one hand, under BoW each document is represented with a vector, taking each word

in the vocabulary as an attribute. On the other hand, the BoVW precomputes a vocabulary

of visual words from the training dataset (e.g., clustering vectors of relevant visual features

representing parts of images), then the BoVW represents images with vectors that account for

the presence/absence of visual words in images (e.g., histograms of visual words). 1

Although the BoVW representation has been used by many researchers, most of the work

1In this analogy, visual words play the role of words to identify a particular class/topic (Zhang et al., 2007). Thus,

the pure presence/absence of specific visual features can provide valuable information for discriminating between

target classes. For example, in face recognition, an eye (or part of it) could be highly informative to recognize a face.
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involving BoVW has been devoted to the analysis of new visual descriptors2. In fact, there is a

few amount of research approaching the well known deficiencies of BoW/BoVW representations.

In this aspect, we can differentiate the following relevant issues that could compromise the

BoW/BoVW applicability in several domains:

• The disregarding of spatial context among visual words: The BoVW representation is an

histogram of occurrences of visual words, then no spatial information among extracted

features is considered. In specific computer vision tasks, spatial context properly exploited,

has been useful to improve the performance of several approaches (Galleguillos and

Belongie, 2010; Krapac et al., 2011)3.

• The assumption of independence among visual words: No relationship, other than mere

occurrence, among visual words is captured by the representation. This is, the representa-

tion does not capture associations between visual words and other elements in the problem.

For example the distributional semantic information, which could be very useful to capture

discriminative visual-patterns. For example, the distribution of visual word occurrences

and co-occurrences along the dataset (Lavelli et al., 2004).

• The high dimensionality and sparseness: images usually are represented in a large vector

space of length equal to learned-vocabulary size, which can hinder the use of some learning

methods (Joachims, 1998), to increase the runtime performance (Joachims, 1999), in some

cases obfuscating the interpretation of the representation (Phan et al., 2008; Sriram et al.,

2010). Also, images usually contain a small subset of features (visual words), resulting in

sparse representations that make difficult to interpret and build accurate models for some

image classification problems.

In this thesis we introduce novel approaches to represent and classify images, which to some

extent, overcome the discussed drawbacks for BoVW in image classification. For example,

regarding to the first one (the disregarding of spatial context among visual words) it is promising

to enrich the BoVW by using spatial information in order to improve the representativeness of

the visual elements. Thus, we begin adapting one intuitive and effective idea of NLP; n-grams.

n-grams are sequences of n elements which have proven to be very useful in text categorization

tasks for capturing the context (Tan et al., 2002). For facing the second problem (the assumption

2Novel visual descriptors have enhanced the classification performance using approaches to improve the represen-

tation of visual information, then building more representative visual words (Tirilly et al., 2009).
3Most of the time at the cost of requiring higher computational resources, the spatial context have been captured

in several ways; for example, computing relative (Tirilly et al., 2008) or absolute (Lazebnik et al., 2006) spatial

configurations of visual words, or integrating the distance and angle information among specific visual words (Krapac

et al., 2011; Cao et al., 2010)
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INTRODUCTION 5

of independence among visual words), we are interested in semantic relationships between visual

features, in order to represent images using the distribution of visual words along the instances

in the training set or target classes in the problem. These semantic attributes usually are few,

but they are rich in representativeness, which also faces the third issue (the high dimensionality

and sparseness). In order to extract such attributes, we exploit the distributional hypothesis,

which states that words (visual words in our case) with similar meanings tend to occur in the

same contexts (Sahlgren, 2008). Among the most relevant strategies exploiting the distributional

hypothesis are the Distributional Term Representations (DTRs) (Lavelli et al., 2004). Thus,

through DTRs we build instance representations that consider contextual information by means

of term occurrences and co-occurrences. By computing such statistics, DTRs can produce

enriched representations that help to overcome, the BoVW shortcomings. Furthermore, we

devise two novel distributional strategies that learn appropriated groups of images to compute

better suited distributional features. Finally, in this thesis we also propose the jointly use of

visual words and its contextual and semantic visual information to represent images. First of all,

we propose Multiple Kernel Learning (MKL)4 intermediate fusion strategies to jointly exploit

the use of visual words and our version of visual n-grams, which can be seen as representing

images under different feature spaces (e.g., visual words and visual n-grams). After that, in

Chapter 6 we describe practical strategies to better exploit contextual and semantic information

by integrating visual words and visual n-grams into the DTRs.

For evaluating this research work we focus on automatic classification using five different

image collections: Histopathology, Birds, Butterflies, Scenes and a subset of CalTech-101.

These image collections have special particularities like: heterogeneous rich visual content, high

intra-class variability and complex mixtures of non-localized structural patterns. In particular,

a BoVWs representation assumes that there are localized patterns (visual words) which could

characterize high-level concepts in the image. Nevertheless, in this thesis we go beyond exploiting

the usefulness of spatial context and semantic information captured by text mining techniques,

in order to encompass a complex mixture of visual patterns that allow to decide about the class.

The experimental evaluation reported in this thesis suggests positive evidence that the proposed

approaches are good alternatives to other approaches reported in the literature.

1.1 Working Hypothesis

The main hypothesis for this research is stated as follows:

The analogy visual-textual words in computer vision can be better exploited by adapting

4MKL exploits similarity kernel functions to delegate the construction of a new combined kernel function to an

algorithm (Gönen and Alpaydın, 2011; Alioscha-Pérez et al., 2012).
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6 CONTRIBUTIONS

NLP approaches, which consider contextual (e.g., spatial relationships) and high level (e.g.,

semantic) information among visual words, in order to propose novel and effective methods for

the image classification task.

1.2 Main Objective

To design and develop methods for image classification, which based on the concept of visual

word and inspired by NLP approaches, allow to model contextual and semantic information to

improve the classification. In order to achieve this, we define the following specific objectives:

1. To analyze and develop the appropriated methods to extract visual words that better exploit

the analogy between visual-textual words.

2. To propose a new representation inspired in visual n-grams in order to take advantage of

the contextual information among visual words.

3. To propose a set of new representations inspired in distributional representations in order

to model the semantic visual information in images.

4. To design and implementing strategies to integrate the information extracted by the

NLP inspired approaches by taking advantage of spatial contextual and semantic visual

information.

1.3 Contributions

The main contributions of this thesis are 5:

1. A new method to capture the spatial context based on the extraction and exploitation of

n-grams of visual words.

2. Novel methods to capture semantic information inspired in the distributional hypothesis,

which adapt Distributional Term Representations (DTRs) for image classification.

3. Two novel distributional visual feature representations, that automatically obtain better

suited representations according to each image domain.

4. Fusion strategies to handle the combined use of contextual and semantic visual information,

which allow the construction of classification models.

5In Section 6.1 we list the scientific publications derived from this thesis.
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INTRODUCTION 7

1.4 Document Outline

In this thesis we consider the successful evidence of visual words in the BoVW, but we intend

to take the analogy of visual-textual words into a new higher level. Thus, in this research

work we are interested in exploiting this visual-textual feature analogy into other successfully

representations from the text mining community. The remaining of the thesis document is

organized as follows:

• In Part II, there are two chapters presenting the relevant background elements, with the

aim of making this thesis as self-contained as possible. This part contains the following

chapters:

– In chapter 2, we describe some of the most relevant concepts in text and image

classification for this research.

– In chapter 3, we present some of the most relevant works in the literature exploiting

NLP approaches to model visual information.

• Part III organizes the main contributions of this thesis, which are related to contextual and

semantic visual information.

– In chapter 4 we present the proposed approaches to capture the contextual visual

information. For this, we describe the formulation of visualn-grams and intermediate

fusion strategies to improve the image classification.

– In chapter 5 We describe the proposals to capture the semantic visual information.

For this, we present several strategies for exploiting the distributional semantic

information.

• Part IV has the chapter 6, which outlines the main conclusions and future work of this

research.
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CHAPTER 2

TEXT AND IMAGE CLASSIFICATION BACKGROUND

The interest of this research lies in a relatively young area, the intersection of the fields of NLP

and computer vision (called Vision and Language), which has been the main subject of study of

different forums and works (Ferraro et al., 2015). In this regard, to design successful approaches

based on visual words, we focus on techniques that have proven to be highly useful in NLP.

Thus, to figure out whether the best approaches in NLP have the opportunity to improve visual

words methods, we begin by exploring the most relevant NLP techniques for capturing spatial

context and semantic information. In this regard, it is also necessary to outline the most relevant

concepts on computer vision, which benefit this bridge between textual and visual modeling.

In this way, we introduce the two broad topics of interest: i) text classification and ii) image

classification. Section 2.1 presents the main framework in text classification, which encompasses

the main textual features and conventional classification methods. In a similar way, Section 2.2

introduces relevant concepts related to visual words construction, and the aforementioned BoVW

framework in image classification.

2.1 Basic Concepts on Text Classification

The amount of information available on Internet is overwhelming, and much of it is plain text

(e.g., books, journals, e-mails, blogs, source code, etc.). In this context, several issues and

applications related to text classification have emerged, for example: authorship attribution

(Stamatatos, 2009), author profiling (Schler et al., 2006), opinion mining (Pang and Lee, 2008),

etc. From a computational perspective, the text classification task consists in learning (based

on specific textual features) about one or more document classes, in order to automatically

identify them in future texts. In this context, the text classification can be stated as an standard

single-labeled multiclass classification problem (Sebastiani, 2008).
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12 BASIC CONCEPTS ON TEXT CLASSIFICATION

2.1.1 The Bag of Words Representation

Most of the text classification tasks can be approached as standard classification problems. This

means that they can be stated as single-labeled multiclass classification problem, where the

target groups of documents represent the classes to discriminate. Several standard machine

learning methods have been used to face the identification of each target class. In this regard,

the framework of most relevant strategies are divided in the following three key procedures: i)

feature extraction, ii) document representation and iii) classification. In this section we review

the second one: the representation of documents. Currently, one of the most effective and simple

approaches is the Bag of Words (BoW) (Sebastiani, 2008; Stamatatos, 2009; Nguyen et al., 2013)

representation. The BoW representation builds document vectors using textual features; for

example, taking each word in the corpus vocabulary as an attribute. In this way, BoW represents

documents with feature vectors, and assigns a value to each feature (Pavelec et al., 2008). This

value could be Boolean (1 or 0), frequencies computed from the analysis of the corpus, or a

specific weighting scheme. BoW representations have been used for thematic classification,

authorship attribution, spam filtering, plagiarism detection, etc.

In spite that BoW has been widely used, there are some important drawbacks that could

compromise its applicability. For example, BoW representations do not maintain any order or

relation among the textual features, which could give valuable information and improve the

representativeness. Another problem with BoW occurs in realistic scenarios where there are

large vocabularies, but few training data and imbalanced classes. The latter causes that BoW

representations tend to favor majority classes, when in fact each document can actually belong

to any class (Stamatatos, 2008). Moreover, BoW representations require huge computational

resources to classify large sets of documents with huge vocabularies, which could be impractical

in some situations (e.g., author profiling for socialmedia, where there are hundreds of texts

belonging to specific author profiles) (Solorio et al., 2011). In order to address the main

drawbacks of BoW, other kinds of representations have been used according to each classification

problem. For instance, the use of tensors (Plakias and Stamatatos, 2008) for representing stylistic

properties of texts, graphs based representations for placing relevant features in the same

neighbourhood, or even rule based representations in order to define feature logic relevance.

Most of the latter alternative representations consider relationships between terms, however the

classification performance usually is sightly better than BoW at the cost of requiring excessive

computational resources. Furthermore, most of the alternative representations do not provide a

solution for the problem of information dispersion and high dimensionality.
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2.1.2 Relevant Textual Features

In text classification tasks each specific problem has its own particularities and should be

approached accordingly (Abbasi and Chen, 2008). In this regard, one of the most important

factors to achieve effective solutions relies in textual features. For example, while in thematic

classification the most valuable features in BoW are the content words, in authorship attribution

the most important textual features are non-thematic; since the main goal is to model the writing

style of each author (Stamatatos, 2009). In the following subsections, we briefly present the most

relevant textual features in the literature.

Lexical Features

Lexical features generally consider the text as a sequence of tokens. In general, tokens could

be words, numbers, punctuation marks, acronyms, etc. In this context, it is possible to define

several lexical features based in such sequences of tokens. For example, the frequency of tokens,

frequency of sequences of n tokens (called n-grams), measuring the length of words, sentences

or even paragraphs. Moreover, there also exists strategies to measure rates of spelling errors,

vocabulary richness or lexical repetitiveness (Miranda-García and Calle-Martín, 2005). Lexical

features have one important advantage, most of them could be extracted by using simple existing

tools such as tokenizers.1

Character Based Features

From a general perspective, this character based features considers the text as a sequence of

characters. In this regard, it is possible to define textual features based on a number of statistics,

ranging from specific rates of individual elements to interesting sequences of characters. For

example, one of the most popular character feature are n-grams, which are mere sequences

of n characters. Throughout character n-grams, the approaches are able to capture content,

stylistic and contextual information (Stamatatos, 2009). Furthermore, n-grams usually are more

robust to spelling errors than traditional approaches based on word tokenizers. For example,

consider a socialmedia document containing the words Brasil and Brazil; conventional lexical

word approaches would consider them as two different features, when in fact both represent

exactly the same concept besides an spelling error. On the other hand, using an approach based

on character 3-grams we can extract the following attributes; Bra, ras, raz, asi, azi, sil and zil.

The latter means that we hold the thematic information in Bra, but also the spelling errors in

sil and zil. In spite of the advantages for some character base features, there also exists some

1Note that some languages, such as Chinese, requires more sophisticated and specific analysis tools, such as:

lemmatizers, sentences splitters, thesaurus, spelling correctors, etc.
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14 THE BAG OF VISUAL WORDS REPRESENTATION

disadvantages regarding to lexical features. For instance, the high dimensionality and sparseness

in the final representation.

Semantic Features

The extraction of semantic features from unstructured text are probably one the most challenging

problems in NLP. Semantic features refers to the meaning, sense, interpretation or coherence of

the target textual elements. In order to achieve this, it is necessary to perform a deep analysis of

the textual elements. Even though it is an open problem in NLP, there exist some interesting

approaches for modelling the semantic information. Most of the approaches in the literature

exploit principles of the distributional hypothesis. The distributional hypothesis, states that words

with similar meanings occur in the same contexts (Sahlgren, 2008). In this regard, the extraction

of semantic features is restricted to strategies for representing the contextual words that models

the meaning of words. Thus, semantic modelling assumes that words close in meaning tend

to occur in similar contexts, and therefore, uses occurrence and co-occurrence information to

associate words and measure their contribution to the automatically generated concepts (topics)

(Lavelli et al., 2004).

The Latent Semantic Analysis (LSA) is another well known technique to model the semantic

information. In LSA, terms and documents are represented into the same feature space. This is

usually named the latent space, where documents and terms are projected to produce a reduced

topic-based representation (Deerwester et al., 1990; Dumais, 2004). For this, LSA is built from a

term-document matrix M where mij represents the term frequency of the word i in document j.

Thus, LSA uses the Singular Value Decomposition (SVD) to decompose M as follows:

M = UΣVT (2.1)

Where the Σ values are called the singular values and U and V are the left and right singular

vectors respectively. U and V contain a reduced dimensional representation of words and

documents respectively. U and V emphasize the strongest relationships and remove the noise

(Landauer et al., 1998). In other words, it makes the best possible reconstruction of the M matrix

with the less possible information (Landauer et al., 2013).

2.2 The Bag of Visual Words Representation

The BoVW is a well established technique that discretizes the image content producing visual

units that can be considered words in text. The BoVW instance-vector exposes the association of

such visual units (visual words) in each image, usually through a normalized histogram indicating

the presence/absence of each visual unit. For example, in object recognition the presence of a
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TEXT AND IMAGE CLASSIFICATION BACKGROUND 15

wheel (or part of it) can provide valuable information for recognizing a car. The BoVW strategy

was proposed for the video retrieval task (Sivic and Zisserman., 2003), and due to its outstanding

performance and simplicity, it quickly became popular and began to expand into other fields of

computer vision (Cruz-Roa et al., 2011a,b; Díaz and Romero, 2012; Csurka et al., 2004; Tirilly

et al., 2009; Zhang et al., 2007; Wang et al., 2009).

There are several ways to implement the BoVW, but the general framework is shown in Figure

2.1: i) a set of selected training visual regions are represented under some visual descriptor;

ii) patch descriptors are clustered, and each cluster centroid is considered a visual word in a

codebook; iii) using the precomputed codebook, the visual regions of each image are replaced

by the id of the closest visual word in the codebook. The BoVW representation is then obtained

by building histograms of the visual words occurrences in the images.

2.3 Ensemble Based Classifiers

In this part we explain one of the reference techniques we used to combine different kind of

features in Chapters 4 and 5. The main idea behind ensemble based classifiers consists in

building a collective prediction scheme based on multiple classifiers. The aim of the ensemble

model is to achieve better performance than each of its individual classifiers (Rokach, 2009). For

this reason one of the most important questions in ensemble learning is: Do several classifiers

can be integrated to build a better one?. In this regard, the answer depends of the conditions of

the problem and the strategies to model the feature space into the ensemble classifier.

2.3.1 Diversity in the Search Space

According to the literature in ensemble models, the idea of combining several classifiers is a key

process that should consider several elements (Rokach, 2009), but one of the most important is

the following:

• Diversity among predictions: This consist in having diversity predictions among the

members of the ensemble system. Typically this is included as a component which is

responsible for the generation of diversity among member classifiers.

The generation of diversity is one of the key elements for designing ensemble methods

(Tumer and Ghosh, 1996; Krogh and Vedelsby, 1995; Kuncheva, 2004; Maimon and Rokach,

2002). It worth noting that, although diversity generation is a key component in most of the

state-of-the-art methods, in pattern classification field there is no a definitive and accepted theory

explaining how and why the diversity positively contributes to the performance of the final

IMAGE CLASSIFICATION THROUGH

TEXT MINING TECHNIQUES



16 ENSEMBLE BASED CLASSIFIERS

Figure 2.1: In Step 1 a set of image patches are represented under some visual descriptor. In Step 2
patch descriptors are clustered considering cluster centroids as visual words in a codebook.
In Step 3 the visual regions of target images are replaced by the id of the closest visual word
in the codebook. The BoVW of each image corresponds to its histogram of visual words.

ensemble(Brown et al., 2005). In this regard, (Rokach, 2009) summaries five of the most used

strategies to generate the aforementioned diversity into ensemble systems:

• Manipulating the training samples: The idea is that each member of the ensemble is

trained using different samples or projections of the dataset.

• Manipulating the inducer: This consist in manipulating the way the members are build. For

example, different configurations of the hyper-parameters are used to build the classifier.

Another alternative is to use different inducers to build the member classifiers, for example

the use of different kind of classifiers (e.g., neural networks and decision trees) into the

ensemble system.
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• Manipulating the representation of the target attribute (the class): The idea is that each

member classifier should focus in a different concept. Typically, the class attribute is

replaced by a function such that the new target domain of the class attribute is smaller than

the original.

• Partitioning the search space: The main idea is that each member classifier explores a

different subset of the whole search space. For instance, the training of several member

classifiers using all instances, but represented under different subsets of the feature space.

In this way, each classifier have its own view of the dataset.

• Hybridization: The idea is to obtain diversity by combining any of the latter strategies.

For example, using several kinds of classifiers and manipulating the search space.

2.3.2 Decision Making in Ensembles

There are also some other relevant elements for ensemble design. For example, the independence

or dependence among members, which means that each member can set its own opinion based

on different criteria but always using its private knowledge. On the one hand, dependent methods

builds new members of the ensemble by using the performance information of the members

in previous iterations (Provost and Kolluri, 1999; Freund and Schapire, 1996). The key idea is

that new classifiers should focus in the misclassified instances (classification errors). Typically,

this methods are guided by using an instance selection, also known as Boosting. On the other

hand, in independent ensemble methods the training data is transformed into several subsets

to train each member (Rokach, 2009). One of the advantages of this methods is that they can

be easily parallelized using several base classifiers. This ensemble method is also known as

bootstrap aggregating or simply Bagging. One important characteristic of Bagging ensembles

is that usually it is possible to build a better classification system than each of its individual

members. This is especially true for the algorithms that produce classifiers significantly different,

if the dataset or its representation has been altered (Breiman, 1996).

In this thesis we are interested in generating the diversity through the manipulation of the

feature space. This is, the instances are represented under different feature spaces (e.g., the

contextual and semantic features). Thus we are interested in Bagging approaches where the

subsets of features can be disjoint or not, but most of the time all individual predictions are

fed into a collective decision method (e.g., a weighting vote). The combination of individual

predictions is also an important step for an effective ensemble. According to the literature, the

weighting voting scheme is one of the most used in text classification problems 2. The weighting

2There are other important strategies to combine decisions. For example, the meta-learners (also known as

Staking) where the idea is to focus in the decision pattern of the base classifiers, then train a meta-classifier over such
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18 ENSEMBLE BASED CLASSIFIERS

voting scheme is very useful when the members of the ensemble have similar performance, but

difference confidence for the same task (Rokach, 2009). One example of this is the majority

vote, also known as the basic ensemble method (BEM) that predicts the most voted class of

the members. Typically BEM is used as a baseline in classification tasks. Equation 2.2 is the

approaximation of (Rokach, 2009) of the latter ideas.

clase(x) = argmaxciεdom(y)

(∑
k

g(yk(x), ci)

)
(2.2)

where yk(x) is the classification of the k-th classifier and g(y, c) is an indicator function defined

as:

g(y, c) =

1 y = c

0 y 6= c
(2.3)

predictions. Then, the meta-classifier perform the final decision (Wolpert, 1992).
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CHAPTER 3

RELATED WORK ON CONTEXTUAL AND SEMANTIC

VISUAL INFORMATION

In this chapter we present the most relevant related work on contextual and semantic visual

information. The aim of this thesis is to propose novel and effective methods under the anal-

ogy visual-textual words. For this, it is hypothesized that some strategies in NLP exploiting

contextual (spatial) and high level (semantic) information, might give rise to new methods and

representations that improve the performance of approaches based on visual words. In this

regard, in Section 3.1 and 3.2 of this chapter we present the most relevant computer vision

works inspired by NLP, which consider the properties of the image domain in order to better

exploit the contextual and high level information among visual words, especially those based

on: n-grams (sequences of n elements), weighting schemes (weight functions for the visual

elements), language models, and semantic distributional analysis. Finally, Section 4.1.3 explains

some relevant concepts about information fusion that could help to better exploit the proposals

in this thesis.

3.1 Contextual information under the analogy visual-textual words

The BoVW approach was introduced by Sivic and Zisserman for tackling the problem of video

retrieval (Sivic and Zisserman., 2003). The outstanding performance and simplicity of BoVW

quickly became popular in other computer vision tasks such as: image classification (Cruz-Roa

et al., 2011a,b; Díaz and Romero, 2012), image retrieval (Csurka et al., 2004; Tirilly et al., 2009;

Escalante et al., 2012), object recognition (Zhang et al., 2007), human-activity recognition (Wang

et al., 2009), etc.

As already mentioned in the last chapter, a shortcoming of the BoVW like representations

is the overlook of spatial relationships among words. In other words, histograms that account

for visual word frequencies do not hold any spatial information about the occurrence of each

visual word into the image. The spatial information, correctly exploited, has proven to be useful

in several computer vision tasks(Tirilly et al., 2008). Given this scenario, a lot of work has been
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20 CONTEXTUAL INFORMATION UNDER THE ANALOGY VISUAL-TEXTUAL WORDS

devoted to capture such spatial relationships among visual words (Lazebnik et al., 2006; Zheng

et al., 2008). For example, spatial relations have been represented using a graph of visual words

in order to describe logos in sports photos (Jamieson et al., 2007). Other efforts have brought

ideas from other areas such as NLP. For example in image retrieval, Zheng et al. (2006) proposed

the idea of visual phrases by pairwise grouping close or overlapping (according to a threshold)

keypoint regions. Since the latter implies to test all keypoints in a one-vs-rest fashion, they test

only on those frequent keypoints in the image dataset. In other works, Yuan et al (2007, 2011),

took advantage of the use of k-nearest neighbours algorithm to group visual words and building

visual phrases of different lengths in order to get relevant information. In video data mining,

visual phrases have also been used for obtaining the principal objects and characters in a video by

clustering on viewpoint invariant configurations (Sivic and Zisserman, 2004). Quack et al. (2007)

have explored local sets of visual words to detect frequent and distinctive features for object

classes, this provides the option to use the method for object recognition or as a feature selector.

Other approaches have used Language Models (LM) in order to capture spatial information. A

language model is a popular technique used in NLP to model sequences of words. Previous

works use LMs for computer vision tasks and perform several steps before training the LM

(Wu et al., 2007), for example; the use of cocurrence and proximity information of neighbour

visual words. The latter is because a LM needs to “read” the visual words in some direction. For

example, Tirilly et al. (2008), used principal component analysis to project visual descriptors in

a particular direction-axes, then induce a sequence of visual words (Tirilly et al., 2008). Word

sequences are classified using a Language Model Classifier (LMC). The LMC builds a LM for

each class using the training documents. For testing, they measure the probability of belonging

to each LM, and predict the most probable class. Another effective approach to capture spatial

relationships among visual elements is the Spatial Pyramid Representation (SPR) proposed in

(Lazebnik et al., 2006). The core idea of SPR relies in generating sub-windows of an image

by using a sequence of increasingly coarser grids defined by a pyramid. For example, in a

pyramid of three levels, there are three grids with sizes of 4x4, 2x2 and 1x1 cells. In this way,

SPR computes a local BoVW in each cell of the image. The final representation of each image

consists of an arrangement of its local histograms. Thus, the comparison of two images is done

by using an intersection kernel computed between the representation vectors.

In all previous, works authors have proposed interesting extensions to the use of visual words,

reporting improvements over the standard BoVW representation. However, these proposals do

not necessarily correspond to the way in which sequences of words are processed in NLP tasks

for boosting the performance (Wang and Manning, 2009). For instance, LMs are rarely used

for text categorization, also it is know that LMC can have problems to handle imbalanced class

problems (McCallum et al., 1998). Other previous works have proven that adding information
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about occurrences of relative spatial information in visual words can enhance the performance,

but at the cost of higher computational complexity, especially when relative distance and angles

are considered (Tirilly et al., 2008; Khan et al., 2015).

3.2 Semantic information under the analogy visual-textual words

Regarding to the semantic information among visual words, probably the better known are the

works using Latent Semantic Analysis (LSA) (Bosch et al., 2006) and Latent Dirichlet Allocation

(LDA) (Bosch et al., 2006; Fei-Fei and Perona, 2005), where a new dimensional space has been

computed by using the occurrence information of the visual words. Even though LSA and LDA

are popular strategies to extract latent attributes in text classification tasks, they are different

from distributional strategies for building the terms and instance representation in NLP (e.g.,

LSA builds a new feature space by means of singular value decomposition algorithms).

In this thesis, rather than define a set of latent attributes to represent images, we focus on

studying the informative value of distributional features. More importantly, unlike other works

using only standard representations like LSA, in this thesis besides adapting Distributional

Term Representations (DTRs), we propose two novel approaches to better exploit distributional

visual information. Our hypothesis is that by using distributional features in conjunction with

visual words and visual n-grams, it is possible to obtain comparable results than other more

elaborated strategies from the state of the art, such as LSA or LDA. DTRs are effective and

efficient alternatives to model the semantic information. DTRs builds the representation of

features by observing their occurrences and co-occurrences along the dataset, then in a second

stage the instances are represented exploiting this distributional information (Lavelli et al., 2004).

It is worth mentioning that most of the work related DTRs and visual elements has been devoted

to the multi-modal distributional semantics for text classification, where authors intend to enrich

the DTRs by using visual features (Feng and Lapata, 2010; Bruni et al., 2012, 2014). However, in

this thesis we are interested in adapting and designing new methods based on DTRs to improve

the image classification task. In this way, we are interested in observing the usefulness of

such representations applied over pure visual features, in order to obtain new insights about the

relation of techniques in the Language and Vision field. Finally, it is important to mention DTRs

differ from other approaches, such as LSA and LDA, in the way of computing a low dimensional

feature space. In DTRs the main idea is to exploit the distributional information in the datasets,

by means of simple feature occurrences and co-occurrences. We consider that such way of

computing distributional semantics features could be very useful to identify valuable patterns,

that encompass complex visual elements that would be harder to model with other approaches.
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3.3 Relevant Fusion Information Strategies

In this thesis we adopt several representations that has proven to be very helpful for text

categorization. We focus in the idea of the visual word to demonstrate the usefulness and

generality of NLP principles under the analogy of visual-textual words. In this work we are

interested in at least two sets of visual features; structural and semantic. These visual features can

be used to feed a wide range of different classification algorithms. Nonetheless, when instances

can be represented under different sets of attributes, there exists several ways to take advantage of

those different feature spaces (Rokach, 2009). In this context, we are interested in the following

question: How could features coming from Visual Words and Visual n-grams spaces be used

together to enhance the performance of classification models?. In this thesis we propose some

interesting alternatives to deal with such question, especially for those handling contextual and

semantic visual information. Thus, along this section we review two background topics in our

proposals: i) early and late fusion information strategies, and ii) intermediate fusion strategies.

3.3.1 Early Fusion and Late Fusion Strategies

The extraction of several kinds of features (in our case contextual and semantic), raises new

issues about the way to properly use them inside a classification system. In most previous

works, authors have combined the extracted spatial-visual-features in order to improve the

performance of their methods, then it is interesting to exploit this kind of information into the

final representation. Nonetheless, the most used ways to combine heterogeneous attributes are

simple fusion approaches; early fusion and late fusion (Bekkerman and Allan, 2004; Tan et al.,

2002; Rokach, 2009). The main idea of early fusion is to concatenate the different feature spaces

(e.g., words and n-grams) into single vectors, which are fed to a learning method (Rokach, 2009;

Kuncheva, 2004). The Support Vector Machine (SVM) has shown to be effective using the early

BoVW representation (Boiman et al., 2008; Cruz-Roa et al., 2011a; Díaz and Romero, 2012).

On the other hand, late fusion strategies consider each feature space independently and build

an ensemble learning system to combine the outputs of classifiers trained on different inputs

(e.g., weighting vote ensemble classifier) (Breiman, 1996; Rokach, 2009). The underlying idea

is to represent instances using vectors corresponding to each feature space in order to provide

different perspectives/views of each instance. The problem of early-late fusion approaches is

that they can be affected if the feature spaces are not diverse enough (Rokach, 2009; Kuncheva,

2004).
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3.3.2 Intermediate Fusion Strategies

Multiple Kernel Learning (MKL) also know as intermediate fusion, is an attractive fusion

scheme that has shown improvements over typical early-late fusion approaches (Gönen and

Alpaydın, 2011), in part for performing the combination of information at a different level; at a

kernel level. MKL methods build more accurate models using kernel functions that represent

different similarity notions of the feature spaces (Gönen and Alpaydın, 2011). In the literature

there are number of ways to perform the combination of kernel functions, for example; rule

based operations (mean or product) over kernel matrices (Ben-Hur and Noble, 2005), alignment

training techniques to weight the contribution of each kernel (Xu et al., 2010; Kloft et al., 2010),

projected gradient updates (Rakotomamonjy et al., 2008), linear and conic analytical solutions

for determining kernel weights (Cortes et al., 2010), etc. In this thesis, using different image

collections, we evaluate the proposed visual n-grams representation and exploit different fusion

alternatives based on Multiple Kernel Learning to combine features.

IMAGE CLASSIFICATION THROUGH

TEXT MINING TECHNIQUES





Part III

Contributions

25





CHAPTER 4

EXPLOITING THE CONTEXTUAL VISUAL INFORMATION

Image representation is one of the key procedures for building successful models in classification.

In this regard, the BoVW is analogous to the well established Bag-of-Words (BoW) representation

of text mining (see e.g., (Tan et al., 2002)). Under the BoW formulation, vocabulary vectors

representing documents are built, and each element of the vector indicates the presence or

absence of each word in the document. Similarly, in computer vision tasks a vocabulary of visual

word is generated (clustering feature vectors representing image regions and taking the centroid

of each cluster as a visual word) in order to represent images through vectors that accounts for the

occurrence of visual words in each image. In this direction, contextual information among visual

words could be captured exploiting the analogy visual-textual words using Natural Language

Processing (NLP) approaches. To capture the spatial context, in this chapter we propose an

effective feature inspired by one of the most used solutions in NLP for incorporating sequential

information in documents representation: n-grams (sequences of n-words to capture compound

word patterns). This type of representation can capture compound item-patterns; for example, in

text mining; united-states, very-good, etc. In the case of visual imagery, we intend to capture

frequent local coocurrences of visual elements. In this regard, we propose the jointly use of

codebooks of visual words and visual n-grams (multidirectional sequences of visual words) to

represent images under a bag of features formulation.

In other words, we propose the extension of the BoVW to the Bag of Visual n-grams (BoVN),

which can be seen as representing images under different feature spaces (e.g., visual words

and visual n-grams). These different feature spaces could be used together to enhance the

performance of classification models, nonetheless this is not a trivial task (Kuncheva, 2004). In

this work we propose to exploit two fusion strategies to combine information through Multiple

Kernel Learning (MKL) methods. The first strategy consists in representing images under

individual feature spaces (e.g., visual words and visual n-grams), then we use MKL strategies

to exploit the information in the different spaces. The second strategy consists in representing

images under the whole feature space (e.g., visual words and visual n-grams), but using different

kernel functions to produce different notions of similarity that can be exploited by the proposed

MKL strategy. MKL uses similarity kernel functions to delegate the construction of a new
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combined kernel function to an algorithm (Gönen and Alpaydın, 2011; Alioscha-Pérez et al.,

2012). Using the latter strategies to fuse information, we perform an extensive experimental

work in order to establish a solid framework to exploit the proposed visual n-grams.

The main contributions of this chapter are twofold: i) to introduce the effective visual n-

grams inspired in NLP, and ii) to propose MKL strategies to exploit the joint use of visual words

and visual n-grams for Image Clasification (IC) tasks. This chapter is organized as follows.

Section 4.1 introduces the proposed methodology to extract visual n-grams, whereas Section

4.1.3 presents the proposed strategies to take advantage of our visual n-grams for IC. Section

4.2 and 4.3 present the image collections and experimental settings, respectively. Section 4.4

reports the experimental results we obtained, and Section 4.5 outlines our conclusions and future

avenues of inquiry.

4.1 Image Classification through Visual n-grams and MKL

In this section we describe the proposed Bag-of-Visual n-grams (BoVN) representation for

image classification, as well as the proposed MKL fusion strategies. In Figure 4.1 we show the

general process for generating the BoVN. In the first step we take the whole (training) images

and extract the visual words using a standard procedure outlined in Section 4.1.1. In the second

step we extract visual n-grams to build a visual n-gram codebook (explained in Section 4.1.2).

In the third and final step we merge the visual words codebook and the visual n-gram codebook

in order to get a final codebook. We use our final codebook to build histograms, which are fed to

the proposed strategies through MKL (Section 4.1.3). Each of these steps are described in the

rest of this section.

Figure 4.1: Image Representation through Bag-of-Visual-Ngrams.

INAOE COMPUTER SCIENCE DEPARTMENT



EXPLOITING THE CONTEXTUAL VISUAL INFORMATION 29

4.1.1 Construction of the Visual Words Codebook

In this section we explain the first stage before building the Bag-of-Visual n-grams (BoVN)

representation. In this context, we first need to build our Visual Words from the image collection.

Such Visual Words will be the initial features used to generate the Visual n-grams. In Figure

4.2, we show the process to extract the visual words for an image collection using the standard

BoVW formulation. We start extracting small patches from the images. For this, we use a

regular-grid-based extraction. This is done by partitioning images using a regular grid, and

taking each grid item as a patch of fixed size, see step ii) in Figure 4.2. The next step consists in

representing each extracted patch by a set of features (a visual descriptor1). The last step in the

process is the construction of the visual dictionary or visual word codebook. The codebook is

built by clustering all patch descriptors extracted from the image collection. In this process, all

similar patch descriptors in the training set are grouped together independently of the source

image. The k-means algorithm is used in this work to find a set of centroids which represent our

visual words, which are labelled by an id and placed in the codebook.

Figure 4.2: The process to build a visual word codebook.

To represent images using the codebook, each image is gridded and each image patch is

replaced by its closest visual word in the codebook (see the detailed process in Figure 4.3). In

1In out case, we use DCT and SIFT descriptors since they are the reference point for the selected image collections.
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this way, each image is represented by a histogram that accounts for the occurrence of visual

words (from the learned codebook) in the image. In the next section, we show how to use the

constructed codebook in order to construct visual n-grams.

Figure 4.3: Example of a represented image using the Visual Word codebook. Left; Original image.
Right; Visual Words representation.

4.1.2 Extracting visual n-grams

In this section we present the second stage to build our visual n-grams. For this we assume

that there is a visual codebook which we will use to represent images. To capture spatial

relationships among visual words, we inspired ourselves in the way word n-grams are used for

text-classification. In NLP, n-grams are sequences of n consecutive words that help to maintain

semantic relationships between words, which allows us to represent compound concepts like

“bus stop” with a single attribute. In the image domain the extraction of visual n-grams have

some additional issues. For example, a document can be read only in one direction, but sequences

of image descriptors can be extracted horizontally, vertically, or diagonally). Another problem is

to determine the right direction to interpret each visual n-gram. For example, 3-grams in text

normally can be interpreted correctly only in one direction (say, “the human being”, but not

“being human the”). On the other hand, visual 3-grams can have the same order but different

orientation if the image is rotated. Therefore, the two descriptor sequences da-db-dc and

dc-db-da might be the same pattern. In this work, we consider such patterns the same, making

them rotation invariant.

In order to construct visual n-grams we apply the following approach. First of all, we have

each instance represented as the codeword matrix for each image (see Figure 4.4). Thus, let A

be the a× b codebook matrix of a given image. The main idea is to produce n-grams ignoring
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Figure 4.4: The process to build a Visual n-grams using a sliding window. Note that in the above image,
each number represents the ID (codeword) of the closest visual word in the codebook. For
the darkest item (65) the extracted n-grams are: 65-389, 65-219, 65-213, 65-21, 65-113,
65-123, 65-78, 65-182.

the orientation in which they appear. To construct n-grams we iterate over each element ai,j of

the matrix A and we extract the neighbours in a straight fashion. That is, we extract sequences

using items between the items ai,j and ai+k,j+h, if and only if they are part of the straight line

joining ai,j and ai+k,j+h. This leads to obtain n-grams from the element ai,j only in horizontal,

vertical and diagonal directions at angles of 45, 135, 225 and 315 degrees. In Figure 4.4 we

illustrate the process to extract visual bigrams using an sliding window on each visual word to

build its neighbours. The same process is applied to obtain n > 2 sequences, always producing

straight fashion n-grams in horizontal, vertical and diagonal directions. The latter condition

leaves us with eight possible n-grams for each position in the matrix. Finally, each n-gram is

normalized to be read just in one way and consequently indexed as the same item in our new

visual n-gram codebook. For example, in the visual n-gram codebook, a trigram 21-61-73 is

indexed as the same item than 73-61-21. We use these normalized visual n-gram codebook to

proceed with the image representation. For this, each image is represented using visual words

and visual n-grams through histograms of the occurrence of visual n-grams found in the image.

4.1.3 Exploiting the jointly use of Visual words and Visual n-grams

According to previous sections, at this point there are at least two sets of visual features; visual

words and the visual n-grams. These visual features can already be used to fed a wide range

of different classification algorithms. Nonetheless, when instances can be represented under

different sets of attributes, there exists several ways to take advantage of those different feature
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spaces (Rokach, 2009). In this context, we are interested in the following question: How can

features coming from Visual Words and Visual n-grams spaces be used together to enhance the

performance of classification models?.

The appropriate use of several feature spaces to improve the discriminative power of a

system is not a trivial task (Kuncheva, 2004). Two of the most popular strategies for combining

information from different sources are early-fusion and late-fusion (Kuncheva, 2004; Breiman,

1996; Brown et al., 2005; Rokach, 2009). The former consists of merged attributes from two

spaces into single space, then use standard supervised learning methods to build classification

models. On the other hand, late fusion strategies use classifier ensembles to train individual

models on each feature space, then perform a joint prediction using a voting decision or trained

combiner. More specifically, the combination of features in early fusion consists in extending

the space of visual words VW using the visual n-grams VN space to produce a new space with

|VW|+ |VN| dimensions. The intuitive idea is that the learning algorithm (in our case SVM,

which have shown high performance in similar situations) will be able to learn the important

properties of the target problem in such space. On the other hand, in late fusion we build a

SVM for each space VW and VN. For this purpose, we implemented each classifier to make a

prediction using a vector of the probabilities of belonging to each class. For the final decision,

we aggregate such vectors to determine the label as the i element with the maximum value.

Nonetheless, as shown in experimental results of Section 4.4.2, sometimes several kinds of

textual features could not be diverse enough to build accurately such ensemble models. For

example, consider the following example keeping in mind our analogy visual-textual word and

visual-textual n-gram. In text mining tasks, a wide variety of different kinds of textual features

(e.g., words, word n-grams, frequent maximal sequences, collocations, etc.) are extracted just

from one rigorous modality: the text (sequences of tokens). Thus, the space features could not

be totally independent from others especially when one space was used as the base of a new one

(e.g., n-grams are built from words). Thus, in some classification tasks, ensemble early/late

fusion methods could not receive truly multi-modal features, which degrades the diversity in

the feature space and makes difficult to build an accurate ensemble system (Kuncheva, 2004;

Breiman, 1996; Brown et al., 2005; Rokach, 2009; Chávez et al., 2011). For this reason, we

propose to use two alternative strategies to integrate visual n-grams through a more appropriate

state-of-the-art scheme fusion. The intermediate fusion makes use of Multiple Kernel Learning

(MKL) techniques to delegate the construction of a new combined kernel function to an algorithm

(Gönen and Alpaydın, 2011). Using the latter strategy to fuse information, we establish a solid

framework for the use of the proposed visual n-grams making it a good alternative to other

approaches reported in the literature.
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MKL Strategies to exploit Visual n-gram spaces

According to the literature, the most common/effective classifier under bag of features formula-

tion is the Support Vector Machine (SVM) (Bekkerman and Allan, 2004; Sivic and Zisserman.,

2003; Csurka et al., 2004; Boiman et al., 2008; Gönen and Alpaydın, 2011). SVM is a learning

algorithm that aims to find an optimal separating hyperplane between instances belonging to two

different classes (Gönen and Alpaydın, 2011). Let {xi,yi} be the training instance-class pairs

examples, where xi ∈ Rd and y ∈ {−1,+1}, with d dimensionality of the problem (say the size

of the vocabulary). SVMs aim to determine a mapping from training examples to classes using

the following linear function:

f(x) = sign(
∑
i

αiyik(xi, x) − b) (4.1)

where αi and yi are the weight and label of training example i. To map the (xi, xj) input vectors

into the feature space, the k(xi, x) kernel function is applied. Intuitively, k(xi, x) measures the

similarity between instances xi and xj. 2. Selecting the kernel function is an important issue in

the training.

Multiple Kernel Learning (MKL) methods are popular solutions to face the problem of

combining different feature spaces. The core idea relies in kernel functions; instead of choosing

a single kernel function for a specific problem, it is better to have a set and let an algorithm to

learn the best combination of them (Gönen and Alpaydın, 2011). To better explain this idea

consider the following expression which represent combined kernels:

kη(xi, xj) = fη({km(xmi , xmj )}Pm=1|η) (4.2)

the core is the combination function, fη : RP → R, may be linear or not, the kernel

functions, {km : RDm ×RDm → R}Pm=1, take P feature representations of data instances:

xi = {xmi }Pm=1 where xmj ∈ RDm , and Dm is the dimensionality of the m feature space. η

parametrizes the combination function and usually are fixed parameters without any optimization

during training.

In order to put the MKL framework in context of our extracted visual features, let Vk =

{w1, ...,wd} denote the d extracted features in space k (e.g., the codebook of visual words),

Ψ = {V1, ...,VP} the set ofm considered feature spaces in the whole collection (e.g., codebooks

for visual words and visual n-grams). In this thesis, we propose to fed the fη function in

Equation 4.2, using input instances represented through the following two strategies:

(a) Strategy 1: Single Kernel - Several Spaces : A fixed kernel function uses inputs coming

from P different space representations (e.g., visual words and visual n-grams). The
2The parameters α and b, are learned using optimization techniques (Gönen and Alpaydın, 2011)
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intuitive idea is to represent instances using vectors corresponding to each individual

feature space in order to provide different perspectives/views of each image, then use

MKL to learn a general perspective. Thus, we end up with P = |Ψ| representations for

each data instance: xi = {xmi }Pm=1 where xmj ∈ RDm , and Dm is the dimensionality

of them feature space. Having instances represented under P feature spaces is useful to

generate diversity in the search space using the fixed kernel function. This allows to have

P different representations that can be used by MKL to build the kη general kernel.

(b) Strategy 2: Several Kernels - Single Space: A set of s different kernels functions

correspond to different notions of similarity. The whole feature space (visual words and

visual n-grams) are used to represent each instance using P = s vector representations

representations. The intuitive idea is that, instead of trying to find which is the best kernel

function, a learning method do the picking or combination. In this strategy we represent

data instances using vectors of D = |
⋃
Vj∈Ψ

Vj| features. Thus, we end up with a vector for

each data instance, but using the s kernel functions we produce the P = s representations

for each data instance: xi = {xmi }Pm=1 where xmj ∈ RD, and D is the dimensionality of

the whole feature space. We use those P representations in the fη function and build the

final kernel kη.

In order to solve the fη for building the final kernel kη, we use the MKL methods outlined

in Table 4.1. In this way, we analyze the performance of several MKL algorithms to produce a

new kernel method that accurately describe each image collection exploiting our precalculated

visual n-grams.

4.2 Image Collections

In order to perform the evaluation and demonstrate the generality of visual n-grams we used

five different image collections that expose special particularities, which could be captured by

visual sequences. Figure 4.5 and Table 4.2 briefly describes each collection. For example, the

Histopathology image collection (Díaz and Romero, 2012; Cruz-Roa et al., 2011b) is class-

imbalanced and contain complex visual patterns in tissues structures (healthy or pathological);

the classification is related to pathological lesions and morphological-architectural features

which can be captured by visual n-grams. Other collections like Birds, Butterflies and Scenes

also have features of texture and structure not only in the target object (i.g., the bird), but also

in the other surrounding visual elements like the grass, sky, water; which could play a role to

determine or not the class label.
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MKL algorithm Description

1. SimpleMKL (Rakotomamonjy et al., 2008) Iterative MKL algorithm that uses pro-

jected gradient updates and trains SVMs

at each iteration to solve the optimization

problem.

2. RBMKL (Ben-Hur and Noble, 2005) Rule based MKL trains and SVM with the

(mean or product) of the combined kernels.

3. NLMKL (Cortes et al., 2009) A nonlinear MKL algorithm using an SVM

as the base learner and a quadratic kernel.

4. LMKL (Gönen and Alpaydin, 2008) Localized MKL algorithm using the soft-

max gating model using the concatenations

of all feature representations in the gating

model

5. GMKL (Varma and Babu, 2009) The generalized MKL algorithm learn a

kernel function instead of kernel matrix

defining a kernel funtion in the space of

kernels called hyperkernel, this use a con-

vex combination of base kernels.

6. GLMKL (Xu et al., 2010; Kloft et al., 2010) The group Lasso-based MKL algorithms,

updates the kernel weights to learn a conic

combination of the kernels.

7. CABMKL (Cortes et al., 2010) Centered-alignment-based MKL algorithm.

In a first step uses a linear analytical solu-

tion for determining the kernel weights. In

a second step train a SVM with the kernel

calculated with these weights.

8. ABMKL (Qiu and Lane, 2009) Alignment-based MKL algorithms deter-

mine kernel weights using an heuristic,

then train an SVM with the kernel calcu-

lated with these weights.

Table 4.1: Representative MKL algorithms (Gönen and Alpaydın, 2011).
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Dataset Classes Distribution

1. Histopathology (Cruz-Roa et al., 2011a) 7 carcinoma (518), collgen (1238), epi-

dermis (147), hair folicle (118), eccrine

glands (126), sebaceous glands (136),

inflammatory infiltrate (99).

2. Birds (Lazebnik et al., 2005) 6 egret (100), mandarin (100), owl (100),

puffin (100), toucan (100), wood duck

(100)

3. Butterflies (Lazebnik et al., 2004) 7 admiral (111), black-swallowtail (42),

machaon (83), monarch-closed (74),

monarch-open (84), peacock (134), ze-

bra (91)

4. Scenes (Lazebnik et al., 2006) 15 bedroom (216), suburb (241), industrial

(311), kitchen (210), livingroom (289),

coast (360), forest (328), highway (260),

insidecity (308), mountain (374), open-

country (410), street (292), tallbuilding

(356), office (215), store (315)

5. 6-Caltech (Fei-Fei et al., 2007) 6 anchor (42), ant (42), camera (50), chair

(62), crocodile (50), dollar-bill (52)

Table 4.2: Image collections used for the evaluation of visual n-grams. Histopathology collection is
the only one with multi-label, which was approached as seven binary problems of the 1417
Histopathology image collection. The positive instances are images belonging to a target
category. Basal cell carcinoma is the only one related with cancer diagnosis.

4.3 Experimental settings

We have performed several experiments for each dataset. In those experiments, we gridded

images in patches of 8 pixels 3. Among the wide variety of image descriptors in the literature,

we use the Scale Invariant Feature Transform (SIFT) (Lowe, 2004) descriptor extracting edge

points at two scales and eight orientations. We also use the discrete cosine transform (DCT)

applied to each channel of the RGB color space by patch. The descriptor is built merging the

64 coefficients from each one of the three channels. This strategy produces Visual Words that

3We experimentally test patches of size 8x8 and 16x16. The 8x8 size patch is an appropriated option, which have

been also confirmed by other authors in the histopathology dataset (Díaz and Romero, 2012)
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Figure 4.5: Image samples of the image collections (A) Histopathology, (B) Birds, (C) Butterflies, (D)
Scenes y (E) 6-Caltech.

takes into account color and texture. We considered these features because in previous studies

they have shown outstanding (e.g., DCT best descriptor found in (Cruz-Roa et al., 2011a,b; Díaz

and Romero, 2012) for histopathology dataset) or at least competitive performance than other

more complicated alternatives (Lowe, 2004). However, other types of feature-descriptors could

be considered as well. It is worth noting that, in our n-gram experiments a setting of order

n includes all n-grams of lower or equal order than n. The feature combination was done in

that way because that is the way that n-grams have shown to improve text classification tasks

(Bekkerman and Allan, 2004; Tan et al., 2002; Wang and Manning, 2009) (we also performed

experiments with separated representations but we obtained worse results). Furthermore, we

have 400 unigrams4 and different number of n-grams for each different value of n (from 1 to 3).

The latter means that, in an experiment of 3-grams (1+ 2+ 3grams) we have combined 400

unigrams plus x-top-frequent 2-grams and the x-top-frequent 3-grams features for our BoVN.

Even though there is a number of ways to select generated n-grams (e.g., information gain),

we are interested in observing if the simple top-frequent features can improve the performance,

this is also a common practice in several text mining tasks (Bekkerman and Allan, 2004; Wang

and Manning, 2009). Moreover, it is worth mentioning that we have normalized each space of

attributes in an individual way (we represent each space as a probability distribution). In simple

words, the total sum of values corresponding to each feature space (visual words and visual

4We chose 400 visual words as a fixed k value for all databases because of two reasons: for the histopathology

dataset is a good configuration (Cruz-Roa et al., 2011a), and for the other datasets, the number of visual words was

between 100 and 400, nonetheless 400 features did not present a severe impact in the performance (Lazebnik et al.,

2005, 2006).
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bigrams) is equal to one. In the evaluation we used stratified 10 fold cross validation (10FCV)

for each dataset. For the histopathology dataset we report the average of the F-Measure obtained

on each binary problem. For the rest of image collections we report the micro F-Measure (FM),

which weights the F-measure performance in each class according to the number of instances in

the class. The FM reflects the performance considering the precision and recall 5. Equation 4.3

defines the F-Measure in terms of the precision and recall.

FMeasure = 2× precision× recall
precision+ recall

(4.3)

For the proposed MKL strategies we report the average time required to perform the learning

and classification steps. In our experiments we used a computer with a CPU Intel-Corei7 3.6GHz

and 64GB of RAM. Along Section 4.4 we will explain more details about each experiment such

as: the way we measured the performance and other specific conditions for each experiment.

4.3.1 Statistical significance of results

In this research, we are interested in observing if two approaches are statistically significantly

different; these two approaches will be the proposed method (BoVN) and each of the proposed

baselines (e.g., BoVW). For this reason we used the Wilcoxon signed-ranks (Wsr) (Wilcoxon,

1945) test for determining the statistical significance of differences in results. Wsr is the test

recommended by J. Demšar for comparisons between two algorithms (Demšar, 2006). The Wsr

is a non-parametric test, that makes no assumption that the differences between two random

variables compared are distributed normally.

4.4 Experiments and Results

In this section, we explain the purpose and details of each experiment. We have chosen the most

relevant experiments to show the different properties of the use of visual-n-grams for IC. The

best result of each set of experiments has been set in bold.

4.4.1 Bag-of-Visual-Words versus Bag-of-Visual-Ngrams

The goal of this experiment is to show how the proposed visual n-grams could improve the

classification performance. For this, we present experimental results comparing the performances

of a traditional Bag of Visual Words (BoVW) and our proposed Bag-of-Visual n-grams (BoVN).

In this first experiment, for the proposed BoVN, we extended the set of visual features by adding

5Precision is the fraction of instances that are relevant, this is the number of true positives over the number of true

positives plus the number of false positives. Recall is the fraction of relevant instances that are classified, this is the

number of true positives over the number of true positives plus the number of false negatives (Powers, 2011).
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a set of 2-grams (multidirectional sequences of two visual words). Since the number of possible

2-grams are of hundreds of thousands we have fixed it to the top-frequent 2500 6. For this

experiment we represented images under the BoVN through the early fusion scheme (called

early BoVN). Experiments reported in Table 4.3 show the performance for early BoVN, and the

traditional BoVW using SVM with a linear kernel (Chang and Lin, 2011).

Results BoVW vs BoVN

Averaged F-Measure per collection

descriptor model Histopathology Birds Butterflies Scenes 6-Caltech

DCT early BoVN 64.54 47.91 62.19 63.40 54.10
DCT BoVW 58.54 52.90 61.10 61.01 53.48

SIFT early BoVN 61.71 54.79 52.31 77.19 72.29
SIFT BoVW 53.41 53.12 55.82 74.10 70.51

Table 4.3: F-Measure results for visual words vs visual n-grams. For image preprocessing in these
collections, settings from Section 4.3 where used.

The experimental results presented in Table 4.3 suggest that, independently of using the DCT

or SIFT descriptor, the use of visual 2-grams outperforms the average classification performance

of 1-grams in every image collection. The averaged better F-Measure obtained by the early

BoVN, against the simple BoVW (which is the traditional BoVW using 1-grams), is in part due

to the pairs of visual words representing structural visual patterns, which in some way reinforce

some evidence in text mining (Bekkerman and Allan, 2004; Wang and Manning, 2009). It

is worth noting that, using the DCT descriptor for the histopathology dataset produces better

classification performance than SIFT descriptor. This is because the DCT descriptor considers

important properties of texture and color, which are relevant for histopathology images (Cruz-

Roa et al., 2011a). Furthermore, the histopathology images are captured in a more controlled

environment, which makes possible to have images in the same scale and resolution. The DCT

descriptor also obtained better results than SIFT for the butterflies dataset. This is also due

to the color and texture properties of the images. Moreover, most images in the butterflies

dataset have the object in similar positions, which alleviates problems related with rotation.

On the other hand, for Birds, Scenes and 6-Caltech datasets, using SIFT descriptor leads to a

better classification performance than DCT. This is mainly because natural images have some

properties (e.g., different scales, resolutions, orientations) that SIFT descriptor can handle in a

6 We analyzed how the dimensionality influences the performance of a Bag-of-Visual 2-grams (testing incremen-

tally from one thousand to ten thousand of features), getting that the 2500 top frequent bigrams are a good balance

(sightly better than experiments using less and more features) between the dimensionality and the performance of our

approach.
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more appropriated way (Lowe, 2004).

It is worth mentioning that under the same visual descriptor, computing the Wsr test over the

outputs of the 10CFV in each dataset, we obtained more than 98% of statistical confidence in

results comparing early BoVN and BoVW. In the following sections, we present more detailed

experimental results. Given the evidence of the performance using DCT and SIFT descriptors in

Table 4.3, for the remainder of experiments we used DCT descriptors for experiments in the

Histopathology and Butterflies datasets, but SIFT descriptors for the rest of collections.

Longer Sequences of Visual Words

The purpose of these experiments is to expose whether considering n-grams of higher order

than 2, could improve the performance of the classifier. Table 4.4 presents the results of the

experiments of the BoVN approach for visual n-grams using unigrams (which are the traditional

visual words and one of our baselines) to tetragrams 7. From results in Table 4.4 we can figure

out that the best setting is 1+ 2grams. This can be due to the following reasons. The first one is

related with the size of the sequences: it is well known that the higher n for n-grams, the higher

number of instances are required to find that sequences of length n (Tan et al., 2002). The second

one is related with the high dimensionality: using longer sequences produces large vocabularies,

which also produce sparse feature vectors (long sequences are more difficult to find (Wang and

Manning, 2009)). According to the Wsr test, only the difference between using 1+2grams and

1+2+3grams is not statistical significantly. Nonetheless, using 1+2grams seems to be a better

option given the compromise between the effectiveness and the required computational resources.

For this reason, in our following experiments we used 1+2grams as visual features.

BoVN

Averaged F-Measure per collection

Config Histopathology Birds Butterflies Scenes 6-Caltech

1gram 58.54 53.12 61.10 74.10 70.51

1+ 2gram 64.54 54.79 62.19 77.19 72.29
1+ 2+ 3gram 62.69 53.31 62.09 76.12 71.11

1+ 2+ 3+ 4gram 61.34 51.11 61.05 74.32 69.31

Table 4.4: F-Measure results for visual words vs visual n-grams. For image preprocessing in these
collections, settings from Section 4.3 where used.

7We selected the 2500 top frequent features for each n-gram space in the same way that in Section 4.4.1. Thus

the experiment 1+2+3+4gram uses the information of the 400 visual words (1grams) and 7500 sequences of visual

words (n-grams)
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4.4.2 Strategies to Exploit Visual n-grams

Visual words and visual n-grams can be seen as two different sets of visual features. These visual

features can be already used together (e.g., early or late fusions) to fed a wide range of different

classification algorithms. Nevertheless, as explained in Section 4.1.3 it is possible to exploit

these feature spaces using more appropriated fusion methods. The purpose of experiments in

this section is to show that the MKL strategies can improve the classification performance taking

advantage of the joint use of Visual Words and Visual n-grams. For this we analyze the proposed

visual n-grams under a MKL formulation, solving the kernel combination using a wide variety

of MKL methods outlined in Table 4.1. We present the general obtained results by Strategy 1

and 2 under the following specific kernel combinations 8:

1. Linear kLIN(xi, xj) = 〈xi, xj〉

2. Intersection kINT (xi, xj) =
d∑
h

min(xi,h, xj,h)

3. The fusion of kLIN and kINT under MKL schemes.

In Tables 4.5 and 4.6 we report experimental results per collection. We also report the time

required by each method to perform the 10CFV over all datasets. The time required to build

the kernel matrix is what varies from one MKL strategy to another. Once the matrix kernel

is learned/built, it is fed into an standard SVM. For these results, the proposed BoVN using

early or late fusion strategies outperforms the traditional BoVW in each dataset. For the sake

of comparison, in Table 4.5 we also evaluate other approach in the literature that also takes

advantage of contextual information; a Language Model Classifier (LMC). As explained in

Chapter 3, language models have been used in previous works (Tirilly et al., 2008; Wu et al.,

2007) for building classifiers. Thus, we have implemented a Language Model Classifier (LMC)

as the one used in (Tirilly et al., 2008), which is based on the CMU-Cambridge Statistical

Language Modeling Toolkit v2 (Clarkson and Rosenfeld, 1997). The language model classifier

uses 1+ 2+ 3grams (configurations up to 10− grams were tested) remaining parameters of

the software were left by default (e.g., smoothing good turing discount and backoff). 9 From

Table 4.5 it can be seen that MKL Strategy 1 (specially RBMKL) is a better option than BoVN

8We study other basic kernel functions, as polinomial and gaussian, and their combination. Nevertheless, obtained

results are much lower than the performance of linear and intersection kernel. This is due in part to that linear and

intersection kernels, are more appropriated for working with data represented using histograms.
9 The language model classifier works as follows: i) For each binary problem, it takes the training documents

and builds two model languages (one for positive class and one for the negative), and ii) For each test document, it

measures the distance (using the probability chain rule) against the positive and negative model and it assigns the

closest category.
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Strategy 1: Single Kernel (Linear | Intersection) - Several Spaces

F-Measure performance by collection

dataset

Histopathology Birds Butterflies Scenes 6-Caltech hours

kLIN|kINT kLIN|kINT kLIN|kINT kLIN|kINT kLIN|kINT

SimpleMKL 65.12 | 66.11 55.67 | 55.18 62.82 | 62.14 77.22 | 77.62 72.16 | 71.07 7.91

RBMKL 66.53 | 66.43 55.01 | 55.98 62.53 | 63.48 76.12 | 77.79 73.22 | 73.82 3.71

NLMKL 62.41 | 61.11 54.33 | 55.43 62.31 | 62.24 75.11 | 75.53 71.87 | 70.52 12.81

LMKL 61.17 | 60.54 54.74 | 52.23 60.31 | 62.29 76.24 | 77.71 72.91 | 71.21 9.21

GMKL 65.20 | 67.42 54.54 | 55.33 61.28 | 58.22 73.32 | 74.03 72.34 | 70.93 6.56

GLMKL 65.69 | 65.21 54.73 | 54.37 61.44 | 60.51 77.01 | 76.44 73.12 | 72.17 6.58

CABMKL 60.55 | 61.31 53.53 | 53.02 62.28 | 62.89 76.98 | 75.38 72.12 | 72.44 5.97

ABMKL 60.91 | 59.88 53.50 | 54.73 62.55 | 62.15 73.91 | 72.21 69.13 | 67.12 4.21

early BoVN 64.31 | 63.71 54.79 | 54.51 62.19 | 61.13 77.19 | 76.62 72.29 | 72.94 2.21

late BoVN 60.31 | 61.31 53.05 | 54.34 61.51 | 61.28 76.04 | 75.25 71.34 | 72.01 2.36

simple BoVW 58.59 | 57.21 53.12 | 54.10 61.10 | 62.66 74.10 | 73.11 70.51 | 69.38 1.16

LMC 53.00 54.76 61.14 62.12 68.41 5.24

Table 4.5: Strategy 1: Single Kernel (Linear | Intersection) - Several Spaces. This Table shows ex-
periments using sequences of Visual Words (Uni-Bi-grams) early and late fusion. For these
experiments we compute the F-Measure for the positive class in each category on 10-fold
cross validation using unigrams and bigrams in each of the problems. Simple BoVW is the
only experiment using just the 400 visual words.
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Strategy 2: Several Kernels (Linear + Intersection) - Single Space

F-Measure performance by collection

dataset

model Histopathology Birds Butterflies Scenes 6-Caltech hours

SimpleMKL 67.12 56.12 63.82 78.01 72.34 17.54

RBMKL 68.53 56.41 64.00 78.22 74.12 7.23

NLMKL 62.41 55.31 63.89 78.10 73.21 28.71

LMKL 61.17 53.71 63.83 77.21 73.84 23.34

GMKL 66.20 55.76 64.15 77.13 72.41 14.21

GLMKL 66.69 53.30 63.05 78.02 73.92 14.56

CABMKL 60.55 54.33 63.29 76.72 73.01 11.10

ABMKL 60.91 54.96 63.25 77.34 72.74 9.92

kLIN|kINT kLIN|kINT kLIN|kINT kLIN|kINT kLIN|kINT kLIN|kINT

early BoVN 64.31 | 63.71 54.79 | 54.51 62.19 | 61.13 77.19 | 76.62 72.29 | 72.94 6.74

late BoVN 60.31 | 61.31 53.05 | 54.34 61.51 | 61.28 76.04 | 75.25 71.34 | 72.01 6.98

simple BoVW 58.59 | 57.21 53.12 | 54.10 61.10 | 62.66 74.10 | 73.11 70.51 | 69.38 2.24

Table 4.6: Strategy 2: Several Kernels (Linear + Intersection) - Single Space. This Table shows
experiments using sequences of Visual Words (Uni-Bi-grams) early and late fusion. For these
experiments we compute the F-Measure for the positive class in each category on 10-fold
cross validation using unigrams and bigrams in each of the problems. Simple BoVW is the
only experiment using just the 400 visual words.
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and LMC in most datasets, except for Caltech dataset where an early BoVN seems to obtain

competitive results. Nevertheless, from the considered strategies and kernels to evaluate MKL

using visual n-grams, the most competitive seems to be results in Table 4.6, which corresponds

to Strategy 2: “Several (Linear + Intersection) Kernels - Single Space)”. In this strategy, linear

and intersection kernels correspond to different notions of similarity of the whole space (visual

words plus 2grams). Then, instead of trying to find which kernel is the best, MKL method

performs combination. Experimental results show improvements when using several MKL

strategies, but the bests results in Table 4.6 were obtained by RBMKL. We individually validate

RBMKL-Strategy-2 using the Wilcoxon Signed Rank test against: simple BoVW, early-BoVN,

late-BoVN and RBMKL-Strategy-1. The output obtained by this test is above of 98% of

statistical confidence. The best outcomes of the RBMKL method confirms what is reported

in (Gönen and Alpaydın, 2011), which in similar domains obtains competitive performance

or overcomes other approaches. The RBMKL method combines kernels performing a linear

operation using the similarities matrices of each kernel, in our case the mean of the linear and

intersection kernel matrices. RBMKL methods, through a simple-effective kernel operation can

derive a kernel that better reflects similarities among instances represented under histograms

of visual words and visual bigrams. This suggest that without using elaborated kernel learning

techniques (note the time required by RBMKL), and under the proposed visual n-grams space, it

is possible to compute useful similarity kernel matrices. We hypothesize that the main reason of

this result is that instances are under a space of high dimensionality (400 visual words + 2500

2-grams), which allows to obtain more appropriate similarity measures. The LMC does not

provide better performance than BoVN. This can be due in part to the highly unbalanced data

in some collections, which provides very few documents to build accurate language models

for some positive classes. Moreover, since language models rely in probabilistic bases, the

unbalanced data represents a common problem.

Specific Detailed Results by Class for MKL

In this section, we present some of the most relevant results by class obtained by MKL strategies.

The purpose is to expose the performance of visual n-grams in some specific interesting classes.

Histopathology dataset: Results in Table 4.7 show that most methods using 1+2grams

overcome 1grams methods in most classes. This is more visible in classes 1, 3, 4, and 5. The

class 1 is the most important, because it is the only one related with cancer diagnosis. Images

in class 1 present structural tumor cells having large and darker nuclei, which are accurately

characterized by visual bigrams (see Figure 4.6). Visual words (1-grams) are competitive in

classes 2, 6 and 7 (none of them related with cancer diagnosis). Such classes are in opposite

ends, either by the lack of structured spatial visual elements (classes 2 and 6) that make bigrams
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to lose their advantage, or because the contextual information of visual words are much more

global rather than local (class 6). We think those problems need more instances and explore

other parameters (e.g. patch sizes, size of sequences, or alternative descriptors).

Experiments for Histopathology dataset using Strategy 2

Detailed F-Measure by class

class

model 1 2 3 4 5 6 7 avg

RBMKL 96.46 99.08 84.68 55.28 52.41 56.30 35.52 68.53
BoVW 86.10 94.80 74.40 36.80 35.80 48.00 34.20 58.59

Table 4.7: Strategy 2: Several (Linear + Intersection) Kernels - Single Space. Table shows detailed
experiments in the Histopathology dataset using sequences of Visual Words (Uni-Bi-grams)
under RBMKL and the traditional BoVW. The class 1 is the only one related with cancer
diagnosis.

Figure 4.6: Example of an image related with cancer diagnosis (class 1). The image is represented under
the computed visual words codebook using DCT descriptor. According to information gain
implemented in (Hall et al., 2009), we rank the 6 most discriminative visual features found in
this image. We highlight in yellow and red, the most discriminative visual words and visual
n-grams respectively.
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Birds and Butterflies dataset: Table 4.8 presents experimental results using the Birds

dataset. Methods using 1+2grams outperform simple BoVW (1grams) in some specific classes.

This is more visible in classes Mandarin, Puffin, Toucan, and Wood duck. In a similar way

that the Histopathology dataset, we think those results are in part due to the complexity of each

class image. Figure 4.7 shows one instance of the Egret class (left) and one of the mandarin

class (right). Results suggest that, simple BoVW, in some way can solve the Egret class because

the target object contains low variety of visual words and there are less structural local visual

patterns (captured by the n-grams). On the other hand, the image belonging to the mandarin

class, expose more visual spatial patterns that could be extracted (see example in Figure 4.8). 10.

A similar situation is presented for results in Table 4.9 for the Butterflies image collection (see

the example in Figure 4.9).

Experiments for Birds dataset using Strategy 2

Detailed F-Measure performance by class

classes

model Egret Mandarin Owl Puffin Toucan Wood duck avg

RBMKL 52.32 47.71 68.03 55.53 64.32 50.55 56.41
BoVW 52.62 41.54 66.75 54.37 60.21 49.15 54.10

Table 4.8: Strategy 2: Several (Linear + Intersection) Kernels - Single Space. Table shows detailed
experiments in the Birds dataset using sequences of Visual Words (Uni-Bi-grams) under early,
late fusion and RBMKL (MKL intermediate fusion). The F-Measure value of each class for
BoVW correspond to the best kernel configuration we found (linear or intersection). The
F-Measure value of each class for BoVW correspond to the best kernel configuration we found
(linear or intersection).

Finally, experimental results using visual n-grams for the Scenes datasets, also showed

similar properties for specific classes. For example, in this collection there are classes where

results of experiments using visual n-grams are closer to the pure use of visual words (1-grams),

having low gain/lost performance. Some classes with more differences in performance are:

kitchen, living room, bedroom and store. These kind of indoor classes appear to be the more

complicated given the high variety of objects that could be found (other interesting classes are

street and suburb). In those classes, visual n-grams provided an improvement in the performance.

On the other hand, simple visual words get better results in natural scenes like mountain, forest,

open country and coast have more plain unstructured visual elements like sky, grass, water, etc.

We think such images are better classified by a simple BoVW because there are structural visual

10Analogous characteristics present other classes like Owl (a mostly white bird) and toucan (a bird with more

contrast and structural characteristics)
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Figure 4.7: Left Egret class and Right Mandarin of the Birds dataset. Sample instances to expose the
image characteristics of those two classes and their performance when using visual n-grams
to capture the context.

Figure 4.8: Example of a Mandarin duck image. According to information gain implemented in
(Hall et al., 2009), we rank the 6 visual regions that produced visual features with most
discriminative information. We highlight in yellow and red, the regions that using SIFT
descriptors produced discriminative visual words and visual 2grams respectively.

elements that need to be captured in a more global way (visual n-grams capture local visual

patterns).
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Experiments for Butterflies dataset using Strategy 2

Detailed F-Measure performance by class

clases

model Admiral Swallow tail Machaon Monarch 1 Monarch 2 Peacock Zebra avg

RBMKL 57.31 44.73 70.61 57.61 67.14 72.32 65.11 62.11
BoVW 58.82 42.05 68.02 54.95 65.15 70.72 64.10 60.45

Table 4.9: Strategy 2: Several (Linear + Intersection) Kernels - Single Space in the Butterflies dataset.
Table shows detailed experiments in the Butterflies dataset using sequences of Visual Words
(Uni-Bi-grams) under early, late fusion and RBMKL (MKL intermediate fusion). The F-
Measure value of each class for BoVW correspond to the best kernel configuration we found
(linear or intersection).

Figure 4.9: Left Balck Swallowtail class and Right Peacock of the Butterflies dataset. Sample instances
to expose the image characteristics of those two classes and their performance when using
visual n-grams to capture the context.

4.4.3 Bag-of-Visual n-grams and the Spatial Pyramid Representation (SPR)

In this section we present an experimental evaluation to deepen the analysis of the proposed

visual n-grams and the BoVW. In spite of the simplicity and effectiveness of the BoVW approach,

there have been several efforts to incorporate spatial information to it. In addition to the language

models used in Section 4.4.2, there have been other approaches to capture spatial information at

different levels. The Spatial Pyramid Representation (SPR) (Lazebnik et al., 2006) described

in Section 3.1, is one of the most notable works to improve the performance of BoVW. In the

following subsections we evaluate and compare the performance of the proposed BoVN and the

SPR. We explain the key differences between the two approaches and discuss some properties of

each dataset that makes possible the outstanding performance of each approach. Furthermore, we
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found that both approaches can be easily integrated to obtain an improvement in the classification

performance.

BoVN vs SPR

The purpose of this first experiment is to compare the classification performance of the proposed

strategy and the Spatial Pyramid Representation (SPR) (Lazebnik et al., 2006). SPR is a method

proposed in the literature which exploits the use of spatial information in other ways (see Section

3.1 for more details). For this purpose we evaluate our best strategy using the visual 1+2grams

and RBMKL. We also evaluate the performance of the SPR representation on each dataset using

the original implementation provided by (Lazebnik et al., 2006) 11. Some interesting findings

can be highlighted from results in Table 4.10. For example, it is interesting to see that, according

to the Wsr test, the proposed RBMKL approach significantly outperforms the SPR in the Birds

and the Butterflies datasets. Regarding to the 6-Clatech dataset, RBMKL also outperforms SPR,

however, the difference is not statistically significant. Finally for the 15-scenes dataset, SPR

significantly outperforms our approach. We think such results on each dataset are due to specific

characteristics of each domain. More specifically, the proposed visual n-grams extract very local

visual patterns. For example, visual bigrams are useful to capture some characteristic lines of

the mandarin duck (see Figure 4.8), but may fail to capture more global visual patterns (e.g.,

the mandarin ducks are usually surrounded by visual elements similar to watter or grass). On

the other hand, SPR captures more global and absolute visual patterns, which can be matched

by the intersection kernel according to each region in corresponding levels of the pyramid. We

believe that this is one of the reasons of the high performance of SPR in natural scenes dataset,

where images belonging to the same class, share more visual words in each pyramid level (e.g.,

in buildings images the top part usually is the sky and clouds). Nonetheless, SPR may fail to

account for very local and relative patterns, especially when an image presents the target object

in a wide range of positions and rotations variants (the case of Birds and Butterflies dataset). The

latter scenario hinder to match several levels of the pyramid (except for the coarser level), which

produce a more noisy representation.

11We use the following experimental settings: 400 visual words and 8x8 size patches, besides our best descriptor

for each collection; DCT descriptor for histology and Butterflies datasets, while SIFT descriptor for the rest. An

intersection kernel as defined in (Lazebnik et al., 2006) is used into an SVM. By using these fixed experimental

settings, we experimental determine to 3 the number of the pyramid levels in SPR by exploring values between 2 and

5
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Results RBMKL vs SPR

Averaged F-Measure per collection

model Histopathology Birds Butterflies Scenes 6-Caltech

RBMKL 68.53* 56.41* 64.00* 78.2 74.12
SPR 67.32 53.38 61.97 80.10* 72.13

Table 4.10: F-Measure results for RBMKL vs SPR. For image preprocessing in these collections, settings
from Section 4.3 where used.

Extending SPR using visual n-grams and MKL

The purpose of this second experiment is to evaluate the classification performance of visual

n-grams when they are integrated into the SPR. For this, we evaluate SPR using the experimental

settings of Section 4.4.3. In Table 4.11, there are three SPR strategies. The first one (SPR),

corresponds to the standard implementation as described in (Lazebnik et al., 2006). The second

one (SPR+VN), is a simple extension where local histograms of visual 1+2grams are computed

from each cell in the pyramidal representation. Thus, the final pyramidal representation of

an image is the arrangement of histograms of 1+2grams corresponding to each cell. Finally,

SPR+VN+RBMKL is an approach, that under the Strategy 2, uses the representation vectors of

SPR+VN to learn a new kernel 12. From results in Table 4.11, we can observe that integrating

visual 2grams into the SPR results in an improvement of the classification performance. We can

also note that by using RBMKL to learn the kernel, the impact in the performance is positive. It is

worth mentioning that SPR+VN and SPR+VN+RBMKL, according to the Wsr, are significantly

better than SPR. We think that the improvement in the results are due to the complementary

local and global information carried by each of the combined methods.

Results of integrating visual n-grams and MKL into SPR

Averaged F-Measure per collection

model Histopathology Birds Butterflies Scenes 6-Caltech

SPR 67.32 53.38 61.97 80.10 72.13

SPR+VN 68.90 57.71 63.15 80.78 74.83

SPR+VN+RBMKL 70.02 58.19 65.31 81.29 76.17

Table 4.11: F-Measure results for SPR extended with visual n-grams and MKL. For image preprocessing
in these collections, settings from Section 4.3 where used.

12 A linear and an intersection kernel is built using image representation of SPR+VN, then RBMKL is used to

learn a new kernel function
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4.5 Final Remarks

The underlying motivation of this chapter was to improve the state-of-the-art in BoVW like ap-

proaches through fusion strategies that integrates the visual n-grams (multi-directional sequences

of visual words) as attributes. Thus, we took the analogy visual-textual words into a new higher

level combining contextual (visual n-grams) and non-contextual (visual words) information

through alternative fusion strategies. Motivated by the analogy visual-textual, we considered the

fusion of the contextual and non-contextual information in NLP tasks. Thus, we evaluated visual

n-grams in order to consider visual spatial information from a NLP perspective. Regarding to

typical fusion strategies, simple early fusion strategy showed better/similar performance than

late fusion approach. This is due in part to that in text classification most of textual feature

spaces are derived from one rigorous modality: the text. This condition degrades the diversity

among the search space, which is one of the most important aspects for building ensembles. The

results show evidence of the usefulness of integrating visual n-grams under the proposed MKL

strategies, showing that, every experiment using visual bigrams outperforms unigrams and other

methodologies.
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CHAPTER 5

EXPLOITING THE SEMANTIC VISUAL INFORMATION

One of the main motivations of the BoVW representations is similar to the Bag-of-Words (BoW)

used in text mining tasks: to build word histograms that represent documents. In this regard

there are many alternative ways of improving the BoW representation within the text mining

community that can be applied in computer vision as well. This chapter proposes the adaptation

of Distributional Term Representations (DTRs) for image classification. DTRs represent images

by exploiting statistics of feature occurrences and co-occurrences along the dataset. We focus on

the suitability and effectiveness of adapting well-known DTRs in different image collections.

Furthermore, we devise two novel distributional strategies that learn appropriated groups of

images to compute better suited distributional features.

In summary, we introduce the idea of exploiting distributional visual information among high

level visual features, and expose its benefits for image classification tasks. Thus, the contributions

of this chapter are threefold: i) the proposal of adapting DTRs for image classification by

exploiting the analogy visual-textual features, ii) two novel distributional visual feature strategies,

that automatically obtain better suited representations according to each image domain, and

iii) The evaluation of DTRs in different image domains using features based on visual words.

We evaluate DTRs using two different high level features, namely, visual words and sequences

of visual words. Experimental results over the five proposed datasets suggest evidence of the

usefulness of the distributional information in DTRs over BoVW and other methods in the

literature.

5.1 Distributional Term Representations, from text to images

This section describes the general framework for popular DTRs. By exploiting DTRs, we aim to

represent images in a low dimensional and non-sparse space that captures more relevant visual

information. Our goal is to overcome, to some extent, the issues naturally inherited by the BoVW,

and therefore to improve the classification performance. For this purpose, this section shows

the adaptation of traditional DTRs by taking advantage of the visual-textual word analogy and

the distributional hypothesis. The idea is that visual words that occur in similar visual contexts
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should have similar representations. Thus, the main goal is to build enriched distributional

visual-word and image representations, which capture contextual information by means of visual

word occurrences and co-occurrences.

DTRs comprise two main stages. In a first stage, visual-words are represented in a new

distributional space (see step 1 in Figure 5.1). In a second stage images are represented under

that new distributional space (see step 2 in Figure 5.1). In the following sections, we consider

the visual words in the codebook as the terms to build the DTRs. More formally, let I =

{(I1,y1), . . . , (In,yn)} be a training set of labeled images, that is, I is a collection of n−pairs

of images (Ii) and labels (yi); where the latter indicates the category associated with the image,

with yi ∈ C = {C1, . . . ,Cq}. Also let V = {v1, . . . , vm} denote the vocabulary of terms, which

in our case is the codebook of visual words precomputed in the collection under analysis. Given

the latter context, DTRs attempt to capture in different ways valuable distributional information

of the V features along the dataset. DTRs begin associating each visual word vi ∈ V with

a vector ti ∈ Rr, i.e., ti = 〈ti,1, . . . , ti,r〉, where r is the number of distributional features

according to each specific DTR, and ti,j indicates the contribution of distributional feature j to

the representation of visual word vi.

Figure 5.1: DTRs build visual words representations (term vectors) that describe its distributional
properties (Step 1), then use such term vectors to build the image representation (Step 2).

Image representation is obtained by aggregating the representation of terms that occur in

the image (see Figure 5.1). This is, let ti denote the DTR of the visual word vi, then the image

representation of Ik is computed as Ik =
∑
vi∈Ik αi · ti . Where the scalar αi weights the

relevance of visual word vi in image Ik. In this way, the representation of each image is the

weighted aggregation of the DTRs of the visual words occurring in the image 1. The resultant

DTRs are low-dimensional, nonsparse and capture more useful contextual term information. In

the test phase, test images are represented by combining DTRs from the training term vectors

1 Note that αi does not need to be optimized, and could be any term weighting scheme in text mining to capture

the feature contribution (e.g., frequency, boolean, information gain, etc.). In our evaluation we use the simplest one:

the visual word occurrence frequency.
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as well. In the following sections we describe in detail how each of the DTRs computes the ti

representation taking visual words as terms.

5.1.1 Image Occurence Representation (IOR)

The main idea of Image Occurrence Representation (IOR) consists in capturing the semantics

of a visual word by observing the distribution of occurrence statistics over the images in the

dataset (Lavelli et al., 2004). More formally, each visual word vi is represented as a vector

ti = 〈ti,1, . . . , ti,|I|〉, where |I| is the number of images in the training collection, and ti,k
indicates the relevance of the image Ik to characterize vi. Equation 5.1 presents the above ideas.

ti,k = df(vi, Ik) · log
|V|

|Nk|
(5.1)

where Nk ⊆ V is the set of different terms in the image Ik, and df(vi, Ik) is defined in

Equation 5.2.

df(vi, Ik) =

{
1+ log(#(vi, Ik)) if #(vi, Ik) > 0

0 otherwise
(5.2)

where #(vi, Ik) indicates the frequency of term vi in Ik. The intuitive idea is that, the

importance of an image Ik to characterize vi is given by the frequency of the term vi in Ik.

Also note that the number of different terms contained in Ik is inversely proportional to its

contribution to represent vi. Finally, the DTR of each term ti is normalized so that ||ti||2 = 1

5.1.2 Visual-Feature Co-occurence Representation (VCOR)

The principle behind the Visual-Feature Co-occurrence Representation (VCOR) is that, the

semantics of a visual word can be captured by observing its co-occurrences with other visual

words across images in the dataset (Lavelli et al., 2004). Thus, each visual word vi is associated

to a vector ti = 〈ti,1, . . . , ti,|V|〉, where |V| indicates the codebook size, and ti,k denotes the

contribution of the visual word vk to the semantic description of vi. Equation 5.3 presents the

above ideas.

ti,k = tff(vi, vk) · log
|V|

|Tk|
(5.3)

where Tk ⊆ V is the set of different visual words co-occurring with ti in at least one

document. tff is defined in Equation 5.4.

tff(vi, vk) =

{
1+ log(#(vi, vk)) if #(vi, vk) > 0

0 otherwise
(5.4)
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where #(vi, vk) indicates the number of images in which visual words vi and vk co-occur.

Finally ti vector is normalized so that ||ti||2 = 1.

5.1.3 Class Occurrence Representation (COR)

The intuitive idea of a Class Occurrence Representation consists in representing the terms by

their relation with each target class (Li et al., 2011; López-Monroy et al., 2015). This can be

done by exploiting occurrence-statistics over the set of documents in each of the target classes.

In this way, we represent each visual word vi ∈ V with a vector ti = 〈ti,1, . . . , ti,q〉, where

the ti,k is the degree of association between visual word vi and class Ck. Under this DTR, the

weight ti,k is related with the occurrence of term vi in images that are labelled with class Ck.

The relationship between the ith visual word and the kth class can be defined according to

Equation 5.5.

wi,k =
∑

∀Ij:yj==Ck

log2

(
1+

tf (vi, Ij)
len(Ij)

)
(5.5)

where tf(vi, Ij) is the visual word-occurence frequency of the visual word vi in the image

Ij, and len(Ij) indicates the number of visual words in Ij. The log2 function aims to soften the

relevance of highly frequent visual words.

Finally, in order to produce the final ti = 〈ti,1, . . . , ti,q〉 representation, two normalizations

are performed. Equation 5.6.1 shows the first one in order to consider the proportion of the |V|

terms in each class, whereas, Equation 5.6.2 shows the second one in order to take into account

the weights computed for the |C| classes, making weights wi,· comparable among classes.

(5.6.1) t̂i,k =
wi,k

|V|∑
i=1

wi,k

(5.6.2) ti,k =
t̂i,k

|C|∑
k=1

wi,k

(5.6)
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5.2 New Distributional Visual-Feature Representations

DTRs presented in Section 5.1 are useful methodologies to harness distributional information of

visual words. Notwithstanding the classification performance that traditional DTRs bring to the

standard BoVW, each of these proposals is somewhat limited because they only capture very

specific distributional visual patterns. For image classification there are a number of complex

scenarios (i.e., high intra-class visual content, wide and narrow domains, etc.) where modeling

the visual content, might require the analysis of multiple levels of the contextual information.

In this regard, if we carefully observe the DTRs presented in Section 5.1, one can notice that

each DTR focuses at different levels of the contextual information. For example, VCOR aims to

model the term relevance in a very detailed way by observing the term co-occurrences. In the

case of IOR, it models the term importance by using a more general principle; the occurrences

in images. Finally, COR pushes to the limit the generalization principle, modeling the term

relevance by exploiting the occurrences in the categories. According to the characteristics of the

domain in which a DTR is used, the latter principles of generalization can become in a strength

or in a weakness to achieve better accuracy rates. In this regard, it would be promising to propose

alternative strategies for building better distributional visual representations for images; that is

precisely the purpose of this section.

5.2.1 Subclass Occurrence Representation (SOR)

The first proposed strategy is the Subclass Occurrence Representation (SOR), which can be

seen as an improvement of COR. The idea of SOR is to alleviate the idea of class homogeneity

(e.g., a whole class can be represented in one dimension) exploited by COR. Thus, the idea

is to generate a new space of subclasses by means of a class-driven procedure that allow us

to model the heterogeneity inside each target class. In this way, SOR exploits intra-class

information by means of a clustering procedure in each target class. Thus, in a new stage the

visual features and images could be represented in a new discovered subclass-space, which still

being low dimensional, non-sparse and captures more fine grained class-specific information

(see Figure 5.2). Algorithm 1 shows the main steps of this approach. More precisely, a

clustering procedure is separately applied in training images belonging to each of the categories

C = {C1, . . . ,Cq} (lines 3 and 4). Thus, for each class Ci, a set Ri = {Si1, . . . ,Siri} of ri
subclasses are generated (line 4). The final set of subclasses is the combination of all generated

clusters: S = {S11, . . . ,S1r1 , . . . , . . . ,S
q
1 , . . . ,Sqrq}, where |S| =

∑q
j=1 |Rj| (line 5). Once that

subclasses are generated, images are represented under this subclass space by using COR as

described in Section 5.1.3, this time making C = S (line 8).
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Algorithm 1 Subclass Occurrence Representation (SOR)
Require: ITrain = {(I1,y1), . . . , (In,yn) | yi ∈ C is the class label of Ii}
Ensure: ISOR

Train (Train matrix of n images by |S| distributional features)
1: IBoVW, y = BoVW(ITrain)

2: ICOR = COR(IBoVW, y)
3: for Ci in C = {C1, . . . ,Cq} do
4: Perform clustering on ICOR

{k:yk=Ci}
for obtaining intra-classes in Si

5: Si = {Siri | S
i
ri

is the r th intra-class label of the class i}
6: New intra-class labels are given to the images Ik : ŷk = Siji ∈ S

i

7: end for
8: ISOR

Train = COR(IBoVW, ŷ)

Figure 5.2: Subclass Occurrence Representation (SOR). The purpose of this representation is to model
the intra-class information by means of a class driven procedure.
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5.2.2 Group Occurrence Representation (GOR)

The latter approach automatically learns more fine-grained distributional information of the

features. The strategy allows to discover the relevant subcategories of images in which the DTR

should focus. Notwithstanding that SOR can capture automatically finer grained information, the

strategy still being in some way forced to focus in each of the target categories. Thus, we take this

weakly supervised SOR into an unsupervised version named Group Occurrence Representation

(GOR)2. GOR is an extension of COR, adapted for automatically discovering visual patterns in

the training dataset by discovering inter-group information by means of clustering. Thus, the

visual features and images are represented under a new discovered group-space. The intuitive

idea is that, the generated groups expose more relevant information about the images in the

dataset (see Figure 5.3). GOR keeps COR properties, namely, low dimensional and non-sparse

by capturing information of natural clusters into the dataset. The Algorithm 1 shows the main

steps of this approach. To build GOR a clustering procedure is applied to the whole training

images (line 3). Thus, GOR generates a final set of subclasses S = {S1, . . . ,Sr}, where |S| = r

(line 4). After creating the new subclass space, the images are represented by using COR as

described in Section 5.1.3 making C = S (line 6).

Algorithm 2 Group Occurrence Representation (GOR)
Require: ITrain = {(I1,y1), . . . , (In,yn) | yi ∈ C is the class label of Ii}
Ensure: ISOR

Train (Train matrix of n images by |S| distributional features)
1: IBoVW, y = BoVW(ITrain)

2: ICOR = COR(IBoVW, y)
3: Perform clustering on ICOR for obtaining inter-classes in S
4: S = {Sr | Sr is the r th inter-class label in the corpora }

5: New inter-class labels are given to the images Ik : ŷk = Sj ∈ S
6: ISOR

Train = COR(IBoVW, ŷ)

2Please note that the process to build the representation is totally unsupervised, but it is used in image classification

which is a supervised problem.
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Figure 5.3: Group Occurrence Representation (GOR). The purpose of this representation is to model the
inter-class information by means of clustering the entire collection of images.

5.3 Visual features used as terms

Terms can be any set of patterns taken as features in a target domain. Regarding to text mining,

one of the most important set of textual features are specific lexical units, for example; words.

Also in this direction, maybe the second most popular textual feature, are the sequences of n

words (n-grams) that helps to capture spatial relationships among words (i.e., representing as

one attribute concepts like “pattern recognition”). Regarding to image classification, in this

thesis we use the analogous versions of those two terms: visual words and visual bigrams.

5.3.1 Visual words

We compute the visual words using a traditional BoVW formulation. This framework can be

easily explained in the following four steps (see Figure 2.1 in Chapter 2):

1. Griding images: We use a grid to extract image patches 3.

2. Descripting patches: We represent each extracted patch using a visual descriptor (i.e.,

SIFT or DCT).

3. Building the dictionary: A codebook of visual words is learned by using a clusterer (i.e.,

k-means) on the training descriptors. Cluster centroids are taken as visual words.

3Albeit there are many alternative ways to extract image patches (i.e., dense or regular grid-based, keypoint-based,

etc.), in this work we use regular-grid-based to simplify the explanation of the visual features that we use as terms.
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Figure 5.4: Example of an image representation using the codebook (López-Monroy et al., 2013). For the
current-target item (65) the generated bigrams are: 65-389, 65-219, 65-213, 65-21, 65-113,
65-123, 65-78, 65-182.

4. Indexing images: Each grid-patch descriptor in image is replaced with the code of the

nearest learned visual word.

5.3.2 Visual bigrams

There are several alternatives to model the spatial relationships among visual regions. In order to

extract visual features for DTRs, we are interested in those related with analogies of visual-textual

words. In this regard, sequences of visual words is one of the next logical steps that several

authors have proposed (López-Monroy et al., 2013; Zheng et al., 2006; Yuan et al., 2007; Tirilly

et al., 2008; Yuan et al., 2011). In this thesis, we exploit the idea of visual n-grams proposed

in (López-Monroy et al., 2015) and explained in Chapter 4. We used this strategy because it

produces sequences of neighbouring items in a very similar way to word n-grams (see Figure

5.4). The dictionary of those normalized visual n-grams are then used to proceed with the image

representation through histograms that account occurrences of the visual n-grams found in the

image.
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5.4 Experimental Settings

For evaluating the effectiveness of the proposed DTRs, we use the five datasets proposed in

Chapter 54. For the experiments in each image collection we also follow a similar experimental

setting to the one presented in Chapter 5. Thus, we have built a dictionary of 400 visual words

by griding images in patches of 8x8 pixels. To represent each patch we perform experiments

using two image descriptors, the first one is the Scale Invariant Feature Transform (SIFT) (Lowe,

2004). The Second one is the discrete cosine transform (DCT) computed merging 64 coefficients

on each channel of the RGB color space. Finally, the experiments using the Bag-of-Visual

bi-grams (BoVB) baseline consist in the concatenation of the histograms of visual words and

the histogram of the occurrences of sequences of two visual words. The number of possible

sequences generated from a dictionary of size 400 is 4002. Thus, as determined in (López-

Monroy et al., 2015) we only use a subset of the most 2500 top frequent bi-sequences, which

for our datasets, usually are sequences with at least 10 to 50 occurrences according to each

dataset. For the evaluation, we use a 10 cross fold validation framework (10CFV) on each

dataset. The classifier used for experiments in this chapter is a linear SVM in (Fan et al., 2008),

which have achieved outstanding performances in similar classification problems. We report

experimental results using the accuracy, which represents the percentage of images that were

correctly classified. In this chapter we use the accuracy to directly compare the new baselines

(LSA and LDA), which have reported results in some of the target collections. Nonetheless, in

Appendix A we also report full F-measure results for all the experiments of this chapter. For

automatically creating the S number of clusters (subclasses) in the proposed SOR and GOR,

we have used the Expectation Maximization (EM) clustering algorithm provided by the Weka

framework (Hall et al., 2009). The EM algorithm assumes that the set of images I is a set of

objects generated by a probability distribution, which is a combination of n different Normal

distributions. According to (Hall et al., 2009), the EM clustering algorithm works as follows: i)

n is set to one, ii) 10 folds are created in the training data, iii) EM clusterer is performed in a

cross validation way, iv) the likelihood is averaged over all runs, and v) if likelihood is greater

than the test n− 1, then n is increased and continues in step 2. For comparing the performance

of the DTRs, under the same experimental configuration, we have used three of the alternatives

mentioned in Chapter 3: LSA (Bosch et al., 2006), LDA (Fei-Fei and Perona, 2005), and SPR

(Lazebnik et al., 2006) 5. Given that context, we also estimated if the proposed DTRs and each

4It is worth mentioning that, in this chapter, for the histopathology dataset, we delimit the analysis to the most

important class: basal cell carcinoma.
5The experimental settings for LSA and LDA were experimentally determined between 200 and 60 concepts

for each dataset in the same way that in (Lazebnik et al., 2006). For the SPR, the parameter to build the pyramid

representation was fixed to three as suggested in (Lazebnik et al., 2006).
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of the proposed baselines (e.g., IOR, BoVW) are statistically significantly different (using a

confidence value above 95%). Thus, we used the Wilcoxon signed-ranks (Wsr) test, which is the

recommended test by J. Demšar for comparisons between two methods (Demšar, 2006).

5.5 Experiments and Results

In this section we explain the purpose and details of each experiment to evaluate the DTRs. In

Section 5.5.1, we evaluated and compared the DTRs using visual words as terms, versus the

BoVW and other typical baselines in the literature. Finally in Section 5.5.2, we evaluated the

DTRs jointly exploiting visual words and visual bigrams. Furthermore, to get more insights

about the robustness of DTRs, we also present experimental results where the visual words are

built based on two different visual descriptors: SIFT and DCT.

5.5.1 Distributional representations on visual words

The main goal of this experiment is to evaluate the usefulness of the DTRs using visual words

as terms, since they are the most representative and basic visual feature in the visual-textual

words analogy. From experimental results in Table 5.1, we can observe that independently of

using DCT or SIFT descriptors, most of DTRs (except COR) outperformed the standard BoVW.

This is in part due to the captured distributional information of visual words along the datasets,

similar to the evidence exposed in text mining tasks (Lavelli et al., 2004). More specifically, in

VCOR we can notice some clues of the improvement capturing the distribution of local pattern

co-occurrences, whereas in IOR we can see outstanding performances especially in the 6-Caltech

dataset. The best result of IOR in the 6-Caltech dataset is somehow expected since DOR is the

dual in TFIDF weighting scheme of text mining tasks. In other words, IOR allows to capture

the importance of features in documents with respect to the collection, which is very useful to

discriminate in wide domains with different objects like chairs or ants. Also, regarding to the

other DTRs, it is not surprising that COR did not outperform the BoVW, this is because COR is

designed to extract very few attributes (one attribute per class) that have proven to be effective

only in collections where the number of images and the dictionary size usually are much larger

(López-Monroy et al., 2015). This is similar to what happens in scenarios where simple methods

overcome complex ones when large amounts of data are available.

From Table 5.1 we can observe that most of the best results were obtained by the proposed

GOR and SOR. We infer that the outstanding results are because such representations were built

in a softer and less hand-crafted way than the others. For example, SOR is built in a weakly

directed way creating subclasses from the target classes, and GOR is totally unsupervised on the

entire dataset. In this way, SOR seems to be more useful in the dataset of Scenes, which presents
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high intraclass variability (there could be a lot of types of objects inside the scenes). On the other

hand, the GOR representation tends to obtain better results in the Histopathology, Butterflies and

Birds datasets, which besides of having high intraclass variability, are a narrower domain since

the target classification object belongs to a more general category (e.g., a butterfly or a bird).

Regarding to visual descriptors, although DCT is sensible to scale and rotation of the image,

it considers properties of texture and color, which produces better results for histopathology

and butterflies datasets. Finally, just as expected, SIFT descriptor worked better for the other

collections, which are natural images with different scales, resolutions and orientations. Besides

the usefulness of DTRs over BoVW, the DTRs also obtained better results than LSA and

LDA, which are two traditional feature extraction methods in the literature. Finally, it is worth

mentioning that, computing the Wsr test over the outputs of the 10CFV of GOR and each of the

proposed baselines, we obtained more than 98% of statistical confidence in results.

Accuracy Performances using visual words

SIFT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 75.04 64.76 50.72 50.00 69.65 62.03

LDA 56.21 59.39 30.04 36.83 61.56 48.80

LSA 77.23 65.77 48.78 51.50 73.11 63.27

VCOR 72.13 67.47 50.2 51.22 69.11 62.02

IOR 79.18 69.43 51.08 53.11 70.21 64.60

COR 68.88 61.74 43.45 42.16 69.16 57.07

SOR 79.03 68.11 52.24 54.50 74.02 65.58

GOR 81.20 68.01 54.40 56.66 71.10 66.27

DCT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 86.22 54.02 61.55 50.83 52.15 60.95

LDA 76.12 40.93 28.91 32.00 37.03 42.99

LSA 87.77 40.26 41.68 39.00 53.77 52.49

VCOR 81.43 55.51 63.48 53.21 52.62 61.25

IOR 88.11 57.86 65.03 57.06 52.10 64.03

COR 75.55 45.97 41.84 38.83 49.98 50.43

SOR 89.23 58.88 67.21 58.47 53.42 65.44

GOR 91.12 58.11 68.01 60.10 52.82 66.03

Table 5.1: Performances for the evaluated strategies using a dictionary of visual words generated using
SIFT-based and DCT-based visual words.
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5.5.2 Distributional representations on Visual Words and Visual n-grams

The purpose of these experiments is to expose whether considering visual bigrams6 (which are

local structural visual patterns) in DTRs, LSA, LDA and SPR, could improve the performance

of the classifier. The way we integrate such information is separately building two image

representations for each dataset. The first representation is built using visual words as terms,

whereas the second representation uses the visual bigrams as described in Section 5.3.2. The

combination is done by an early fusion strategy, which is a merely concatenation of both

matrices (Kuncheva, 2004). For example, in the case of the Bag-of-Visual Bigrams (BoVB) we

concatenate the histograms of visual words and visual bigrams.

Table 5.2 shows high improvements in the experimental results, in part due the extra infor-

mation of the local visual patterns captured by visual bigrams, but also by the inclusion of its

distributional information along the dataset. Furthermore, the Spatial Pyramid Representation

(SPR) (Lazebnik et al., 2006) briefly described in Chapter 3 is also evaluated. In this regard,

both BoVB and SPR representations took advantage of the spatial information, BoVB considers

local visual patterns, whereas SPR considers local and global visual patterns in the image. The

evaluation showed better performance for the proposed GOR and SOR than the rest of methods

in most of the datasets. Notwithstanding that SPR can capture local and global visual patterns at

different levels, it does not consider the distribution of visual patterns along the entire collection

in the same way that DTRs. Thus, we infer that this extra distributional visual information

is what allows GOR and SOR to obtain better performance than SPR in most of the datasets.

We think that SPR is better than GOR and SOR in the Scenes dataset because scenes images

appear in horizontal positions most of the time, which represent an advantage for absolute spatial

information captured by SPR from one image to another. In conclusion, the proposed SOR

and GOR are expected to work better in datasets that have high intra-inter class variability. For

example, Table 3 shows more performance improvements over a typical BoVW for histology,

birds and Scenes datasets. The kind of images presented in such datasets are much more complex

than 6-Caltech and Birds. Finally, we separately used the Wsr test over the outputs of GOR and

SOR for comparing them with SPR. The test produces more than 98% of statistical confidence in

results, showing that GOR and SOR significantly outperform SPR except for the Scenes dataset.

6This version of visual bigrams as features (López-Monroy et al., 2015) requires the use of a building strategy in

the order of O(n2) for time and space.
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Accuracy performances using visual words + visual n-grams

SIFT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 75.04 64.76 50.72 50.00 69.65 62.03

LDA 69.23 58.05 30.69 34.16 66.80 51.78

LSA 76.23 65.77 49.11 52.33 75.42 63.77

BoVB 80.71 71.23 52.34 57.21 77.04 67.70

SPR 75.55 72.25 52.22 56.88 81.44 67.66

VCOR 79.94 75.55 51.21 56.14 72.11 66.99

IOR 85.21 76.84 52.58 58.16 73.44 69.24

COR 79.03 61.40 44.42 46.33 72.53 60.74

SOR 84.23 76.11 53.27 60.27 81.15 71.00

GOR 86.52 76.32 54.11 61.71 79.21 71.57

DCT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 86.22 54.02 61.55 50.83 52.15 60.95

LDA 75.21 40.92 29.24 32.66 40.53 43.71

LSA 89.41 39.93 43.13 39.50 58.66 54.12

BoVB 91.02 56.81 62.13 51.33 54.14 63.08

SPR 80.11 57.22 63.05 55.55 59.44 63.07

VCOR 86.25 54.20 60.41 59.10 53.20 62.63

IOR 92.25 59.72 69.46 68.33 56.90 69.33

COR 87.21 43.28 42.48 36.33 54.82 52.82

SOR 93.45 59.12 69.32 67.21 60.31 69.88

GOR 95.57 58.88 71.11 69.07 56.11 70.14

Table 5.2: Performances for the evaluated strategies using a dictionary of visual words + visual bi-grams
generated using SIFT-based and DCT-based visual words.
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5.6 Final Remarks

In this chapter the main motivation was to improve the popular BoVW through DTRs applied on

the top of analogous visual-textual features. This took the analogy visual-textual words into a new

higher level by exploiting distributional and contextual (visual n-grams) relevant information.

The evaluation suggested evidence of the usefulness of building DTRs on the top of visual words

and visual n-grams. Experimental results showed that in general, DTRs outperform BoVW and

other methodologies in the literature. In this way, the results suggested evidence of the usefulness

of DTRs in different image collections and two different visual descriptors. We think this is

because DTRs are finding better notions of similarity for each space, which could be difficult to

obtain with other typical approaches. To the best of our knowledge, the usefulness of DTRs had

never been evaluated for different image classification domains. Moreover, the proposed SOR

and GOR seem to be better alternatives that allows to build suitable representations according to

each domain. Future research paths include the use of different weighting schemes inside DTRs

that help improve the image classification task.
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CHAPTER 6

GENERAL CONCLUSIONS

The interest of this research lied in the field of Vision and Language. In this regard, we

showed evidence that the contextual and semantic visual information, are important elements to

improve state-of-the-art visual words approaches (such as the BoVW). We did that by exploiting

the analogy between visual and textual words by means of NLP strategies. The two main

contributions to the typical BoVW framework were the following; i) the proposal of capturing

the contextual information by means of visual n-grams and MKL strategies, and ii) the proposal

of capturing distributional semantics by means of novel Distributional Terms Representations.

The experimental evaluation showed the usefulness of the proposals in several image collections.

Below we detail the main conclusions of this research work:

• In chapter 4 the Bag-of-Visual n-grams representation successfully improves the tradi-

tional BoVW by capturing the spatial relations among visual words. This is because

the proposed algorithm extracts the multi-directional sequences of visual words, which

encompass valuable discriminative visual patterns for each collection. In this regard, we

also concluded that the most useful size of visual n-grams are 2 (bigrams). The reason of

this is, to some extent, to the number of images in the collection and the generated repre-

sentations, since longer visual n-grams would require more training instances. In this way,

if longer sequences of visual words are harder to find, then sparse and high dimensional

representations are generated. In this chapter, we also showed that the Multiple Kernel

Learning (MKL) strategies (in particular RBMKL) are helpful to separately represent the

spaces of visual words and visual n-grams, which could be harder to achieve with other

typical approaches like early and late fusion. In general, we showed the usefulness of

visual n-grams under different fusion strategies in different image domains.

• In chapter 5 the proposals inspired in Distributional Term Representations (DTRs) captured

the distributional semantic information. First of all, the adapted traditional DTRs were

helpful to capture a variety of distributional patterns according to each DTRs (e.g., visual

feature occurrences and co-occurrences). Furthermore, the experimental results showed

the contribution and usefulness of distributional visual information independently of using
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DCT or SIFT descriptors. Regarding to the two novel DTRs, both approaches built

highly discriminative representations by building distributional representations of visual

words and visual n-grams contained in the images. The first proposed DTR captures

the intra-class information, which is very useful if high intra-class variability is present

in the images (e.g., target classes in the Scenes dataset could have a wide variety of

different objects). The second approach captures the inter-class information, which is

better for narrow domains where the target instances in the dataset belongs to a more

general category (e.g., butterfly or bird). Although DTRs have been previously used in

several text mining problems, to the best of our knowledge, this is the first time that DTRs

are analyzed and found useful, in the context of image classification.

Those two chapters encompass the main contributions of this thesis, which expose the

strengths of capturing contextual and semantic visual information. We evaluated them using

several image collections used in several pattern recognition studies and comparing with methods

reported in the literature. Furthermore, the results have been supported with statistical tests,

which provide evidence of the effectiveness of the proposals and that the goals stated in this

research have been reached.

In this Vision and Language research, we showed that several ideas from NLP can be

exploited in a visual context, nonetheless we are aware that there is a large path to explore. As

part of this future work, we consider the following:

• Fine grained specific classification problems: This consists in taking advantage of the

previously proposed methods in more specific classification problems, such as narrow

domains. This is an interesting research path of this work, since we found that some

of the more significant differences in the classification performance were achieved in

problems with similar target classes (e.g., Birds, Butterflies, and Histopathology). Thus,

we infer that many of the core research done in this thesis can be useful in fined grain

image classification problems (see Appendix B).

• Exploit the analogy visual-textual words in multimodal-problems: In this work we

have showed that, to some extent, visual features can be used in similar ways that textual

features. Having evidence of this fact, it is promising to push to the limit the analogy

of visual-textual words, by means of merging both features into unified multi-modal

representations. Multi-modal representations take raw features coming from different

sources or domains (e.g., raw text and images) in order to compute new multi-modal

features to represent the target instances (e.g., web pages containing text and images).

This research path can be very useful in data mining problems where there are images
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associated with text descriptions or labels (e.g., text illustration tasks, image annotation,

etc.).

• Semantic and Contextual Visual Information by means of Representation Learning:
Representation Learning strategies consist in using the learned parameters of specific

models (e.g., neural networks or support vector machines) to represent key elements of

the target problem. For example, deep-learning uses the hidden neurons of Convolutional

Neural Networks in order to represent images. In our context, it could be possible to model

the semantic information by means of representation learning strategies (e.g., Recurrent

Neural Networks and Word2Vec) to improve the discriminative power in more complex

images. This can be achieved by exploring neural network based techniques in text mining

that automatically learns the contextual information in a more global way among visual

features.

6.1 Scientific Publications

The following list shows the research papers derived from this thesis, or those where ideas from

this work have been used:

• Journals papers:

1. López-Monroy, A. P., Montes-y-Gómez, M, Escalante, H. J., Cruz-Roa, A. and

González, F. A. Improving the BoVW via discriminative visual n-grams and MKL

strategies. Neurocomputing, 175, Part A (2016), pp. 768 - 781.

2. López-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J. and González, F.

A. Distributional Visual-Feature Representations for Image Classification. Under
review (September 2016).

• International conferences:

3. López-Monroy A. P., Montes-y-Gómez, M, Escalante, H. J., Cruz-Roa, A., and

González, F. A. Bag-of-visual-ngrams for histopathology image classification. Proc.

SPIE 8922, IX International Seminar on Medical Information Processing and Analy-

sis, 89220P (November 19, 2013).

4. López-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J., González, F. A.

Image Classification through Text Mining techniques: a Research Proposal. Post-

graduate Students’ Meeting. 6th Conference on Pattern Recognition, MCPR 2014.

Best poster award.
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5. Pellegrin, L. and López-Monroy, A. P. and Escalante, H. J. and Montes-y-Gómez,

M. INAOE’s participation at ImageCLEF 2016: Text Illustration Task. Notebook for

ImageCLEF at CLEF 2016. Évora, Portugal, September 2016.

• Supplementary work: The following works do not involve any treatment of visual

information, but rather only text analysis. Although evaluated only in text mining tasks1,

such ideas were developed in parallel with this thesis and culminated in the core basis of

the intra-inter class methods presented in Chapter 6 and the journal paper “Distributional

Visual-Feature Representations for Image Classification”. This supplementary work

generated the following journal (JCR) and conference papers:

6. López-Monroy, A.P., Montes-y-Gómez, M., Escalante, H.J., Villaseñor-Pineda, L.,

Stamatatos, E. Discriminative subprofile-specific representations for author profiling

in social media. Knowledge-Based Systems. 89 (2015), pp. 134 - 147.

7. Álvarez-Carmona, M. A., López-Monroy, A. P., Montes-y-Gómez, M., Villaseñor-

Pineda, L., and Escalante, H. J. INAOE’s participation at PAN’15: Author Profiling

task. Notebook for PAN at CLEF 2015. Toulouse, France, on September 8-11, 2015.

CEUR-WS.org. ISSN 1613-0073. Best overall performance of 22 participating

universities.

8. López-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J., and Villaseñor-Pineda,

L. Using Intra-Profile Information for Author Profiling. Notebook for PAN at CLEF

2014. Sheffield, UK, on September 15-18, 2014. Best overall performance of 11

participating universities.

9. López-Monroy, A. P., Montes-y-Gómez, M., Escalante, H. J., Villaseñor-Pineda,

L., and Villatoro-Tello, E. INAOE’s participation at PAN’13: Author Profiling task.

Notebook for PAN at CLEF 2013. Valencia, España, September 2013. Best overall

performance of 21 participating universities.

1In particular, for the Author Profiling task. A document supervised classification task, where each instance

corresponds to a document belonging to an author (e.g., a blog), and target classes are, for example, gender and age

intervals.
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APPENDIX A

SUPPLEMENTARY RESULTS

The aim of this appendix is to present the experimental results in Chapter 5 using the F-Measure.

In that chapter we reported experimental results using the accuracy to directly compare the

LSA and LDA baselines, which have reported results in some of the target collections. The

experiments in Chapter 5 showed the usefulness of the DTRs exploiting visual words and visual

n-grams as terms, by using the classifier in the LibLINEAR framework (Fan et al., 2008). In this

regard, in Tables A.1 and A.2 we present F-Measure results that confirm the main conclusions

obtained in Chapter 5. First, in Table A.1 we can observe that independently of using DCT or

SIFT descriptors, most of distributional representations achieve better performances than the

standard BoVW. Second, in in Table A.2 we can also observe that visual bigrams (which are

local structural visual patterns), under the DTR formulation, improve the performance of the

classifier, particularly the proposed GOR and SOR.

3



4

F-Measure Performances using visual words

SIFT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 74.18 64.61 50.62 50.00 69.51 61.78

LDA 55.74 56.31 29.03 36.20 60.23 47.50

LSA 76.66 63.42 48.41 51.19 72.59 62.45

VCOR 71.25 66.57 48.88 50.03 68.87 61.12

IOR 78.63 68.91 50.27 52.04 69.19 63.80

COR 67.49 60.91 41.97 40.21 68.49 55.81

SOR 78.21 67.52 51.47 53.41 73.31 64.78

GOR 80.15 67.09 53.78 55.64 70.28 65.38

DCT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 85.81 53.62 61.33 50.43 51.72 60.58

LDA 75.31 39.80 27.65 31.21 34.99 41.79

LSA 86.82 39.01 40.65 38.62 52.57 51.53

VCOR 80.28 54.67 62.51 52.47 51.19 60.22

IOR 86.71 56.54 64.40 56.00 51.14 62.95

COR 74.41 44.70 40.09 37.14 48.25 48.91

SOR 88.15 57.21 66.64 57.19 52.21 64.28

GOR 90.08 56.98 67.37 59.71 51.78 65.18

Table A.1: F-Measure: Performances for the evaluated strategies using a dictionary of visual words
generated using SIFT-based and DCT-based visual words.
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F-Measure performances using visual words + visual n-grams

SIFT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 74.18 64.61 50.62 50.00 69.51 61.78

LDA 68.64 57.10 30.51 33.63 66.02 51.18

LSA 74.12 63.74 48.90 52.21 75.11 62.81

BoVB 79.81 70.02 51.47 56.37 76.40 66.81

SPR 74.34 71.54 51.48 55.71 80.80 66.77

VCOR 78.57 73.81 48.97 55.41 71.47 65.64

IOR 85.04 76.01 52.51 58.01 73.33 68.98

COR 78.01 59.67 42.52 45.66 71.95 59.56

SOR 83.25 75.41 52.47 59.74 80.51 70.27

GOR 85.79 75.49 53.17 60.05 78.41 70.58
DCT

Method Hist. 6-Caltech Butterflies Birds Scenes avg.

BoVW 85.81 53.62 61.33 50.43 51.72 60.58

LDA 74.13 40.44 28.10 32.22 38.79 42.73

LSA 88.55 38.84 42.33 39.23 57.81 53.35

BoVB 90.55 55.84 61.09 50.42 53.26 62.23

SPR 79.05 56.14 62.00 54.37 58.43 61.99

VCOR 85.47 53.18 59.57 58.16 52.17 61.71

IOR 91.81 58.92 69.00 68.10 56.60 68.88

COR 84.95 41.84 40.43 35.14 53.72 51.21

SOR 92.18 58.27 68.54 66.07 59.24 68.86

GOR 94.61 57.47 70.05 68.24 55.09 69.09

Table A.2: F-Measure: Performances for the evaluated strategies using a dictionary of visual words +
visual bi-grams generated using SIFT-based and DCT-based visual words.
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APPENDIX B

FINE GRAIN CLASSIFICATION RESULTS

The aim of this appendix is to enrich the evidence about the usefulness of the proposed strategies

in specific domains. In Chapter 4 and Chapter 5, some of the most important improvements in

results where observed in narrow domains, where the target classes belongs to a more general

category (e.g., Birds, Butterflies and Histopathology datasets). Thus, it is promising to find

similar problems and applications with this narrow particularity. Recently, the computer vision

community have been interested in a similar problem: the Fine Grained Classification (FGC).

From a general perspective, the main goal of FGC is to classify at a finer level of granularity.

In this regard, there are a number of image classification problems that meet this property, for

example the identification of fish species, dog breeds, car models, aircraft manufacturers, etc.

The FGC is a challenging problem because the target classes often share a similar appearance,

which can only be discriminated based on subtle specific details. For example, the discrimination

between the different versions of Boeing 747 aircraft can only be possible by counting the

windows (Gosselin et al., 2014b).

In this research work we begin the study of the proposed methods in FGC tasks. For this

purpose, we perform an experimental evaluation by using the following three fine-grain datasets

in the literature:

• FGVC-Aircraft (Maji et al., 2013): This dataset contains 10,000 images of aircraft.

There are 100 images for each of the 100 different aircraft model variants, most of which

are airplanes. We show some sample images in Figure B.1.

• Stanford BMW-10 (Krause et al., 2013): This dataset is a small, ultra-fine-grained set

of 10 BMW sedans (512 images) hand-collected by the authors. This dataset provides the

specific train and test images. We show some sample images in Figure B.2.

• Stanford Dogs (Khosla et al., 2011): This is a challenging and large-scale collection

specially suited for fine-grained image categorization. This dataset comprises more than

22,000 annotated images of dogs belonging to 120 species. We show some sample images

in Figure B.3.
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Figure B.1: Three images of different aircraft classes in the FGVC-Aircraft: (a) Boeing 737-200, (b)
Boeing 737-300 and (c) Boeing 737-400.

Figure B.2: Three images of different bmw cars in the BMW-10 dataset.

Figure B.3: Three images of different dog breeds in the Stanford Dogs dataset: (a) Malamute, (b) Husky
and (c) Eskimo.

The experimental settings for the proposed methods and baselines of this thesis are the same

than those presented in Section 5.4. Furthermore, we also introduce two new reference methods

based in Convolutional Neural Networks (CNN). Recently, CNNs have shown outstanding

performances in a number of image classification problems, specially those involving object

recognition. In this regard, we use two of the most successfully models referenced in the

literature: AlexNet (Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al., 2015). For this

purpose, we use the implementations in the popular Caffe Deep Learning Framework (Jia et al.,

2014). In our experimental evaluation for CNN we maintain the structural elements of the

algorithms (e.g., layers) provided in Caffe (Jia et al., 2014), but in validation folds we explore
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some low level parameter of each model (e.g., number of epochs, learning rate, weight decay,

momentum, etc.). We present experimental results for the following variants/strategies in deep

learning:

• relu-7: This strategy consists in representing the target images by using as features the

relu-7 activation layer of the proposed model in (Krizhevsky et al., 2012). Then, it is

possible to use a regular classifier, which in our case is the SVM in LibLINEAR framework

(Fan et al., 2008).

• scratch: This strategy consists in the random initialisation of all elements in the CNN,

then learning from scratch the appropriated model for the task.

• fine-tuned: This strategy consists in two steps. First, we pre-initialize the CNN with

ImageNet-trained weights (Krizhevsky et al., 2012). Second, the learning rate of the CNN

for the last layer (target classes in our FGC) is normal, but the rest of the layers learn at a

diminished rate.

• full-train: This strategy consists in two steps. First, we pre-initialize the CNN with

ImageNet-trained weights (Krizhevsky et al., 2012). Second, we train the entire network

at a normal rate.

The experimental results show interesting evidence of the proposed methods in this research

work. In Table B.1 we can observe that most of the main conclusions of this work are also

valid for this fine-grained domains. For example, we can conclude that visual bigrams (BoVB)

are a better option than only visual words (BoVW). We can also observe that, the Image

Occurrence Representation (IOR) outperforms traditional strategies such as BoVW and Latent

Semantic Analysis (LSA). More importantly, the best results were obtained by the two proposed

distributional strategies SOR and GOR. Regarding to the deep learning strategies, it can be seen

that none of the variants achieve important results. In fact, in some cases CNN were outperformed

by the typical Bag-of-Visual Words. Our experimental results, reinforce the evidence showed by

a number of works in the literature, which expose the problems of CNN in fine grained domains

(Gosselin et al., 2014a; Gavves et al., 2015; Lin et al., 2015). It is worth noting that most of

the methods in the state-of-the-art for FGC relies on SIFT features, HOG based features, Fisher

Vectors and Spatial Pyramid Representation (Chen et al., 2015; Kanan, 2014; Gavves et al., 2015,

2013; Yang et al., 2012).
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Accuracy performances in FGC - DTRs exploiting visual n-grams

SIFT

Method Aircraft Cars Dogs avg.

Rand 1.43 0.52 0.81 .92

BoVW 45.21 30.25 33.10 36.18

LDA 32.27 21.81 20.09 24.72

LSA 49.21 41.19 34.45 41.61

BoVB 50.01 42.23 35.54 42.59

SPR 55.41 44.80 35.21 45.14
CaffeNet relu-7 27.23 20.11 17.10 21.48

CaffeNet scratch 1.75 0.61 1.82 1.39

CaffeNet fine-tuned 41.01 24.73 34.02 33.25

CaffeNet full-train 45.69 24.56 33.58 34.61

GoogLeNet scratch 27.21 11.54 9.18 15.97

GoogLeNet fine-tuned 48.94 33.91 35.21 39.35

GoogLeNet full-train 47.64 36.56 34.43 39.54
VCOR 39.66 33.45 21.21 31.44

IOR 53.31 51.24 36.51 47.02
COR 44.41 30.21 33.21 35.94

SOR 58.76 54.23 40.54 51.17

GOR 59.41 55.14 39.15 51.23

Table B.1: Performances for the evaluated strategies using a dictionary of visual words + visual bi-grams
generated using SIFT-based visual words.
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