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Abstract. Accuracy of current automatic image labeling methods is un-
der the requirements of annotation-based image retrieval systems. The
performance of most of these labeling methods is poor if we just consider
the most relevant label for a given region. However, if we look within the
set of the top—k candidate labels for a given region, accuracy of most
of these systems is improved. In this paper we take advantage of this
fact and propose a method (NBI) based on word co-occurrences that
uses the naive Bayes formulation for improving automatic image anno-
tation methods. Our approach utilizes co-occurrence information of the
candidate labels for a region with those candidate labels for the other
surrounding regions, within the same image, for selecting the correct la-
bel. Co-occurrence information is obtained from an external collection
of manually annotated images: the JAPR-TC12 benchmark. Experimen-
tal results using a k—nearest neighbors method as our annotation sys-
tem, give evidence of significant improvements after applying the NBI
method. NBI is efficient since the co-occurrence information was ob-
tained off-line. Furthermore, our method can be applied to any other
annotation system that ranks labels by their relevance.

1 Introduction

Content based image retrieval (CBIR), the task of recovering images using visual
features, has became an active research field since the early nineties [18, 24,15, 9].
Typically, a query for a CBIR system consist of a visual example similar to the
desired image and the task is to find, within the collection, images similar to such
a visual example. However, this sort of querying is unnatural, since most of the
time we would like to retrieve images by specifying queries in natural language
(images of a tiger, grass and water), or even combining a sample image and
natural language statements (images of brown cows like in this photograph). In
consequence, it was recognized that in order to improve CBIR systems we would
need to incorporate semantic information into the CBIR task. This semantic
information generally consist of textual keywords (semantic descriptors, words,
labels) indicating some semantic properties of the image.

Manually incorporating semantic information into images is both: expensive
(in terms of human-hour costs) and subjective (due to the annotator criteria).



Therefore, recently there is an increasing interest on automatically assigning
semantic information to images. The task of assigning semantic descriptors to
images is known as image annotation or image labeling. There are two ways of
approaching this problem: at image level or at region level. In the first case,
often called weakly labeling, keywords are assigned to the entire image as an
unit, not specifying which words are related to which objects within the image.
In the second approach, which can be conceived as an object recognition task,
the assignment of annotations is at region level within each image, providing a
one-to-one correspondence between words and regions. This later approach is the
one we considered in this work, since we believe that region-level semantics are
more useful for discovering relationships between semantic concepts and visual
objects within an image collection.

We say a region is correctly annotated if the more likely annotation, according
to our annotation method, is the same as the true (manual) annotation. Most of
the annotation methods that rank words according to their relevance to belong
to a determined region fail in assigning the correct label just by taking the
most confident word [17,4,5, 11, 16]. Accuracy improves if we search for the true
label within the set of the top—k ranked labels for a given region. However,
assigning a set of k—labels to an unique region is confusing and unpractical. In
this work we propose a method for improving automatic image annotation by
taking advantage of word co-occurrence information. The problem we approach
is the following: given a set of ranked candidate labels for a given image region,
selecting the (unique) correct label for such region. The solution we propose
takes advantage of word co-occurrence information of the candidate labels for
the region we are analyzing and the corresponding candidate labels for other
regions within the same image. We formulate this problem as a classification
task using the naive Bayes algorithm. Candidate labels are considered classes
and measures of association between labels (based on word co-occurrences) are
considered as attributes/features.

Our intuitive idea is that co-occurrence information between labels assigned
to regions in the same image can help us to improve annotation accuracy; since
annotations for regions appearing in the same image are very likely to be related.
Given that word co-occurrences are obtained from the captions of a collection
of manually-annotated images we can trust in that this information can give
us an indicator of words association. Since words that tend to co-occur in the
captions are very likely to be visually related, as they are used to describe the
same image. We performed experiments on three subsets of the benchmark Corel
data set ([18,15,6,11,14]), using a k—nearest neighbors (knn) [19] method as
our annotation strategy. Experimental results show that knn combined with our
approach can result in significant improvements over knn alone and over other
soft-annotation methods as well. An advantage of the proposed approach is that
it is simple and efficient as it is based on a naive Bayesian classifier and the
co-occurrence information is obtained off-line; also the approach can be applied
to other annotation methods, provided they rank words for their relevance (soft-
annotation).



The rest of this paper is organized as follows. In the next Section we briefly
review related work on automatic annotation. In Section 3 we describe how the
knn classifier was used for annotation. Next in Section 4, our proposal: Naive
Bayesian Improver based on Co-occurrences is described. In Section 5 we describe
how we obtained the word co-occurrence matrix. Then in Section 6 we report
experimental results on subsets of the Corel Collection. Finally, in Section 7 we
present some conclusions and outline future work directions.

2 Automatic image annotation

A wide variety of methods for image labeling have been proposed since the late
nineties. Maybe the first attempt was the work by Mori et al, in which each word
assigned globally to the image is inherited by each (square) region within the
segmented image [20]; regions are visually clustered and probabilities of the clus-
ters given each word are calculated by measuring word co-occurrence among the
clusters. In this work, however, word co-occurrence was measured among clusters
of regions. A reference work for this task is the one proposed by Duygulu et al,
on which image annotation is seen as a problem of machine translation [11]. The
task consist of finding the one-to-one correspondence between vector-quantized
regions and words (that is learning a lexicon) starting from weakly annotated
images. This method received much attention and since its introduction several
modifications and extensions have been proposed [22,12, 4, 5]; furthermore, the
data used by Duygulu et al have become a benchmark for comparing image an-
notation methods [18,15,14]. Several successful semi-supervised methods have
been proposed? [6,1,2,4,11,16, 5], some of which outperform the previous work
[11]. The intuitive idea in most of these methods is to introduce latent vari-
ables for modeling the joint (or conditional) probability of words and regions.
Then, when a new region needs to be labeled, these methods select the word
that maximizes the joint probability between such a region and the words in the
vocabulary; words are ranked according to the joint estimate. Hidden Markov
models and Markov random fields have been introduced for consideration of
dependencies between regions [4,13]. From the supervised learning community
some approaches have been proposed for image labeling [17,6,7]. A work close
in spirit to ours is that due to Li et al [17], where a probabilistic support vector
machine classifier is used for ranking labels for each region. Then, co-occurrences
between candidate labels within the image are calculated in order to re-rank the
possible labels. Our approach is different to the works by Mori et al and Li
et al because we obtained the co-occurrence information from an external cor-
pus, instead of considering co-occurrence of labels within the same image [17] or
clusters of regions [20]. Furthermore, in such works co-occurrence information
is used ad-hoc for their annotation method; while in this work we propose a

1 Carneiro et al refer to such methods as unsupervised, though a more convenient term
would be semi-supervised; since these methods start from weakly annotated images
[6], therefore there exist some supervision



method that can be used with other annotation methods, provided they rank
labels for its relevance, just as those proposed in [1,2,4,11, 16,5, 3, 17].

3 knn as annotation system

The knn classifier is an instance based learning algorithm widely used in machine
learning tasks [19]. The zero training time of this algorithm makes it suitable
for middle size data sets. Furthermore, it is adequate for domains in which new
instances are continuously added to the data set. In this work we used this
method as our automatic annotation system, due to the fact that it returns
a set of ranked candidate labels for a given object; also, it does not require a
training phase resulting in a fast method; and, further, this method outperforms
other annotation systems, as we will show in Section 6.

knn needs a training data set {X,Y} composed of N pairs of the type
{(z1,11), ..., (zNn,yn)}, with the zs being d—dimensional feature vectors and
the y!s being the class of as; for two class problems y € [0, 1]. The training phase
of knn consist of storing all available training instances. When a new instance,
x4, needs to be classified knn searches, in the training set, for {z%,... 2%}, the
top k—objects more similar to x;, then it assigns to x; a weighted combination
of the labels belonging to {zf,...z%}. We used the Euclidean distance as simi-
larity function. For automatic image annotation at region level, we use knn in a
multiclass learning setting, in which we have as many classes as words has the
vocabulary. Instead of having two classes [0, 1], we have |V classes [1,...,|V]],
with |V| being the number of different words in the collection. Since we would
like to annotate regions, we need to extract features for each region, the fea-
tures we considered for this work were color and shape statistics as described in
Section 6. We decided to assign to a new instance the class of the most similar
neighbor in our training set?.

3.1 knn as a soft-annotation system

In order to apply the proposed approach with knn as annotation method, we
need to turn knn into a soft-annotation method. That is, candidate words for a
given region should be ranked and weighted according the relevance of the labels
to being the correct annotation for such a region. A natural way of ranking labels
is by using the ordering of labels that knn returns. However, within the set of the
top—k candidate labels, according to knn, these can be repeated; therefore, more
confidence should be given to these repeated labels. Another problem with the
knn ordering is that labels have not a relevance weight attached. This relevance
weight, (which would be the equivalent of the posterior of the words given the
region for probabilistic soft-annotation systems [1,2,4,11, 16,5, 3,17]) should re-
flect the confidence we have on each candidate label. The relevance weight is an

2 We do this when knn should return a single label for the region, this way of anno-
tation is referred as 7I-NN through this document.



important component of our method since we take this weight (or posterior) as
prior probabilities for the labels. Prior probabilities for the proposed method,
should met the following: 1) they should reflect the confidence of the annotation
method in the candidate labels and 2) the weight for the top—k candidate labels
should sum one, in order to be considered as prior probabilities.

We realized two intuitive ways of obtaining prior probabilities from the rele-
vance ranking of knn. First we used the inverse of the distance of the test instance
to the top—k nearest neighbors; in this way we can infer prior probabilities di-
rectly related to the proximity of each neighbor to the test instance, as described
in Equation (1).

t d; (xt)

PT‘d(yj) Zf dz(xt) (1)
where d;(2") is the inverse of the distance of instance 303»7 within the k—nearest
neighbors, to z¢, the test instance. This prior probability is accumulative, that is,
labels appearing more than once will accumulate its priors according to the times
they appear and their distance in each apparition. Note that we are implicitly
counting for repetitions with this formulation.

The second intuitive way of obtaining prior probabilities is by considering
the repetition of labels within the set of the top k—nearest neighbors of z?, as
described in Equation (2)

Profy) = P @

with rep(y) being a function that tells us the number of times label y is re-
peated within the k—nearest neighbors of #t, note that this formulation is also
normalized.

4 Naive Bayesian improver based on co-occurrences

There are several automatic image annotation systems than rank labels in the
vocabulary according to their relevance for a given region [17,4,5, 3,11, 16, 1]. If
we take the (top-one) most relevant label for a region it results on a poor per-
formance of the annotation system. On the other hand, considering the top—k
possible labels for each region will result in an improvement on the system’s
accuracy. Unfortunately assigning a set of labels to a region is not straightfor-
ward; since this may cause confusion, adding uncertainty to the annotation and
retrieval processes. However, if we measure the degree of association of each
candidate label for a region with the candidate labels assigned to surrounding
regions within the same image, we can determine which of the candidate labels
is the most appropriate for the given region. We propose a naive Bayes ap-
proach, abbreviated NBI, for the selection of the best candidate label by using
co-occurrence information between candidate words of regions within the same
image. We approach this problem as a learning task considering the candidate
labels for a given region as classes and the (association with) candidate labels of
surrounding regions as attributes.



A Bayesian classifier aims to estimate P(H;, . a|E), that is the probability
of each of the hypotheses (or classes) given some evidence (attributes). Then, ac-
cording to decision theory [10], the H, that maximizes P(H1 . am|E) is selected
as the most probable class. In our case we would like to select the label C!,
from a set of M candidate labels (Cf ), that maximizes P(C} ,/|A} ).
Taking as our evidence the top— /N candidate labels for the surrounding regions
(A’lC ~)- Therefore, applying Bayes theorem for inverting the conditional proba-
bility, dropping the denominator and assuming conditional independence among
attributes given the class, we have a naive Bayesian classifier:

N

P(CL__mlAT x) = P(CY )+ [ PCARICE ) (3)
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Where P(C{ a) are the prior probabilities for each of the M candidate la-
bels and P(A}  y|C} . ) are the conditionals of the candidate labels of other
regions given the candidate labels for the region being analyzed. Therefore, we
should calculate P(C] _ |A} ) for each of the M candidate labels for a re-
gion and select the C! that maximizes Equation (3) as the correct label for the
region. The prior probability for each candidate label is the relevance ranking
returned by the annotation method (see Equations (1) and (2)). The conditional
probabilities P(A} _y|Ci ;) are obtained from a co-occurrence matrix, as
explained in the next Section. As we can see, in order to select a label for a
given region, namely X, NBI considers the rank assigned to each candidate la-
bel of X by the annotation system; as well as the semantic cohesion between

each candidate label of X and the set of candidate labels for regions surrounding
X.

5 Obtaining co-occurrence information

The co-occurrence information matrix M. consist of a |V|x|V| square matrix in
which each entry M. (w;,w,) indicates the number of documents (on an external
corpus) in which words w; and w; appeared together, where V' is the set of words
in the vocabulary®. That is, we considered each pair of words (w;, w;) € VxV and
searched for occurrences, at document level, of words (w;,w;). Then we count
one co-occurrence if (w;,w;) appear together in a document. We did this for
each of the |V|.|V| pairs of words and for each document in our textual corpus.
The documents we considered on this work were the captions of a new image
retrieval collection: the JAPR-TC12 [14] benchmark. This collection consists of
about 20,000 images that were manually annotated, at image level; therefore, if
two words appear together in the captions of such collection, they are very likely
to be visually related. Captions consist of a few text lines indicating visual and
semantic content. Our matrix M, then contains the co-occurrence information

3 Co-occurrence matrix and code with implementations of the methods used in this
paper can be obtained at http://ccc.inaoep.mz/ hugojair/code/.



for each pair of words within the vocabulary on such corpus. From the entries
of the M. matrix we can obtain conditional probabilities if we take: P(w;|w;) =
Plwiywy)  c(wi,wj)

Pw;) 7 c(wy)
corpus, which can be obtained from M.. If we do this for each pair of words in
the vocabulary we obtain our conditional probabilities matrix Py;.

A problem with this Py; matrix is the sparseness of data, that is, many entries
of the matrix have zero values, this is a very common problem in natural language
processing [8]. This problem is particularly damaging to naive Bayes, because
a zero value in Equation (3) will result on a zero confidence value for the class
in consideration. In order to alleviate this problem we applied two widely used
smoothing techniques: Laplace and Interpolation smoothing [8]. Laplace, also
known as sum-one smoothing, is based on in Equation (4), while interpolation
smoothing® is based on Equation (5).

, where ¢(x) indicates the number of times = appears in the

c(ws,w;)+ 1

P i L)
(wilws) ~ = oy + ]

(4)

P(w;|w;) = X\ * e(wi, w;)

c(w;)
Where |V| is the vocabulary size and A is a parameter that weights the contri-
bution of the original conditional probabilities and the counts of the conditioned
term. These two smoothing techniques are the simplest ones [8], though more
elaborated smoothing techniques could be applied to the M, matrix. Laplace
smoothing dramatically affects highly occurrence terms while increasing proba-
bilities for low frequency terms. On the other hand, interpolation smoothing acts
as a scaling of the original Py; matrix. In none of the smoothed matrices we have
zero-valued entries now. As we will see on Section 6, the selection of smoothing
technique affects the performance of our NBI approach. Therefore, an enhance-
ment on the co-occurrence matrix will directly improve the performance of our
method.

+ (1= A) * c(w;) (5)

6 Experimental results

In order to evaluate our method we performed several experiments on three
subsets of the benchmark Corel collection, which were also used in [11,4]. First
we evaluated the performance of knn as annotation method and we compared
knn to other state of the art annotation methods [4, 5,3, 11]. Then we evaluated
how much accuracy improvement can we gain by applying NBI to knn. The
subsets we used were made publicly available by Peter Carbonetto®. We used
them due to the fact that the data sets are completely annotated at region level,
which facilitates the evaluation of our method. The images of each subset were
segmented with normalized cuts [23]. A sample segmented image is shown in
Figure 1.

4 We used A = 0.5 for the experiments reported here.
® http://www.cs.ubc.ca/ pcarbo/
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Tiger, Grass, Water Tiger, Grass, Water

Fig. 1. Sample image with manual annotations from the Corel data set. Left: original
image, right: image segmented with normalized cuts [23].

As features, we used color statistics and shape information from each region,
resulting in 16 visual features. These features are described in detail in [4, 3].
The Corel subsets we used are described in Table 1. All of the results reported
in this paper are obtained by applying our methods to the test sets of each data
set.

Data set |# Images|Words|Training blobs|Testing blobs
A-NCUTS 205 22 1280 728
B-NCUTS 299 38 2070 998
C-NCUTS 504 55 3328 1748

Table 1. Subsets of the Corel image collection we used in the experimentation with
knn-NBI

6.1 knn as automatic image annotation method

In the first experiment we evaluated the performance of knn as an automatic
image annotation method. We measured accuracy as the percentage of correctly
annotated regions, where a region is say to be correctly annotated if the label
assigned to the region corresponds to its true label. Results of this experiment
for different values of k, in the three Corel subsets we considered, are shown in
Table 2. As we may expect, accuracy of the knn method increases as we consider
more neighbors. Furthermore, knn is not much sensible to the number of classes
being considered; for subset C with 55 classes, accuracy was higher than that of
subset B with 38 classes.

We also compared the knn method against several semi-supervised annota-
tion methods, proposed in [4,5, 3,11]. These methods are extensions and modi-
fications to the work proposed in [11]. A description of these methods is over the
scope of this paper, for a detailed description of the methods we encourage the



K|A-NCUTS|B-NCUTS|C-NCUTS|Average
1 36.8% 28.22% 29.11% 34.99%
5 61.5% 49.15% 54.57% 59.29%
10|  72.8% 57.65% 63.95% | 68.42%
15 77.1% 62.21% 69.73% 73.05%
20|  81.5% 65.67% 72.76% | 76.27%

Table 2. Percentage of correctly annotated regions, considering a region is correctly
annotated if the true label is found within the top—k neighbors

reader to follow the references. In order to provide an objective comparison, we
used the code provided by Peter Carbonetto. This code includes implementations
of the above mentioned methods and it is designed to work with the same Corel
subsets we used. The error calculation and the plotting functions are also pro-
vided, which guarantee a fair comparison. In Figure 2 a comparison between the
knn approach and the methods proposed in [11,4,5, 3], for the A-NCUTS data
set, is presented®. In this plot, error is computed using the following equation:

N
1 1 «
e= 5 2 g, (1~ 8l = o) ®)
n=1

Where M, is the number of regions on image n, N is the number or images in
the collection; and 0 is an error function which is 1 if the predicted annotation
al® is the same as the true label ay,. We ran 10 trials for each method, note
that for knn a single trial could suffices since for every run the results are the
same.

The left plot in Figure 2 shows error at the first label. Error is high for all
of the methods we considered, however knn outperforms in average to all of the
semi-supervised approaches; in the plot this is clear for most of the considered
methods. The gMI0 method [3] is the closer in accuracy to knn, although gMI0
obtains a superior average error of 4.5%. In the right plot of Figure 2 we consider
a label is correctly annotated if the true label is within the top—5 candidate la-
bels. As we can see, error for all methods is reduced, this clearly illustrates the
fact that accuracy of annotation methods is high considering a set of candidate
labels instead of the first one. In this case the gMAP method [5] outperforms
5-NN-d in average by 0.9% which is not a significant improvement. The other
approaches obtain higher average error than that of knn-d. The ranking by dis-
tance (Equation (1)) is a better ranking strategy, this can be due to the fact that
with this formula we are implicitly taking into account repetition information as
well as the relevance based on distance.

Results from Figure 2 and those from Table 2 give evidence that the knn ap-
proach is an accurate method for image annotation, besides the simplicity of the

5 We only used the A-NCUTS data set, since we later report results with NBI on
this data set, and the labels of the A-NCUTS set are the only ones that are fully
contained in our Pp; matrix.
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Fig. 2. Comparison of knn against semi-supervised methods proposed on [4,5,3,11],
using a Box-and-Whisker plot. The central box represents the values from the 25 to 75
percentile, outliers are shown as separate points. Left: accuracy at the first label. Right:
accuracy considering the top—5 labels as candidate ones. Suffixes d and r stand for
the way we ranked labels for knn. The upper dotted line represents a random bound,
while the bottom dotted line represents a naive method that always assigns the same
label to all regions

method. However, we have to say that while the knn method needs of a train-
ing data set composed of pairs of feature regions and label, the semi-supervised
methods start from a data set of weakly annotated image. It is surprising that,
to best of our knowledge, knn has not been widely used as a method for image
annotation given its simplicity and accuracy. Probably, the main reason is the
need of a representative training data set. However, it can be possible to take ad-
vantage of semi-supervised learning algorithms and unlabeled data for obtaining
good training data sets, as in [21].

6.2 knn + NBI: Improving annotation accuracy

We conducted several experiments with knn followed by NBI in order to mea-
sure the annotation improvement based on word co-occurrence. We have several
parameters to consider when running knn + NBI: 1) we varied the way we cal-
culated the priors for NBI from knn, using the distance approach (Equation (1))
or using the repetition of labels (Equation (2)); 2) the number of neighbors to
consider for each region k € [3,...,7] in knn, 3) the number of top candidate
labels for surrounding images that we considered, kimg € [1,...,5] ; 4) a binary
valued variable, indicating if we should take the intersection of labels occurring
on the surrounding regions, or if we should count for each label”. Due to the

" Where, if a label is repeated t-times we weight the conditional by a factor of ¢



efficiency of knn and NBI for the data sets we considered, we could ran experi-
ments with all of the data subsets, though results in global accuracy are shown
for the A-NCUTS only; since all of the words in this data set are present in our
co-occurrence matrix Ppy; while for the B-NCUTS and C-NCUTS, only a por-
tion of the labels are present in P, therefore, accuracy improvement in these
data sets should be measured differently, as we did in Figure 4.

Due to space limitations and the number of parameters considered, we report
results of the best parameter configuration we obtained with knn+NBI over 100
runs, varying the parameters as described at the beginning of this section. The
best configuration for each of the smoothing techniques is presented in Table 3.

Smoothing |#-C’s|#-A’s|Intersection|Prior-type
Interpolation| 6 1 Yes Distance

Laplace 6 1 Yes Repetition
Table 3. Best configuration for each smoothing technique, we show the number of
candidate labels for the region being analyzed (column 2), the number of candidate
labels for the surrounding regions (column 3), if we used the intersection of candidate
labels for surrounding images (column 4) and the way we obtained priors from knn to
NBI (column 5).

We can appreciate consistency in the parameters for both configurations. The
only difference is in the way that priors where calculated; with Laplace smooth-
ing Equation (2) worked well, while for the Interpolation smoothing, Equation
(1) worked best. Something not showed here is that in every run (different pa-
rameters) of the interpolation smoothing there was always an improvement over
knn alone. Although with the Laplace smoothing, only half of the times (ap-
proximately) there was an improvement.

In Figure 3 we show the error as in Equation (6), this time we compared
the methods proposed in [4,5,3,11] with knn and knn+NBI with the Laplace
(knn+NBI-Lap) and interpolation (knn+NBI-Inter) smoothing, with the pa-
rameters described in Table 3. Accuracy of both smoothing techniques is very
close (they differ by 0.002, which can not be appreciated in the plot), though
interpolation smoothing performed much more better in average. The advantage
of knn+NBI over knn is of about 6.5% for both smoothing techniques. Which is
a significant improvement over knn alone; furthermore, the gain over the other
annotation methods is clearly increased. The advantage of knn+NBI over the
closer semi-supervised method (gML10) is of around 11% in average, which is
an evident advantage.

You should note that NBI can improve an annotation method, provided the
correct label is within the top—k candidate labels returned by such method, we
call this improvements the gain. We only consider that we have a gain when
1-NN misclassified the region. On the other hand, NBI can decrease accuracy
of annotation methods as well. This happens when I-NN selects the correct
annotation, but NBI returns an incorrect label, we call this lost. In Figure 4 we
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Fig. 3. Comparison of knn and knn+NBI against semi-supervised methods in [4, 5, 3,
11]; error is measured at the first label. We used the parameter configurations described
in Table 3.

plot gain and lost, as defined above, in terms of percentages for the three data
sets we considered.

From Figure 4 we can clearly appreciate that the gain is almost always su-
perior to lost, note that each point in the plot is the result of averaging gain
and lost over 100 trials, varying parameters for knn+NBI. From this plot, it is
evident that the gain we obtain with NBI is significant over all data sets, and
it is more evident on the A-NCUTS data set, independently of the smoothing
technique used. The gain decreases for the B and C sets due to the fact that we
can only apply NBI to a portion of the instances; because not all words are rep-
resented in the co-occurrence matrix. In some cases there is a loose in accuracy,
however we consider that this could be significantly improved by having a more
extensive corpus to estimate the co-occurrence matrix, and considering more ro-
bust models such as Markov random fields. Furthermore, a key contribution of
this work is that it can be applied to other annotation methods that rank labels
for their relevance.

7 Conclusions

In this paper we have presented a method for the improvement of automatic
image annotation methods at region level. Our method, NBI, is based on the
fact that accuracy of annotation methods at the first label is lower than that
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obtained if we consider the set of the top—k candidate labels as annotations.
NBI takes advantage of word co-occurrences among the candidate labels for
a region and those of the other regions within the same image. Co-occurrence
information is obtained off-line from an external collection of captions, which is
a novel approach. Experimental results of our method on three subsets of the
benchmark Corel collection, give evidence that the use of NBI, with knn as our
annotation method, results in significant error reductions. We also show that
the use of different smoothing techniques can affect the performance of NBI.
Therefore, by building a more robust co-occurrence matrix and by considering
more elaborated smoothing techniques we could obtain further improvements
with NBI. Our method is efficient since we used a naive Bayesian approach and
the co-occurrence matrix is obtained off-line. Furthermore, NBI can be used
with any other annotation method, provided it ranks labels for their relevance;
even when the method does not ranks labels probabilistically, as we have shown
here.

Future work includes the use of more robust probabilistic models, just like
Markov random fields, for example. The improvement of the co-occurrence ma-
trix is an immediate step towards the enhancement of NBI. Finally, we would
like to test the NBI method with another annotation methods, and in other
image collections, such as the JAPR-TC12 benchmark [14].
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