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Abstract— Artificial neural networks have been proven to be
effective learning algorithms since their introduction. These
methods have been widely used in many domains, including
scientific, medical, and commercial applications with great
success. However, selecting the optimal combination of pre-
processing methods and hyperparameters for a given data set
is still a challenge. Recently a method for supervised learning
model selection has been proposed:Particle Swarm Model
Selection(PSMS). PSMS is a reliable method for the selection
of optimal learning algorithms together with preprocessing
methods, as well as for hyperparameter optimization. In this
paper we appliedPSMSfor the selection of the (pseudo) optimal
combination of preprocessing methods and hyperparameters
for a fixed neural network on benchmark data sets from a
challenging competition: the (IJCNN 2007) agnostic vs prior
knowledge challenge. A forum for the evaluation of methods
for model selection and data representation discovery. In this
paper we further show that the use ofPSMSis useful for model
selection when we have no knowledge about the domain we are
dealing with. With PSMSwe obtained competitive models that
are ranked high in the official results of the challenge.

I. I NTRODUCTION

Many supervised learning algorithms have been proposed
so far, such as, neural networks and kernel methods [10],
[17]. These algorithms, together with preprocessing meth-
ods, have been widely used in many domains, including
scientific, medical, and commercial applications with great
success. However, selecting the best combination of learning
algorithm with preprocessing methods, for analyzing a given
data set, is still a challenge. Even a harder problem is the
estimation of the parameters for the selected model, often
referred to ashyperparameteroptimization. Both difficult
problems are known as model selection. Traditionally, ap-
plication’s developers using statistical and learning methods
choose algorithms and tune their parameters empirically,
commonly by trial and error; or in the best case, by using
prior knowledge of experts on the domain. However these
methodologies are both impractical and inaccurate.

Model selection is concerned with the automated selection
of the (pseudo) optimal model for describing a dataset. We
can use prior knowledge of the task at hand for improving the
model selection process, or, instead we can develop general
purpose model selection algorithms, called”agnostic” meth-
ods. The phrase”describing a dataset” in the context of
supervised learning consist of selecting a learning algorithm
together with their optimal hyperparameters for a supervised
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learning task, as well as on the selection of the preprocessing
methods that could improve the algorithm’s accuracy. In this
paper the supervised learning task approached is classifica-
tion, with the objective of selecting the model that minimizes
the misclassification rate.

In this paper the results our participation on theagnostic
versus prior knowledge challenge (IJCNN 2007)[5], [8] are
reported. The method used in this contest isparticle swarm
model selection(PSMS) [4]. It is an implementation of a
particle swarm optimization (PSO [12], [11]) algorithm for
dealing with the model selection problem. InPSMSmodels
are represented as particles in the search space. Particles fly
through this search space using knowledge acquired from
previous iterations in order to find the particle (model) that
optimizes a given fitness function.PSOhas been already used
for training a neural network, that is adjusting the weights
of the learning algorithm [11]. It has also been applied
with other algorithms for hyperparameter optimization [19].
However PSO has not been applied for selection of pre-
processing methods, learning algorithm and hyperparameter
optimization of multiple models at the same time.PSMSwas
recently proposed [4], and it has been partially evaluated
on the model selection game [6], [9]. In this paper we
appliedPSMSfor the selection of preprocessing methods and
hyperparameter optimization for a neural network learning
algorithm. Experimental results show thatPSMSis a reliable
method for supervised learning model selection when we
have no knowledge about the domain we are dealing with.

We focused ourselves on the agnostic track of the chal-
lenge, since we believe that agnostic methods are more useful
than those using prior knowledge. Mainly in one important
respect: agnostic methods can be applied to many data sets
and domains with little (if any) changes. Providing general
purpose methods that can be used by any person, even when
she/he has no knowledge on the domain nor on machine
learning. On the other hand, prior knowledge based methods
offer, in general, better models for specific tasks. However,
this sort of methods require of having both: prior knowledge
of the task at hand (an expert on the domain) and knowl-
edge on machine learning methods (an expert on machine
learning), resulting on along-runand expensive development
process. Nevertheless, accuracy of models obtained by using
previous knowledge should improve models selected with
agnostic methods. We do not sustain that better methods can
be obtained with agnostic methods than with theirgnostic
counterparts. Both approaches have their own advantages
and limitations. While agnostic methods offer a wide range
of applicability, generality of prior knowledge methods is



limited to a specific domain.
The rest of this document is organized as follows. In

the next section, we briefly describe the agnostic vs prior
knowledge challenge. In Section III, thePSMSalgorithm
is introduced. Next, in Section IV results ofPSMSon the
competition are presented; we ranked3rd on the agnostic
track of the challenge. Finally, in Section V conclusions
and future work directions are discussed.

II. T HE AGNOSTIC VS PRIOR KNOWLEDGE CHALLENGE

The agnostic versus prior knowledge challenge [5] is a
competition with the aim of assessing the real added value
of using prior knowledge into classification problems. There
are two tracks on the challenge:1) the agnostic track,
which objective is to evaluate models selected by using no
knowledge of the task at hand and preprocessed data; and2)
the prior knowledge track, in which participants are provided
with the original (raw) data and information about the origin
of data; they are required to obtain the best representation
for the data as well as the model that best performs on the
selected data representation. This sort of competitions are
very useful for comparing methods on both model selection
and data representation discovery, by providing models to
choose from, data and a fair evaluation.

Details about this contest are further described by Guyon
et al [8], in the rest of this section we briefly introduce some
aspects of the challenge in order to make this document self
contained. The rules of the challenge are quite simple: the
organizers provide five datasets for classification, together
with a MatlabR toolbox1. Then, the task is to select the
model (and data representation in the prior knowledge track)
that achieves the lowestbalanced error rate(Equation (4))
over the five data sets on unseen test data.

The data sets provided for the agnostic track of the
challenge [5], are summarized in Table I. The data come
from real domains, and were split into separate training,
validation and test sets. Given the distribution of instances
for the different sets performance on the test set provides
objective comparisons among models; note that we can not
trust on the performance results obtained on the validation
data, since this data set may be not representative of the
test set. Labels for the training data were made available to
participants but labels of the validation and test sets were
not provided. Though competitors could obtain immediate
feedback by submitting results on the validation set to the
challenge website; performance on the test set is not revealed
to competitors until the end of the challenge.

For our participation on the challenge we used theChal-
lenge Learning Object Package(CLOP), provided by the
organizers and publicly available for academic purposes2.
This MatlabR toolbox contains feature and attribute selec-
tion (among other preprocessing) methods, as well as several
machine learning algorithms. This software is object oriented

1Although it is not mandatory to use theCLOP toolbox, the organizers
encourage its use in order to provide objective comparisons

2http://clopinet.com/ isabelle/Projects/modelselect/Clop.zip

Name Features Train Validation Test
Ada 48 4174 415 41471
Gina 970 3153 315 31532
Hiva 1617 3845 384 38449
Nova 16969 1754 175 17537
Sylva 216 13086 1309 130857

TABLE I

DATA SETS FOR THE AGNOSTIC TRACK OF THE COMPETITION[8], [5],

COLUMNS 3− 5 SHOW THE NUMBER OF OBSERVATIONS FOR TRAINING,

VALIDATION AND TESTING

Acronym Name # Pars.
Feature selection

GS Gram-Schmidt 1
s2n S2N, corr. coef. 2
Rlf Relief 3
Rffs Random Forest 2

SVREC SVM Rec. elimination 1
Preprocessing

std Standardize 1
Nmlz Normalize 1
slng Scaling 3
PCA PCA 1
subs Observations subsample 2

Learning Algorithms
Zarbi Linear classifier 0
kridge Kridge regression 4
Bayes Naive Bayes 0
NNs Neural Network 4
Rf Random forest 3

SVC SVM classifier 4
Boost Boosting 4

TABLE II

AVAILABLE METHODS IN THE CLOPPACKAGE

facilitating the implementation of our methods. The available
methods in theCLOP package are briefly described in
Table II. This toolbox provides two grouping methods: chain
and ensemble [7], [8].Chain returns a model constructed
from an array of learning sub-models (preprocessing, feature
selection and learning algorithms). It is a very important
object for PSMS, since PSMS uses this constructor for
translating particles intoCLOP models. Another available
method isensemblethat allows the construction of ensembles
by combining and weighting sub-models.

III. PARTICLE SWARM MODEL SELECTION

The particle swarm optimization algorithm (PSO), was
proposed by Kennedy and Eberhart more than a decade ago
[12]. PSO is a population-based search algorithm that aims
to simulate the social behavior of birds within a flock. It was
originally proposed for training neural networks [12], [11].
Although it has been also applied to many other optimization
problems too. Mainly in problems in which the features are
real valued [16].

We decided to usePSO instead of other search strategies
mainly becausePSO has outperformed other optimization
strategies such as hill climbing methods, simulated annealing
and evolutionary algorithms in several domains. Furthermore,



as originally proposed,PSOhas been used for hyperparame-
ter selection and for training neural networks [19], [12], [11].
In this paper we are going one step further in this direction
by usingPSOfor the (quasi-)full3 model selection problem.
This task consist of the selection of the (pseudo-)optimal
combination of preprocessing methods and hyperparameters
for a fixed learning algorithm. Note that the search space
of this problem is much more larger than the one we
have when we want to train a neural network or optimize
its parameters only. In consequence we must apply more
efficient techniques and be willing to spent more time to
converge. Unfortunately we can not present an analysis of
complexity and convergence of the algorithm. Though we are
currently performing a complexity and convergence analysis
of the algorithm for the full model selection problem; as
well as a systematic comparison ofPSOwith other standard
search strategies for the model selection problem [4].

PSOis inspired on the social behavior of biological soci-
eties, in which each individual (particle) of the community
shares a common goal (getting food, for example) with the
other members of the population (swarm). It is assumed that
individuals know how far the goal is, though they do not
know the exact position of the goal.

In PSO each particle represents a candidate solution to
the optimization problem at hand and it is treated as a point
in the d−dimensional search space. Each particle adjusts
its flight (search direction) over the search space based on
its own previous flight experience and that of its neighbors.
As in most heuristic search algorithms, an aptitude measure
should defined. The aptitude measure should evaluate the
proximity of the candidate solution to the optimum. Particles
have memory in the sense that each particle is able to know
the best position it has achieved so far. Social behavior
in particles allows them to follow leader particles, that is,
the global best solutions according the aptitude measure.
Particles adjust their flight trajectories using the following
equations:

vt
i,j = ρ∗vt−1

i,j +c1∗r1∗(pi,j−xi,j)+c2∗r2∗(pg,j−xi,j) (1)

xi,j = xi,j + vt
i,j (2)

whereρ is the inertia weight, whose goal is to control the
impact of the previous velocities over the current one.vt

i,j

is the velocity of the particlei in the jth dimension, at time
t. c1 andc2 are weights applied to the influence of the best
position found so far (pi,j) by particle i and by the best
particle in the swarmpg,j . r1, r2 ∈ [0, 1] are random values
with a uniform distribution. After the velocity is updated,
the new position of the particlei in its jth dimension is
recomputed, see Equation (2). This process is repeated for
each dimension of the particlei and for all the particles in
the swarm.

Using the above described optimization framework we can
map the model selection problem into a particle’s environ-
ment. In this work we wanted to evaluate the applicability

3The full model selection problem would consist of selecting learning
algorithm together with its hyperparameters as well

of PSOfor model selection, that isPSMS. As starting point
we used the basePSOalgorithm with standard parameters
though different parameters, updating schemas and operators
can be used in future experimentation as well [18], [16]. In
the following we describe core components of thePSMS
method, these are: the representation of models as particles
and the aptitude measure that we will use to evaluate candi-
date solutions.

A. Representation

The problem we approached in this paper is that of
selecting the best model for minimizing misclassifications
on a test set. Therefore for applyingPSMSin this problem
we should represent each candidate model as a particle. In
PSO particles are represented asd−dimensional numerical
vectors. In consequence we represented each modelλ as a
d−dimensional vectorPi, as shown on Equation (3).

Pi = [M1, p1,1, . . . , p1,k, . . . . . . Mn, pn,1, . . . , pn,l] (3)

Where eachMj is a binary-valued element whose value
(0 or 1) indicates the absence of presence of methodj;
each entrypmj ,1...t represents thet−parameters for method
j, these sort of elements can have binary or real values,
depending on the methods’ parameters. Therefore, in such
a representation we haven−methods, each with their
respective parameters. Note that in casen = 1, the problem
will be reduced to single hyperparameter optimization for
methodM1. For the full model selection problem with fixed
neural network as learning algorithm the elements of the
particle representation (using theCLOP package) have the
following codification:

Ri = [ s2n, fmax, wmin, gs , fmax , relief, fmax , wmin ,
knum , svcrfe , fmax , standarize, center, normalize , center
,shiftn−scale , takelog , subsample , pnum , balance , rffs ,
fmax , wmin , pc extract , fmax , NN , units , shrinkage ,
balance , epochs ]

Where the elements inbold are binary valued, representing
absence or presence on the method indicated with the label.
While the italic elements can be both real or binary valued,
representing parameters for the method preceding them.NN
stands for neural network; elements followingNN are the
neural network hyperparameters that we want to optimize.
The methods we considered in this work were already
presented on Section II, see Table II. For practical reasons
we omitted some methods4: PCA, subsample, RffsandRf.

Each vector in the above codification is used with the
chain grouping object of theCLOP package to create the
model represented by each particle. A typical particle is
shown below.
Particle = [1, 4, 0.2461, 0.31, 0.4, 0.786, 6, 0,23, 1, 1, 0, 0, 0, 1,
0, 0, 0, 0.693, 0.577, 0.844, 2, 0, 0, 0, 0]

4PCA was not considered for reducing computational cost, subsample
was omitted because in some experiments the minority class was highly
reduced to achieve a zero training error, the rf and rffs methods were not
considered because we do not used the R software, though we will use this
methods in the future



The CLOP model that the above particle represents is shown below
CLOP-Model:
chain
{
1: s2n (fmax = 4, wmin =0.2461),
2:standardize (center=1),
3:näıve,
4:bias (op=1)
}

B. Aptitude function

An aptitude measure (or function) (Ψ(Pi) → lR) should
return a real valueψi for each particlePi, indicating how
far particlePi is from the optimal solution of the problem
at hand. In our case, the goal is to improve classification
accuracy of learning algorithms. Therefore, we can use a
classification accuracy measure forΨ. There are several
possible options, including mean absolute error, squared
root error, recall, precision and area under the ROC curve.
However, given that in the challenge [7], [8] a particular
measure is used, we adopted it here; although, it would be
interesting to test another prediction accuracy measures. The
measure used in the challenge is thebalanced error rate
(BER), which is the average of the errors on each class for
a data set as defined in Equation (4):

BER =
E+ + E−

2
(4)

WhereE+ andE− are the misclassifications rates for the
positive and negative classes, respectively. Therefore, the
aptitude measure could be defined asΨ(Pi) = BERλi

, that
is theBERobtained by modelλi with particle representation
Pi.

Note that in order to obtainBER, or any other evalua-
tion measure, for a given model it should be trained first.
Depending on the model complexity and dimensionality
of data this process can be very expensive in terms of
processing time. In the first experiments performed theBER
value was obtained from the entire training set. However,
comparing models’ accuracy using the same data for fit-
ting and assessing the model is not straightforward [10],
[14]. Instead, on posterior experimentation we calculated
the BER using a k−cross validation (CV) approach . As
expected, with this approach the performance of the models
is improved when tested on unseen data [4]. Although the
computational cost increased with the value ofk. This is the
main concern withPSMS, as with any other search heuristic.
Since when theBER is obtained from the entire training set
and we haveσsize−particles in the swarm andβ-iterations
of PSMSare performed the model is trained and evaluated
(σsize ∗ β) + σsize times. While by usingk-CV the model
must be trained and evaluated(σsize ∗ β ∗ k) + σsize times.
Even when the evaluation of each of thek−folds onCV is
performed on sets of smaller size (N

k − 1, with N the size
of the data set) the cost ofPSMSis increased, though this
is a common problem of any other population-based search

Model NCV 5− CV 10− CV
Baseline 0 0 0

PSMS2CV 61.04 64.47 64.44
PSMS5CV 55.94 52.55 59.41
PSMS10CV 71.20 71.20 71.23

TABLE III

PERCENTAGE OFBERREDUCTION OBTAINED BY THE MODELS

SELECTED WITHPSMS, FOR DIFFERENT VALUES OFk, ON THE

IONOSPHERE DATA SET.

algorithm. Furthermore, an adequate selection ofk can result
in speeding upPSMS: depending on the complexity of the
learning machine and for small values ofk, using ak−CV
approach can be faster than training the entire data set5. In
consequencePSMScan be less computationally expensive by
selecting an appropriate value ofk. As we will see in Section
IV a value of k = 2 represents a trade-off between model
complexity, though for experiments using the challenge data
sets we used a value ofk = 10.

IV. EXPERIMENTAL RESULTS

In order to evaluate the performance ofPSMSin the model
selection task several experiments were performed. We used
the framework of the model selection game [6], [9] and the
agnostic vs prior knowledge challenge [8]. Note that we are
using the basePSOin the experiments reported in this paper.

Before showing results ofPSMSon the challenge data
sets, results of experiments on a small benchmark data set
are reported. We used the ionosphere data set from theML-
UCI repository [1]. This data set contains351 instances
and a dimensionality of34. We split the data into training
(200 examples) and testing (151 examples) sets. In the
first experiment we evaluated the performance ofPSMSfor
different values ofk. PSMSwas ran for 1000 iterations using
the training set, and then we evaluated performance on the
test set. The simpler classifier available in the CLOP package
was used, that iszarbi. The task ofPSMSis then to select
preprocessing methods and hyperparameter optimization for
such methods. Results of these experiment for different
values ofk are shown in Table III.

From Table III we can appreciate the improvement over
a zarbi classifier without any preprocessing. As we can see
improvements on these set are very large. This reduction is
more evident whenk = 10, thoughk = 2 can be used as
a trade off between processing time an accuracy. We would
expect thatk = 5 resulted in better models thoughk =
2 performed better. However we must emphasize that this
results are illustrative only, and we can not generalize due to
the size of the data set.

On a second experiment we allowedPSMS to select
preprocessing methods, learning algorithm as well as hyper-
parameter optimization for the full model, that is full model
selection. The resulting model is shown in Table IV. With
this model aBER on the test set of0.089 was obtained,

5As pointed out by reviewers of this paper



Type Model
Prep. rel{fmax=10,wmin=0.45,knum=2},norm{c = 0}

Classifier svc{coef0=0,degree = 4,gamma = 0,shr. = 0.37

TABLE IV

MODEL SELECTED WITHPSMSON THE FULL MODEL SELECTION

SETTING FOR THE IONOSPHERE DATA SET.

Data Prep. Classifier Parameters
Ada∗ slng, std, nmlz NN u = 5,s = 0.008,its = 373

Gina∗∗ nmlz SVC c = 0.1,K = p,d = 5,s = 0.01
Hiva∗∗ std, nmlz kridgebost c = 1,s = 1,K = 1
Nova∗∗ nmlz NNbost u = 1,s = 0.2,its = 50
Sylva∗ std, nmlz NN u = 6,s = 0.028,its = 359

TABLE V

MODELS SELECTED BY TRIAL AND ERROR(∗) AND WITH PSMS(∗∗).

which slightly outperformed the best model selected with
PSMS in the last row of Table III, which obtained a test
BERof 0.085. Note that the classifier for such a model was
the simpler available. This result can be due to the fact that
in the full model selection task we have a much more large
search space than that we have when a learning algorithm is
fixed. It is possible that runningPSMSfor a large number
of iterations can result in larger improvements.

A. Results on the challenge data sets

In the model selection game our best entry was ranked
2nd by usingCLOPobjects only, according the game results
[8], [6], [9]. The selected models are shown in Table V,
we obtained this result by combining models selected by
both: PSMSfor the ADA and SYLVAdata sets and manual
trial and error forGINA, HIVA andNOVA. For this stage of
the competition we fixed preprocessing methods and we just
performed hyperparameter optimization for a neural network.
We usedk = 5 when calculatingCV in the aptitude function
and ran thePSMSalgorithm100 iterations forADA and only
40 iterations for theSYLVAdata set. These models were
ranked high on that stage of the competition, even when we
only performed hyperparameter optimization. Furthermore,
this was our first participation on the challenge, while most
of the other top-ranked participants already participated the
previous year [9], [8], [2], [15], [13], [3]. Models selected
with PSMSwere much less complex than those selected by
the cross-indexing method of the game winner [15], [9].

For the agnostic vs prior knowledge competition we al-
lowedPSMSto select preprocessing methods and to perform
hyperparameter optimization for the full model with a fixed
neural network learning algorithm (that is,quasi-full model
selection). For this experimentsk = 10 in the CV. We ran
PSMS500 iterations for theADA data set and100 iterations
for the HIVA, GINA and SYLVA data sets. The selected
models are shown in Table VI. Note that the model forNOVA
is the same as in Table V, this due to the fact that applying
PSMSto such a dummy data representation (bag of words of
documents) is impractical. Instead we are currently working

Data Prep. Parameters
Ada slng(0), std(1), nmlz(1) u = 5,s = 1.43,b(0),its = 257
Gina gs(48), slng(1) u = 16,s = 0.29,b = 1,its = 456
Hiva std(1),nmlz(0) u = 5,s = 3.02,b = 0,its = 448
Nova nmlz u = 1,s = 0.2,its = 50
Sylva std(0),nmlz(0) slng(1) u = 8,s = 1.285,b(0),its = 362

TABLE VI

MODELS AND PARAMETERS SELECTED WITHPSMS IN THE AGNOSTIC

VS PRIOR KNOWLEDGE COMPETITION. A NEURAL NETWORK

ALGORITHM IS FIXED.

Dataset CV-BER Ranking
Ada 18.53 +−0.93% 4th

Gina 6.99 +−0.38% 4th

Hiva 24.76 +−2.03% 3th

Nova 4.44 +−0.70% 5th

Sylva 0.70 +−0.10% 4th

TABLE VII

RANK POSITIONS OF THE MODELS SELECTED WITHPSMS, CV

ACCURACY IS ALSO SHOWN. THE MODELS FOR EACH DATA SET ARE

SHOWN IN TABLE VI

on obtaining a smaller representation for this data set and
then we will applyPSMSon it.

The best entry obtained at this stage of the challenge
is Corrida-final, with overall score of0.2857. The rank of
each model as well as the cross validation error for each
data set is shown is Table VII. The rank ofCorrida-final
is 3rd in the agnostic track and6th on the general list.
Models selected withPSMSeven outperformed models from
participants of last year competition. Furthermore, note that
we only considered the methods available in theCLOP
package. This results onquasi-full model selection show
evidence that the use ofPSMSin this task can result in robust
models. Moreover, as in Table V, models selected byPSMS
keep very simple. That is, low complexity models, even when
we are not including a complexitypenalizer for models in
PSMS. This is a very important result since less complex
models are more efficient than their complex counterparts.

In Figure 1 theBER value for each iteration ofPSMS
is shown. From this Figure we can appreciate that for all
of the data sets a small number of iterations is needed to
reach a local optimal solution. For SYLVA only 20 iterations
were need for obtaining a good solution, forHIVA andGINA
data sets the best solution was found at iteration 80. For
the ADA data set the minimumBER value was obtained at
iteration 250, though it is very likely that at this point we
are overfitting the data set.

Results from this Section show evidence thatPSMScan be
a very useful tool for full model selection. Its performance
is competitive with other interesting methods [8], [2], [15],
[13], [3]. Moreover,PSMSas an agnostic model selection
strategy can be used by any user and any domain, even when
we have no knowledge of the task at hand.



Fig. 1. Top:BERvs iterations forADA, HIVA, GINAandSYLVA; bottom:
BER vs iterations for theADA data set

V. CONCLUSIONS

In this paper we report results of our participation on
the IJCNN2007challenge. We used a search strategy based
on PSO for performing quasi-full model selection. The
aptitude function of the search algorithm is based on the
CV error. Results in the challenge show thatPSMS can
obtain competitive, yet simple, models for the data sets in
which we applied it. Simple models are more useful than
their complex counterparts because complexity is directly
related to computational cost. Although models are simples,
the models found byPSMSare competitive. Furthermore,
the main advantage ofPSMSis that it can be used by any
user, even when she/he have no knowledge on the task at
hand nor in machine learning at all. A concern with the
current implementation ofPSMS, (that is also a common
concern for all population-based search algorithms), is that
it can be expensive to compute. Since it depends on the
models complexity, which in turn it depends on the size and
dimensionality of the data set. At the moment we have just
performedquasi-full model selection, though we believe that
the advantages ofPSMSwill be further highlighted when
experiments on full model selection being performed.

Currently a systematic analysis of complexity and con-
vergence forPSMSis being carried out. A comparison of
PSMS with evolutionary algorithms, simulated annealing,
hill climbing and other widely used search strategies is an

immediate step towards evaluating the performance ofPSMS.
Further work directions are the implementation of a multi-
objective particle swarm optimization algorithm for model
selection [16] and experiments with different parameters for
PSO.
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