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Abstract

In this paper we propose an energy-based model (EBM ) for selecting subsets of features that
are both causally and predictively relevant for classification tasks. The proposed method
is tested in the causality challenge, a competition that promotes research on strengthen
feature selection by taking into account causal information of features. Under the proposed
approach, an energy value is assigned to every configuration of features and the problem is
reduced to that of finding the configuration that minimizes an energy function. We propose
an energy function that takes into account causal, predictive, and relevance/correlation in-
formation of features. Particularly, we introduce potentials that combine the rankings of
individual feature selection methods, Markov blanket information and predictive perfor-
mance estimations. The configuration with lower energy will be that offering the best
tradeoff between these sources of information. Experimental results show that despite be-
ing simple, the EBM approach is able to select highly predictive features. In particular,
the combined score of feature relevance and the predictive estimation resulted very useful.
Keywords: Feature selection; Causality Challenge; Energy-based modeling.

1. Introduction

Feature selection consists of choosing subsets of relevant features for building robust learning
models. This task is very important because it can help to improve prediction performance
of classifiers, to reduce the dimensionality of data (for both efficiency and visualization), and
to provide a better understanding of the underlying process that generated the data (Guyon
and Elisseeff, 2003). Commonly, the feature selection process is guided by the predictive
effectiveness of features and by the correlation among features and between features with
the target variable (Guyon and Elisseeff, 2003; Guyon et al., 2007). Despite features selected
in this way can help to improve predictive performance of classifiers, it is not clear whether
these features are indeed characteristics of the system or the result of experimental artifacts
(Guyon et al., 2007). Even when predictive performance may be improved, experimental
artifacts are useless for discovering interesting relations of features and for understanding the
process that generated the data. For this reason, there is an increasing interest on strengthen
feature selection methods by bringing into play causal information and causal discovery
techniques (Guyon et al., 2007). Causality may help to improve the selection process by
uncovering causal relationships between the variables involved, this could be particularly
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useful for understanding the underlying process that generated the data. Further, causal
methods may provide robustness to violation of the identical and independent distributed
(iid) assumption commonly made in machine learning. In this line is the causality challenge,
a competition that encourages research on the use of causal information for enhancing the
feature selection process (Guyon, 2008). The problem approached in this competition is
that of selecting features that are both causally and predictively relevant by exploring a
setting in which the iid assumption does not necessarily holds.

In this paper we report the results we obtained in the causality challenge. For this com-
petition, we propose an energy-based model (EBM ) that combines information of relevance,
predictive effectiveness and causality of features. Under the proposed formulation, an en-
ergy value is assigned to every configuration of features and the problem is reduced to that
of finding the configuration that minimizes an energy function. Since we are interested in
features that are both causally and predictively relevant with respect to a target variable,
we propose an energy function that takes into account causal, predictive, and relevance
information of features. Relevance of features is measured by a score based on the output
of several ranking-based feature selection methods; predictive information is quantified by
the cross validation error of features for predicting the target variable; causal information is
evaluated by considering the Markov blanket (MB) of the target variable. The configuration
with lower energy will be that offering the best tradeoff between these sources of informa-
tion. Experimental results show that despite being simple, the EBM approach is able to
select highly predictive features. In particular, the combined score of feature relevance and
the predictive estimation resulted very useful.

2. Energy-Based Model for Feature Selection

EBMs capture dependencies between variables by a associating a scalar energy to each
configuration of them (LeCun et al., 2007). Inference in EBMs consists of finding the
configuration of the variables that minimize the energy of the model. Problems that require
of contextual information are specially well suited for EBM. For this reason, EBMs have
been mainly applied to sequence prediction and other structured domains (LeCun et al.,
2007; Bakir et al., 2007). Conditional random fields and several other well known statistical
methods have in EBM a common theoretical framework. We considered EBMs for feature
selection because they allow modeling dependencies between features and regarding diverse
sources of information without a complicated design or implementation issues.

We consider the problem of feature selection in supervised learning, specifically for
classification tasks. We are given a data set D with N samples, {(x1, y1), . . . , (xN , yN )},
each xi = x1, . . . xd represents the observed values (xj ∈ R) of d random variables X =
{X1, . . . , Xd}; X denotes the set of features related to the process of study. Each yi ∈ [−1, 1]
represents the output of the underlying process associated with the observed values of the
features xi; yi is a realization of Y , the so called target variable. The problem we approach
is that of selecting a subset of features X ′ = {X ′1, . . . X ′m}, with m ≤ d, such that the
prediction performance of classifiers using X ′ for predicting Y is improved with respect of
using X, the full set of features.

The user is asked to specify m, the expected size of the subset of relevant features. We
define an EBM with m random variables F = {F1, . . . , Fm}, each Fi takes values from
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Figure 1: Graphical model of the proposed EBM for a value of m = 6. Unshaded nodes represent the set of
variables of the EBM (i. e. F1...m) that take values from the set of available features X. The shaded
node represents the target variable Y . The dashed lines represent the relationship of Fi with Y (measured
by γ(Fi, Y )). While the solid lines represent the association of the Fi and Fj given Y (measured by
ψ(Fi, Fk, Y )).

the set of features X, for clarity we abbreviate the assignment Fi = Xj by F ji . Each Fi
depends on the rest of variables in the model (Fj:j 6=i) and on the target variable (Y ). F is a
configuration of m-unobserved variables, which values must be inferred by the EBM using
D, the training data; the target variable Y is observed in the training sample of data. In
Figure 1 we show the graphical model of the proposed EBM for m = 6.

We define an energy function over the EBM as described in Equation (1).

U(F ) = −
( m∑
Fx

j ∈F
γ(F xj , Y ) +

m∑
Fx

j ∈F

∑
F z

k∈NF x
j

ψ(F xj , F
z
k , Y )

)
(1)

where NFx
i

is the set of neighboring sites of F xi , in our case NFx
i

= F xj:j 6=i . γ and ψ are
potentials that can be thought of as restrictions that will favor or punish certain configura-
tions of F . Intuitively, γ(F xi , Y ) is a measure of how good is feature Fi = Xx given target
variable Y , γ(F xi , Y ) is called the observation potential. ψ(F xi , F

z
j , Y ), the so called associ-

ation potential, measures how good is the combination of Fi = Xx and Fj = Xz given Y . In
the context of the causality challenge, we define γ and ψ such that the minimization of the
energy function results in maximizing the predictive power of F while giving preference to
those features that are causally related to Y . The configuration F ∗ that minimizes Equation
(1) is selected as the set of relevant features. For minimizing the energy function we consid-
ered a simple local-iterative procedure widely used for performing inference in both Markov
and discriminative random fields: iterated conditioned modes, ICM (Winkler, 2006).

2.1 Observation potential

For measuring the goodness of an individual feature F xi given the target variable Y we
consider its relevance, according several feature selection criteria, together with its predic-
tive power. Both factors are weighted in turn by another one that determines the causal
relevance of the feature. Diverse feature selection criteria are considered through the appli-
cation of several feature selection techniques to the training data set D. For this purpose,
we consider the feature selection methods available in the CLOP1 machine learning toolbox

1. http://clopinet.com/CLOP
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ID Method Description

1 s2n Signal-to-noise ratio for feature ranking
2 gs Forward feature selection with Gram-Schmidt orth.
3 relief Relief ranking criterion
4 svcrfe Recursive feature elimination filter using svc
5 auc Area under the curve criterion
6 F-test F-test ranking criterion
7 T-test T-test ranking criterion
8 Pearson Pearson correlation coefficient criterion

Table 1: Feature selection methods from the CLOP toolbox that we considered in this work. We considered the
default parameters of each method (Saffari and Guyon, 2006).

(Saffari and Guyon, 2006), these methods are described in Table 1. All of these methods
rank features according different criteria and they return as relevant the k−features at the
top of this rank. We consider ranking-based feature selection methods because they are
very competitive in practice, they are faster, and simpler than other feature selection ap-
proaches (Guyon and Elisseeff, 2003). Commonly, when applied to a same data set D, these
methods return different lists of ranked features. Our assumption in this work is that rele-
vant features should appear at the top positions through the different lists, and, conversely,
that irrelevant features will appear at the bottom positions. This factor of the observation
potential attempts to exploit redundancy and diversity of features through the lists. The
individual relevance score for each feature is given by Equation (2)

γ1(F xi ) =
1∑NL

j=1 rs(F
x
i , Lj)

(2)

where rs(F xi , Lj) is the position, in ascending order of relevance, of feature F xi in ranked
list Lj ; NL is the number of lists, in this work NL = 8 (see Table 1).

We estimate the predictive power of feature F xi using the cross validation error of an
arbitrary classifier C that uses F xi for predicting Y . A score is assigned to each feature
according Equation (3)

γ2(F xi ) =
1

rs(F xi , Lerr)
(3)

with rs as above and where Lerr is the ranked list of features in ascending order of their
balanced error rate (BER). The BER of classifier C using F xi for predicting Y is defined as
BER(C,F xi , Y ) = E++E−

2 , where E+ and E− are the misclassifications rates for the positive
and negative classes respectively.

In Equations (2) and (3) we have accounted for predictive and relevance/correlation
information of individual features. We now introduce causal information into the selection
process by weighting γ1 and γ2 by the individual causal factor described in Equation (4)

Wγ(F xi , Y ) = 1 +
(
1Fx

i ∈LBM(Y,F ) + 1Fx
i ∈GBM(Y,X)

)
(4)

where 1Fx
i ∈LBM(Y,F ) and 1Fx

i ∈GBM(Y,X) are indicator functions that take the unit value
when the feature F xi is in the local (LMB) or global (GMB) MB of Y . The MB of Y is
defined as the set of variables that make Y independent of the rest of variables (Guyon
et al., 2007). This set is composed of the causes of Y , its direct descendants and common
causes of direct descendants of Y . We make a distinction between global and local MB
because both sets differ in practice and both can provide information about Y . The GMB
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of Y is just the MB obtained by considering the entire set of features X, while the LMB
of Y is the MB obtained by considering only the features F x1

1 . . . F xm
m . For computing both

the LMB and the GMB we applied the HITON-MB algorithm from the Causal Explorer
toolbox (Aliferis, 2005). HITON-MB is an efficient algorithm for finding the MB of target
variables in large data sets with many of features (Aliferis et al., 2003).

The observation potential is a normalized combination of the scores described in Equa-
tions (2) and (3) weighted by the causal factor Wγ , as described in Equation (5).

γ(F xi , Y ) = log
( γ1(F xi , Y ) + γ2(F xi , Y )∑m

i γ1(F xi , Y ) + γ2(F xi , Y )
×Wγ(F xi , Y )

)
(5)

γ(F xi , Y ) weights the relevance of each individual feature F xi given Y by considering its
predictive power, its relevance according different feature selection criteria and its causal
factor. Configurations that maximize γ will be preferred in the inference process. We will
see below, in Section 3, that this potential (in particular the non-causal part) resulted very
useful for the selection of highly predictive features.

2.2 Association potential

The association potential ψ is defined similarly as γ, with the difference that now the factors
that compose the potential should take as input pairs of features. We consider only the
predictive power of pairs of features and a causal factor defined over pairs of features. The
predictive power of a pair of features (F xi , F

z
j ) given Y is determined by

BER(C, {(F xi , F zj )}, Y ) =
E+ + E−

2
(6)

we take the value instead of the position in a raked list because for some data sets it may
be infeasible listing the full set of pairs of features. The causal factor for the association
potential is described in Equation (7)

Wψ(F xi , F
z
j , Y ) = 1 + |{F xi , F zj } ∈ LBM(Y, F )|+ |{F xi , F zj } ∈ GBM(Y,X)| (7)

The causal factor is now governed by the number of features that are in the LMB and GMB
of Y , the maximum value of Wψ is 5. The association potential is then defined as follows

ψ(F xi , F
z
j , Y ) = log

( 1
BER(C, {(F xi , F zj )}, Y )

×Wψ

)
(8)

The association potential is summed over the set of neighboring variables. As with γ, good
configurations of features are expected to obtain high values of ψ. We can clearly see that the
energy function described in Equation (1) will assign low energy values to configurations of
features that are predictively powerful, causally important (according the MB information)
and relevant (according diverse feature selection methods). The configuration of features
that minimizes Equation (1) is selected as the relevant subset of features of size m.

3. Experimental Results

The data sets considered in the causality challenge are described in Table 2. Four data sets
in three different versions are provided to participants, in version ’0’ the training and testing
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Data set Features Training Testing

REGED 999 500 20000
SIDO 4932 12678 10000
CINA 132 16033 10000

MARTI 1024 500 20000

Table 2: Data sets used in the causality challenge. There are three versions of each data set (’0’,’1’,’2’). In version
’0’ training and testing data come from the natural distribution; in versions ’1’ and ’2’ the data has been
manipulated (Guyon, 2008)

data come from the so called natural distribution (i. e. the iid assumption holds), while in
versions ’2’ and ’3’ training and testing data come from different distributions2. For each
subset the participant is asked to provide a ranked list of features and nested subsets of
features sorted by relevance, together with predictions for the target variable in each nested
subset, for details about the challenge we refer the reader to (Guyon, 2008).

We predefined the following subset sizes M = {2, 4, 8, 16, 32, 64, 256, ...} for creating the
nested subsets of features. The EBM is used for selecting features up to size 64, for subsets
of higher size we used the rank from Equation (5). For each subset size mi ∈ {2, . . . , 64}
we ran ICM for 100 iterations for minimizing the energy function described in Equation
(1). The configuration of features that minimizes the energy F ∗mi

= X∗mi is selected as the
subset of relevant features of size mi. Then, for each subset of features X∗mi

we build a
classifier using X∗mi

in the training set for predicting Y . The trained model is then used on
the testing set using the subset of selected features X∗mi

. This process is repeated for each
subset size, the nested predictions are submitted to the challenge, as well as a ranked list
of features slist. The slist is obtained by merging the nested subsets of features in a similar
way as it is done in Equation (2).

A naive Bayes classifier is used for computing the cross validation error in Equations (3)
and (6). For predictions in the testing subsets we used a kernel ridge regression classifier in
most of our runs. Only for two runs we performed model selection for each subset size. In
these runs we applied PSMS, i. e. particle swarm model selection (Escalante et al., 2008),
a population-based search technique for the selection of classifier, preprocessing method,
feature selection and hyperparameter optimization; this method was run for 25 iterations.
In Table 3 we show the results of the runs submitted to the challenge, we show the leading
measure for ranking participants Tscore, which is the area under the ROC curve (Guyon,
2008). We show results for the REGED and MARTI data sets, because only in this data
sets we could run most of the experiments. For SIDO and CINA we had some difficulties
for computing the MB.

For the first run LM we used the ranking score of Equation (5) with Wγ = 1 for creating
the nested subsets of features. That is, we only considered the merged relevance rank and
the predictive power estimation. We can clearly appreciate that LM is a strong baseline,
since there is not a significant difference with entries that considered further information,
not even when we performed model selection. MB is a run in which we combine the LM
ranked list of features with the list of features in the GMB of Y , this run is not as good as
LM. EBM is the application of the EBM as described in Section 2, we can see that there
is not an improvement with respect to LM, actually, accuracy decreases for some data sets

2. In this work we make no distinction in the different versions of the subsets and we treat them equally.
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Desc. Run ID R0 R1 R2 R-m M0 M1 M2 M-m
LM Naive LM all 0.9997 0.9512 0.8239 0.9249 0.9673 0.7867 0.7764 0.8435
MB MB-LM 0.9995 0.921 0.7596 0.8934 0.9673 0.8154 0.7176 0.8334
EBM DfRF-MB-LM-10-10 0.9996 0.9389 0.8355 0.9246 0.9673 0.8029 0.7607 0.8436
EBM (LM) DRF-LM-64-kridge-

only-LM
0.9995 0.9416 0.8242 0.9217 0.9673 0.8013 0.7513 0.84

EBM - (no
GMB)

DRF-LM-MB-not-
local

0.9996 0.9389 0.8355 0.9246 0.9673 0.7867 0.7777 0.8439

EBM +
PSMS

DRF-LM-MB-PSMS
Final Run 1

0.9997 0.9447 0.7512 0.8985 0.9675 0.8052 0.7858 0.8528

EBM (LM) +
PSMS

DRF-LM-PSMS Final
Run 2

0.9996 0.9448 0.7512 0.8985 0.9673 0.8636 0.7764 0.8691

Table 3: Results of the entries we submitted to the causality challenge for the Reged (R) and Marti (M) data sets.
The first column indicates the settings of our method, columns 3-10 show the Tscore (AUC).

by applying this method. The EBM with other settings do not resulted in a significant
improvement over LM.

For the causality challenge, only the last complete run is ranked in the final list. As a
result our entry DRF-LM-PSMS Final Run 2 was the one evaluated. For this run3 we applied
PSMS at the end of the feature selection process according our EBM do not considering
any causal factor (i. e. Wγ = Wψ = 1). In Table 4 we show detailed results of this run.
Results of this entry are mixed, however we can see that for the data sets from versions
’0’ the performance of our method is close to that of the top ranked entry. For those data
sets in which the iid assumption is violated (i. e. versions ’2’ and ’3’) performance is not
so close. Though for some data sets like REGED2 and MARTI2 our method obtains good
results. Regarding FNUM, the best subset size for making predictions, we can see that
the EBM worked well for the REGED data set, where small subsets of features performed
better. However, for the SIDO, CINA and MARTI the best results are obtained by using a
large number of features. A notable exception is MARTI2 for which only 8 features where
enough for obtaining performance so close to that obtained by the top ranked entry. We
should emphasize that for SIDO and CINA we had some difficulties with the HITON-MB
algorithm and therefore the EBM method could not be applied successfully for these data
sets. Results shown in Tables 3 and 4 show that despite being simple, the EBM could be
useful for selection of predictively relevant features. The causal information we consider
resulted useless, and the score obtained by merging the outputs of several ranking-based
feature selection methods and the predictive performance estimation resulted very useful.

4. Conclusions

We can conclude two interesting facts from the results obtained in the causality challenge.
First, the combination of the output of several feature selection methods with predictive
performance estimations resulted very useful for ranking features and making good predic-
tions. Information fusion has proved to be very effective in a number of fields, most notably
in machine learning (ensembles, boosting, bagging) and information retrieval (multi-modal
retrieval of video and images). Experimental results give evidence that the fusion of feature
selection methods has practical advantages. This motivates further research for studying
the best way of combining the outputs and for theoretically justifying this idea. Second,
the flexibility and generality of the EBM framework can be very useful for the problem of
feature selection. However, it is not trivial to provide effective ways for measuring the causal

3. We used this settings for REGED and MARTI, for SIDO and CINA we submitted the results of the LM
run, see Table 3.
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Data set Fnum Fscore Tscore (Ts) Top Ts Max Ts Rank

REGED0 32/999** 0.8778 0.9996+
−0.0010 1.0000 1.0000

REGED1 128/999 ** 0.7996 0.9448+
−0.0039 0.9980 0.9980 6

REGED2 64/999 ** 0.7638 0.7512+
−0.0060 0.8600 0.9534

SIDO0 4096/4932 ** 0.8442 0.9355+
−0.0077 0.9443 0.9467

SIDO1 4932/4932 ** 0.4675 0.6913+
−0.0134 0.7532 0.78930 8

SIDO2 4932/4932 ** 0.4675 0.6157+
−0.0128 0.6684 0.7674

CINA0 132/132 ** 0.9550 0.9670+
−0.0035 0.9788 0.9788

CINA1 132/132 ** 0.4982 0.7873+
−0.0049 0.8977 0.8977 8

CINA2 128/132 ** 0.4982 0.5481+
−0.0044 0.8157 0.8910

MARTI0 1024/1024 ** 0.5446 0.9673+
−0.0036 0.9996 0.9996

MARTI1 512/1024 ** 0.4711 0.8636+
−0.0054 0.9470 0.9542 5

MARTI2 8/1024 ** 0.7055 0.7764+
−0.0061 0.7975 0.8273

Table 4: Final entry submitted to the challenge: DRF-LM-PSMS Final Run 2. Fnum is the best number of
features used to make predictions with slist. Fscore is an indicator of causal discovery performance,
Tscore is the area under the ROC curve, Top Ts is the top valued entry among those ranked, Max Ts
is the maximum Tscore that can be achieved using ground truth data, finally rank is the position in the
raked list of entries.

and predictive effectiveness of configurations of features. This is because while the obser-
vation potential resulted very useful, the pairwise potentials we defined were not helpful at
all. We should investigate better ways for defining the association potential of the EBM,
we could, for example, try to learn the energy function from the data, instead of using an
ad-hoc defined energy function. Further, we can use different optimization algorithms for
making inference in the EBM.
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