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Abstract

In this paper a novel approach for improving automatic image annotation
methods is proposed. The approach is based on the fact that accuracy of cur-
rent image annotation methods is low if we look at the most confident label
only. Instead, accuracy is improved if we look for the correct label within the
set of the top−k candidate labels. We take advantage of this fact and propose
a Markov random field (MRF) based on word co-occurrence information for
the improvement of annotation systems. Through theMRF structure we take
into account spatial dependencies between connected regions. As a result, we
are consideringsemanticrelationships between labels. We performed exper-
iments with iterated conditional modes and simulated annealing as optimiza-
tion strategies in a subset of the Corel benchmark collection. Experimental
results of the proposed method together with ak−nearest neighbors classifier
as our annotation method show important error reductions.

1 Introduction

The task of assigning semantic labels (words) to images is known as image annotation.
This is a very important step towards developing more precise image retrieval systems.
For text-based image retrieval systems, annotations are indispensable features; while for
content-based image retrieval methods, annotations can provide them with semantic in-
formation for improving their performance. Image annotation, however, is not an easy
task; manual annotation is both infeasible for large collections and subjective. Therefore,
there is an increasing interest in developing automatic methods for image labeling.

There are two ways of facing this problem, at image level and at region level. In the
first case, labels are assigned to the entire image as an unit, not specifying which words are
related to which objects within the image. In the second approach, which can be conceived
as an object recognition task, the assignment of labels is at region level; providing a
one-to-one correspondence between words and regions. The last approach can provide
more semantic information for the retrieval task, although it is more challenging than the
former. Within the region-level automatic image annotation (AIA) task, we can distinguish
two approaches for assigning labels to regions, these are soft and hard annotation. Hard



Figure 1: Graphical schema of our approach. We start from an image that is segmented into
regions; attributes are obtained from each region; next these attributes are used with a soft-AIA
method that returns a set of candidate labels, together with a relevance weight, for each region in
the image. Then the method proposed in this paper is applied, and it returns an unique correct label
for each image.

annotation consist of the task of assigning, with probability 1, an unique label to each
region; soft annotation, on the other hand, ranks the labels according to their relevance
to being the correct annotation for a given region. Accuracy of soft annotation systems
is superior to that of hard systems, though assigning a set of labels to a single region is
both confusing and impractical. On the other hand, accuracy of hard annotation systems
is poor, though it is more understandable and practical assigning a unique label to each
region.

In order to take advantage of the high precision of soft annotation methods as well as
the clarity of hard approaches, we proposeMRFI, a probabilistic model based on word
co-occurrence information for improving image annotation systems.MRFI considers the
top−k candidate labels for each region within an image and, by using word co-occurrence
information together with spatial context, it re-ranks each candidate label. Then we select
the unique top label for each image, according to this ranking. In Figure 1 the proposed
approach for improvingAIA methods is graphically described. We used ak−nearest
neighbor classifier as ourAIA system and experiments on a subset of the benchmark Corel
collection were performed. Experimental results show significant improvements by using
KNN+MRFI over singleKNN, furthermoreKNN+MRFI outperforms several others state
of the art annotation methods.

The rest of this document is organized as follows. In the next Section we review
related work. In Section 3 some background information is described. Next in Section
4 theMRFI method is proposed. Then in Section 5 experimental results are presented.
Finally, in Section 6 conclusions and future work directions are discussed.

2 Related work

A wide variety of methods for image labeling have been proposed since the late nineties.
However, none of current methods have taken advantage of label’s semantics for improv-
ing their performances. A very early attempt that used word co-occurrence information
is the work by Mori et al [13], in which every word assigned to the entire image is inher-
ited by each region; regions are visually clustered and probabilities of the clusters given



each word are calculated by counting the occurrence of common words within these clus-
ters. A recent approach that attempts to take advantage of co-occurrence information is
that proposed by Li et al [12]. They use a probabilistic support vector machine classi-
fier for ranking candidate labels for each region within an image. Co-occurring words
in the candidate labels for regions in the same image are weighted high; then candidate
labels are re-ranked, top ranking labels are assigned as annotation for the entire image.
Our approach is different to the previous methods because we obtained the co-occurrence
information from an external corpus and considered spatial dependencies between con-
nected regions. Instead of just considering co-occurrence of labels within the same image
[12] or clusters of regions [13]. Moreover in such works co-occurrence information is
used ad-hoc for their annotation method; while in this work we propose a method that can
be used with other soft-annotation systems.

A work close in spirit to ours is due to Carbonetto et al [4]. In this work the authors in-
troduce spatial information into aMRF for object recognition. This approach is different
to the one we adopted; since Carbonetto et al define the potential function for discover-
ing the unknown association between visual features extracted from each region and the
considered labels; furthermore theMRF is entirely based on a single collection of anno-
tated images. While in this work we use semantic information, obtained from an external
source, for modeling word association between neighboring regions. Dealing with a dif-
ferent problem: that of selecting an unique label given a set (a subset of the vocabulary)
of candidate ones; which can be seen as a re-ranking strategy. Conditional random fields
(CRF’s) have also been applied to pixel-level image labeling [9], and object recognition
[14]. These works have obtained positive results in different scenarios, although their
applicability is still limited to segmentation ([9]) and two-class object recognition ([14]).
However using conditional random fields forAIA can be an immediate future work direc-
tion. The above described approaches take into account dependencies between connected
regions [4, 9, 14]; although none of these have used semantic knowledge together with
spatial context for improving performance of object recognition methods.MRFI, on the
other hand, does not attempt to induce thevisual-features to wordrelationship by con-
sidering spatial information. InsteadMRFI takes advantage of semantic information and
attempts to select the best configuration of labels for the regions contained in the same
image. Semantic information is obtained off-line from a word co-occurrence matrix cal-
culated from an external collection of manually annotated images.

3 Background

3.1 KNN as annotation system

Thek−nearest neighbors (KNN) classifier is an instance based learning algorithm widely
used in machine learning tasks. In this work we used this method as our annotation
system due to the fact that it can outperform other state of the art methods (see Section
5); furthermore,KNN can be adapted to work in the hard and soft annotation schemas.

KNN starts from a training data set{X,Y} consisting ofN pairs of examples of the
type{(x1,y1), . . . ,(xN,yN)}, with thex′isbeingd−dimensional feature vectors and they′is
being the labels ofx′is. In this work eachxi contains visual attributes extracted from a
region. While eachyi is one of the|V| labels we can assign to a region. The training
phase ofKNN consist of storing all available training instances. When a new instance,xt ,



needs to be classifiedKNN searches, in the training set, for{xt
1, . . .x

t
k}, the topk−objects

more similar toxt ; then in a hard annotation schema it assigns toxt the class of the most
similar neighbor in the training set, we call this approach1-NN.

In order to applyMRFI with KNN as annotation method we need to turnKNN into
a soft-annotation method. That is, candidate words for a given region should be ranked
and weighted according to the relevance of the labels to being the correct annotation for
such a region. We used the distance of the test instance to the top−k nearest neighbors
as relevance weight. In this way we can infer relevance weights directly related to the
proximity of the neighbor to the test instance. Relevance weighting is obtained using
Equation (1)

PR(yt
j ) =

d j (xt)

∑k
i di(xt)

(1)

with d j(xt) being the inverse of the Euclidean distance in the attribute space of instance
xt

j , within thek−nearest neighbors, toxt , the test instance. As we can see, the sum of the
priors for all the candidate labels is one, therefore this relevance weighting ofKNN can
be taken as the prior probability for theMRFI method. Note that this relevance weight
is accumulative; that is, labels appearing more than once will accumulate their weights
according to the times they appear in the top−k labels. In this way we are implicitly
accounting for repeated labels.

3.2 Obtaining co-occurrence information

Word co-occurrence is a form of word association that has been widely used by informa-
tion retrieval models [1]. In the simpler schema, bags of words of documents and queries
are compared (that is, word co-occurrences are calculated) for retrieving the documents
whose bags of words are moresimilar to that of the query. This form of word association
can be used with labels in the vocabulary forAIA tasks for taking into account semantic
information between neighboring labels.

The co-occurrence information matrix(Mc) is a |V|X|V| square matrix in which each
entry Mc(wi ,w j) indicates the number of documents (counted on an external corpus) in
which wordswi andw j appeared together. That is, we considered each pair of words
(wi ,w j) ∈VXV and searched for occurrences, at document level, of(wi ,w j). We did this
for each of the|V| ∗ |V| pairs of words and for each document in our textual corpus. The
collection of documents we considered for this work was the set of captions of a new
image retrieval corpus: theIAPR-TC12[8] benchmark. This collection consists of around
20,000 images that were manually annotated, at image level; therefore, if two words
appear together in the captions of such collection, they are very likely to be visually
related. Captions consist of a few text lines indicating visual and semantic content. From
the entries of theMc matrix we can estimate conditional and joint probabilities if we

take: P(wi |w j) = P(wi ,w j )
P(w j )

≈ c(wi ,w j )
c(w j )

, andP(wi ,w j)≈
c(wi ,w j )

|D| , wherec(x,y) indicates the

number of timesx andy appear together in the corpus (that is, an entry of theMc matrix);
and |D| is the number of documents in our textual corpus. If we repeat this process for
each pair of words in the vocabulary we obtain a matrix of probabilities ((PM)), which
may contain conditional or joint probabilities. Preliminary experiments showed that the
use of conditional probabilities resulted in more significant improvements than those with
joint probabilities; therefore, we used in this work conditional probabilities for(PM).



A problem with thePM matrix is the sparseness of data, that is, many entries of the
matrix have zero values, which can affect the performance of our approach; this is a
very common issue in natural language processing [6]. In order to alleviate this problem
we applied a widely used smoothing technique known as interpolation smoothing [6],
described on Equation (2)

P(wi |w j )≈ Λ∗
c(wi ,w j )

c(w j )
+(1−Λ)∗

c(w j )
|W|

(2)

whereΛ is an interpolation parameter1 and|W| is the number of words in the collection.

This formula is an interpolation between the empirical estimate (
c(wi ,w j )

c(w j )
) and the empir-

ical distribution of the termw j (c(w j)). Therefore if two terms never co-occur in the
co-occurrence matrix (Mc) we will not have a zero value inPM.

4 MRFI: A Markov random field for improving AIA

A random field is a collection of random variables indexed by sites [11]. We consider a
set of random variablesF = F1, . . . ,FM associated to each site in the site’s systemS. Each
random variable takes a valuefi from a set of possible valuesL. A Markov random field
(MRF) is a random field with the Markov propertyP( fi | fi−1, fi−2, . . . f1) = P( fi |N( fi)),
whereN( fi) is the set of neighbors offi . A typical application ofMRF’s is to obtain the
most probable configuration(F∗) for the MRF; given some restrictions represented by
local probabilities, also known as potentials. We can express the joint probability of a
MRF, ′′F ′′, given the observation,′′G′′, as the product of the potentials:

PF |G( f ) = ν ∏
c

Pc(X) (3)

With ν constant, potentials (Pc(X)) can be thought of as restrictions that will favor or
punish certain configurations ofF . In this way,F∗ can be considered as the configuration
that have the highest compatibility with the local probabilities (Pc(X)). We can express
the potentials as energy functions in exponential form, that is:Pc(X) = e−Uc(Xc), with
Uc(Xc) being an energy function. Then using Equation (3) we have an unique energy
functionUp( f ) = ∑cUc(Xc). In consequence Equation (3) can be reformulated as:

PF |G( f ) =
1
Z
∗exp−Up( f ) (4)

with Z being a normalization constant. For a first order neighborhood, as the one we
considered in this work, we have:

Up( f ) = ∑
c

Vc( f )+λ ∑
o

Vo( f ) (5)

WhereVc corresponds toPF , the domain information given by the neighbors; andVo cor-
responds toPG|F , the information given by the observations;λ is a constant that weights
the contribution of each term. In our case, we would like to select the best configuration
of labels assigned to the regions in each image. Making a compromise between the visual

1Usually the value ofΛ is chosen empirically. Intuitively a low value ofΛ should be used with sparser data.
After a few trial and error experiments we selectedΛ = 0.5.



Figure 2: Left: graphical interpretation ofMRFI for a given configuration of labels and regions.
Right: spatial dependencies are shown for this configuration. ThepR

o ’s correspond to the rele-
vance weight attached to each candidate label; thea′is represent the unknown association between
connected regions.

properties of the region (Vo) and the semantics of its neighboring regions (Vc). Therefore,
we used the above described framework for approaching this problem.

The observed variables in our task are the relevance weight attached to each label
pR

1 , . . . pR
Mn

, for each regionR; and the top−k candidate labelsw1, . . .wK , for each region.
Observing this variables we define potential functions that exploit spatial dependencies
between labels assigned to spatially connected regions within each image. The structure
of MRFI and the dependencies it consider are shown in Figure 2. For this work we
consider a regionr i is connected (spatially related) to another regionr j , if r i is next-to rj .
Note that the next-to relation is symmetric and thatMRFI depends on the segmentation.
MoreoverMRFI can not deal with problems like over-segmentation. However, as we will
see in Section 5, if we have no available an accurate segmentation tool we can always
divide an image into squared patches. Although poor, the use of this simple partition
in AIA has outperformed methods based on sophisticated algorithms just has normalized
cuts (see Section 5 and [4, 3]). Also we can make the square patches as small as we want;
smaller patches will provide finer grain segmentations. Potentials forMRFI are defined
in Equations (6) and (7) for the consideration of context and observation information,
respectively.

Vc( f ) = ∑
c

(P(wc|wi))n (6)

Vo( f ) =
( 1

pR
o(wi)

)n (7)

Conditional probabilities in Equation (6) are obtained from the word co-occurrence ma-
trix, as described in Section 3.2. While relevance weightspR

o ’s, are obtained from the
AIA system. The problem of selecting the correct annotation for each region within a
given image reduces to the selection of the configuration that minimizes Equation (5).
The selection of thisoptimalconfiguration is solved by standard optimization algorithms.
In this work we performed experiments with two widely used algorithms: iterated con-
ditional modes (ICM [2]) and simulated annealing with metropolis criteria (SA[10]). In
Section 5 we report results of experiments with these two search strategies.

5 Experimental results

In order to evaluate the performance ofMRFI several experiments on a subset of the Corel
collection were performed. The data set we used is described in Table 1. It is a single



Data set # Images Words Training blobs Testing blobs
A-NCUTS 205 22 1280 728

A-P32 205 22 3288 1632

Table 1: Subset of the Corel image collection we used in the experimentation withKNN-
MRF

Figure 3: Comparison of KNN against other semi-supervised methods (dML1 [7];
dML1O,gML1,gMLO,[3]; gMAP1[5]; gMAP1MRF[4]), using a Box-and-Whisker plot. The cen-
tral box represents the values from the 25 to 75 percentile, outliers are shown as separate points.
Left: accuracy at the first label. Right: accuracy at the top−5 labels. The upper dotted line repre-
sents a random bound, while the bottom dotted line represents a naı̈ve method that always assigns
the same label to all regions.

data set composed of 205 images segmented with normalized cuts [15] (A-NCUTS) and
grid segmentation (A-P32). The attributes we considered for each region are the follow-
ing: area, and color attributes. First we comparedKNN against other semi-supervised
object recognition methods [7, 4, 5, 3] (see caption of Figure 3), which are extensions and
modifications to the reference work proposed by Duygulu et al [7]. In order to provide an
objective comparison, we used the code provided by P. Carbonetto2. This code includes
implementations of the above mentioned methods. In Figure 3 a comparison between
KNN and the semi-supervised methods for theA-NCUTSdata set is shown. In this plot,
error is computed using the following equation:

e=
1
N

N

∑
n=1

1
Mn

(
1−δ (a−nu = amax

nu )
)

(8)

whereMn is the number of regions on imagen, N is the number or images in the collection;
andδ is an error function which is 1 if the predicted annotationamax

nu is the same as the
true labela−nu. Results with the test sets are averaged over 10 trials.The left plot in Figure
3 shows error at the first label (hard annotation). Error is high for all of the methods we
considered, however1-NNoutperforms in average all of the semi-supervised approaches.

2htt p : //www.cs.ubc.ca/∼ pcarbo/



Method k Its λ n Context Time Improved #−runs AVG-I
ICM-P32 20 100 0.1 1 Next-to 1.8 134 4500 41.3

ICM-NCUTS 20 100 5 0.5 Full 0.78 56 4500 -0.7
SA-P32 20 50 0.1 2 Next-to 1.5 144 2700 98.6

SA-NCUTS 20 25 10 0.5 Next-to 0.5 54 2700 27.5

Table 2: Parameters for the best configurations.k is the number of candidate labels in
KNN; Its is for iterations;λ andn are parameters for Equation (5); context indicates the
type of neighborhood considered; time is the average time in seconds required to analyze
an image withMRFI. Improvedis the number of annotations improved. #−runs is the
number of experiments performed andAVG-I is the total of annotation improvements
averaged by #−runs

gMl0 is the closest in accuracy to1-NN, though it obtains an average error which is above
1-NN by 4.5%. In the right plot of Figure 3 we consider a label is correctly annotated
if the true label is within the top−5 candidate labels, (soft annotation). As we can see,
error for all methods is reduced, this clearly illustrates the fact that accuracy of annotation
systems is high considering a set of candidate labels instead of the first one. In this case
gMAP [5] outperforms5-NN by 0.9% in average. All other approaches obtain a higher
average error than that of5-NN.

In the second experiment we compared the performance ofKNN+MRFI to that of
KNN alone as well as to the previous methods. Note that we have several parameters
to fix for MRFI. These are:k, the number of candidate labels for each region;λ andn,
parameters for Equation (5); the number of iterations is a parameter for the optimiza-
tion algorithms; furthermore, we performed experiments with spatial context (see Figure
2) and with full spatial context, that is, assuming all regions in an image are connected
to each other. Given thatMRFI is an efficient method we could perform many experi-
ments with both data sets in order to determine the average improvement ofMRFI+KNN
over singleKNN. The parameters of the best configurations for each data set consid-
ering both optimization strategies are shown in Table 2. We also show the average of
accuracy improvement and processing time. From Table 2 we can point out several inter-
esting observations. First, as expected, the more candidate labels we consider, the more
improvements we gain. We performed experiments withk ∈ {3,5,10,20} and the best
results were obtained withk = 20. ICM needs a higher number of iterations to converge
thanSA. A small value ofλ works well for theP32data set, which means that a small
weight is given to the co-occurrence information. While a high value ofλ performs bet-
ter for NCUTS, giving more importance to co-occurrence information. We can see that
for NCUTSa value ofn = 0.5 performs well, while this parameter do not significantly
affected the performance ofMRFI. The use of spatial information, through thenext-to
relation, results in larger improvements than if consider each region is connected to each
other in the image. Improvements are consistent through the number of experiments per-
formed. The lowest average improvement was obtained withICM-NCUTS. While with
the grid segmented data (P32) we obtained the largest improvement, 98 annotations per
run in average; which is a very significant improvement. An important result showed in
Table 2 is the processing time3 required to process an entire image withMRFI. These
results show the efficiency ofMRFI.

3All experiments were carried out on a PC with 1 GB in RAM and a 2.7 GHzpentiumR processor



Figure 4:Comparison ofKNN andKNN+MRFI against other semi-supervised methods (see cap-
tion of Figure 3) for images segmented with normalized cuts (left) [15] and with the grid approach
(right); error is measured at the first label, see caption in Figure 3.

In all experiments performed using grid segmentation, which is faster than the other
method, outperformed in accuracy segmentation with normalized cuts [15]. This result
agrees with previous work [4, 5]. InMRFI this can be due to the fact that with grid seg-
mentation (P32) the structure of theMRF is equal for all images. While for normalized
cuts we have a different segmentation, according to the image’s content, and therefore
a different structure for theMRF. The use ofSA instead ofICM does not result in sig-
nificant improvements,SAoutperformedICM by 0.5%, which means that we have not
many local minima. In Figure 4 we compare the best configurations ofMRFI (Table 2)
with the other methods. From Figure 4 we can clearly appreciate the improvement we
can get by applyingMRFI+KNN, instead of1-NNalone, for both data sets. The improve-
ments ofMRFI+KNN over 1-NN are of 7.5% and 10.3% for theP32 andNCUTSdata
sets, respectively. These percentages represent around 140 (forP32) and 46 (forNCUTS)
annotations that were enhanced; this is a very significant improvement in accuracy. Fur-
thermore, the difference in performance betweenMRFI+KNN and the other methods is
dramatically increased. The semi-supervised method with closest average accuracy is
gML0. MRFI+KNN improvedgML0 in average by 18.9% and 14.7% for theP32 and
NCUTSdata sets, respectively. Results from this Section give evidence thatKNN+MRFI
is an effective image annotation method. Furthermore,MRFI can be applied with any
other annotation system, though more experimentation should be performed in order to
evaluate its impact with other methods.

6 Conclusions

We have presentedMRFI, a method for the improvement ofAIA systems. InMRFI spatial
dependencies are considered through aMRF model. Semantic information between la-
bels is incorporated using word co-occurrences. Co-occurrence information is calculated
off-line from an external collection of captions, which is a novel approach. Experimen-



tal results of our method on a subset of the Corel collection, give evidence that the use
of KNN+MRFI results in significant error reductions. Our method is efficient since the
co-occurrence matrix is obtained off-line, and in most of the cases we just need a few
iterations to obtain a good configuration (around 1.1 seconds per image). Furthermore,
MRFI can be used with othersoft-annotationsystems.

The improvement of the co-occurrence matrix is an immediate step towards the en-
hancement ofMRFI. Other future directions include the consideration of global image
labels intoMRFI and considering other models thanMRF’s, such asCRF’s as well as
experiments with probabilisticAIA methods.
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