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Abstract. In intelligent knowledge-based systems, the task of approximate match-
ing of knowledge elements has crucial importance. We present the algorithm of 
comparison of knowledge elements represented with conceptual graphs. The 
method is based on well -known strategies of text comparison, such as Dice coeffi-
cient, with new elements introduced due to the bipartite nature of the conceptual 
graphs. Examples of comparison of two pieces of knowledge are presented. The 
method can be used in both semantic processing in natural language interfaces and 
for reasoning with approximate associations. 

Keywords: conceptual graphs , approximate matching,  knowledge 
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1 Introduction* 

For an intelligent knowledge-based system, it is important to be able to approximately 
compare two pieces of knowledge, answering the questions: How similar are the two 
situations? What situations in the knowledge base are similar to the given one? What 
pieces of knowledge could be useful for reasoning with the given one? This is similar 
to the behavior of a person who has just learned the piece of news that John came late 
to the party. The person recalls the similar pieces of knowledge (s)he already knows: 
Last week John came late to the class, or Jack came to the party too. Also, the person 
can generalize the available knowledge: Boys like to attend parties . An intelligent 
system should be able to model this behavior. 

For this, the system should be able to compare pieces of knowledge in a quanti-
tative manner rather than on the equal -or-not basis. The task of recalling “similar” 
knowledge and generalizing the available knowledge in an intelligent agent are simi -
lar to the tasks of natural language processing involving approximate matching, such 
as information retrieval, text mining, and abstracting. These tasks were our main 
motivation in this research. 

                                                                 
* The work was done under partial support of CONACyT (including grant 32003-A), REDII-

CONACyT, and CGEPI-IPN, Mexico. 



For plain keyword set representation of text, like {algorithm , binary, search}, 
many different similarity measures are proposed, for instance, the Dice coefficient, 
the Jaccard coefficient, the Cosine coefficient (Rasmussen 1992), etc. For the repre-
sentation with binary term weights, the Dice coefficient is calculated as follows:  
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where ( )iDn  is the number of terms in Di, and ( )21 DDn ∩  is the number of terms that 

the two documents Di and Dj have in common. Because of its simplicity and normal i-
zation, we take it as the basis for the similarity measure we propose. 

In this paper, we discuss an algorithm of such comparison for conceptual 
graphs. Conceptual graph representation incorporates the information about both the 
concepts involved in the situation and their relationships, e.g., [algorithm ] → (for) → 
[search] → (attr) → [binary].  

Conceptual graphs evolved from semantic networks.  They have been used as a 
representation of text contents because of their expressive power close to natural 
language (Myaeng and López-López 1992). 

In many of the conceptual graph applications, especially in the knowledge-based 
applications, graph matching is one of the main problems. For instance, in the field of 
information retrieval, different similarity measures have been described for compar-
ing the query graph with the graphs from the knowledge base. The matching criterion 
most widely used for conceptual graphs is that if the query graph is completely con-
tained in the given graph, then the given graph is relevant for (i.e., matches with) the 
given query graph. This criterion means that the contents of the found piece of infor-
mation have to be more specific than the query piece ( Huibers et. al. 1996).  

A novel implementation of this criterion was proposed by Ellis and Lehmann 
(Ellis and Lehmann 1994).  They used only the graph structure of the conceptual 
graphs to compare them. Their hypothesis is that for two conceptual graphs to match, 
their graph structure must match first. With this approach, they replace most graph 
matching with efficient operations on precompiled codes for graphs. 

The partial matching criterion has been also used for comparing conceptual 
graphs.  Partial matching allows the similarity between two conceptual graphs to take 
values between 0 and 1. Myaeng and López-López (Myaeng and López-López 1992) 
proposed a flexible algorithm for partial conceptual graph matching.  They define the 
matching of two conceptual graphs as the set of all maximal common subgraphs.  

Assuming we have the set of all maximal common subgraphs, we propose a 
flexible criterion to quantify the approximate matching expressed in the subgraphs.  
This criterion is based on the Dice coefficient, adapting it for our purpose. 

First, we introduce the notion of the conceptual graph and describe the process 
of transformation of a text to a set of conceptual graphs. Then, we exp lain the main 
idea of the comparison of two conceptual graphs, and give the corresponding formu-
lae. Finally, we give some examples of comparison of conceptual graphs. 



2 Conceptual Graphs 

Conceptual graphs as a way of knowledge representation were first introduced for 
representation of the contents of natural language texts. A conceptual graph is a net-
work of concept nodes and relation nodes (Sowa 1983; Sowa, 1994). The concept 
nodes represent entities, attributes, or events (actions); they are denoted with brack-
ets. The relation nodes identify the kind of relationship between two concept nodes; 
they are denoted with parentheses. 

In this paper, we suppose that the relations are of few very basic types, such as 
attribute, subject , object , etc. Thus, a phrase John loves Mary is represented with a 
graph like 

[John] ← (subj) ← [love ] → (obj) → [Mary] 

and not like 

[John] ← (love ) → [Mary]. 

The most readily available source of knowledge with complex structure is natural 
language text. In our experiments, to build a conceptual graph representation of a 
text, a morphological tagger, a syntact ic parser, and a semantic analyzer are used. For 
example, given the phrase 

Algebraic formulation of flow diagrams, 

First, the morphological tagger supplies each word with a syntactic-role tag, given 
after the bar sign:1 

Algebraic|JJ formulation|NN of|IN flow|NN  diagrams|NNS .|. 

Then a syntactic parser generates its structured representation:2  

[[np, [n, [formulation, sg]],  [adj, [algebraic ]],  [of, 
[np, [n, [diagram, pl]], [n_pos, [np, [n, [flow, sg]]]]]]],  '.']. 

The semantic analyzer generates one or more conceptual graphs out of such syntactic 
structure: 3 

[algebraic] ← (attr) ← [formulation ] → (of) → [flow-diagram] 

In this graph, the concept nodes represent the elements mentioned in the text, for 
example, nouns, verbs, adjectives, and adverbs, while the relation nodes represent 
some syntactic relation (including prepositions) between the concepts. 

                                                                 
1 The tagger we use is based on the P enn Treebank tagset. 
2 The parser we use was developed by Tomek Strzalkowski of the New York University basing 

on The Linguist String Project (LSP) grammar designed by Naomi Sager. 
3 We do not discuss here the structure of the semantic analyser we use. 



3 Comparison of Conceptual Graphs 

After processing the pieces of text, we end up with sets of conceptual graphs repre-
senting their contents.  From these graphs, the graph comparison process can be ap-
plied. 

In general terms, our algorithm of the comparison of two conceptual graphs 
consists of two main parts: 

1. Define the overlap of the two graphs, and 

2. Measure the similarity between the two graphs as the relative size of their over-
lap graph. 

In the first step, we build the overlap graph Gc = G1  ∩ G 2 of the two initial con-
ceptual graphs G1  and G2 . This overlap consists of the following elements: 

• All concept nodes that appear in both initial conceptual graphs G1  and G2; 

• All relation nodes that appear in both G1  and G2 and relate the same concept 
nodes.  

Under this definition, the overlap graph G c is a set of all maximal common sub-
graphs of G1  and G 2, and then a similar method to the one proposed by Myaeng and 
López-López (Myaeng and López-López 1992) can be used to build it.  

An example of such an overlap is shown on Figure 1. We show the concept 
nodes such as [John] or [love] as the points A, B, etc., and the relation nodes such as 
(subj) or (obj) as arcs. In the figure, of the concept nodes A, B. C. D, E, etc., only the 
concepts A, B, and C belong to both graphs G1  and G2. Though three arcs A — B, 
A  — C, and B — C are present between these concepts in G 1 only two of them are 
present in both graphs. Of course, for an arc between two common concepts to be 
included in Gc, it should have the same label and direction (not shown in Figure 1) in 
the two original graphs. 

In the second step, we measure the similarity between the graphs G1  and G2 

based on their intersection graph Gc. The similarity measure is a value between 0 and 
1, where 0 indicates that there is no similarity between the two pieces of knowledge, 
and 1 indicates that they are completely similar. 

Because of the bipartite (concepts and relations) nature of the conceptual graph 
representations, the similarity measure is defined as a combination of two types of 
similarity: the conceptual similarity and the relational similarity: 

The conceptual similarity measures how similar the concepts and actions mentioned 
in both pieces of knowledge are (e.g. topical comparison).  

The relational similarity measures the degree of similarity of the information about 
these concepts (concept interrelations) contained in the two pieces of knowledge.  
That is, it indicates how simi lar is the context of the common concepts.  



4 Similarity Measure 

Given two conceptual graphs G1  and G2 respectively and the graph G 1 ∩ G2  = G c, we 
define the similarity s between them as a combination of two values: their conceptual 
similarity sc and their relational similarity sr. 

The conceptual similarity sc expresses how many concepts the two graphs G1  
and G2  have in common. We calculate it using an expression analogous to the well-
known Dice coefficient used in information retrieval (Rasmussen 1992): 
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where n(G) is the number of concept nodes of a graph G. This expression varies from 
0 (when the two graphs have no concepts in common) to 1 (when the two graphs 
consist of the same set of concepts).  

The relational similarity sr indicates how similar the relations bet ween the same 
concepts in both graphs are, that is, how similar the information about these concepts 
contained in the two pieces of knowledge is. In a way, it shows how similar the con-
texts of the common topics in both graphs are.  

We define the relational similarity sr to measure the proportion between the de-
gree of connection of the concept nodes in G c, on one hand, and the degree of connec-
tion of the same concept nodes in the original graphs G 1 and G2 , on the other hand. 
With this idea, a relation between two concept nodes conveys less information about 
the context of these concepts if they are highly connected in the initial graphs, and 
conveys more information when they are weakly connected in the initial graphs. We 
formalize this notion using a modified  formula for the Dice coefficient: 
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Figure 1.  Overlap of the two graphs. 
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where m (G c) is the number of the arcs (the relation nodes in the case of conceptual 
graphs) in the graph Gc, and ( )Gm

cG  is the number of the arcs in the immediate 

neighborhood of the graph G c in the graph G. The immediate neighborhood of 
G c ⊆ G in G consists of the arcs of G with at least one end belonging to Gc. 

Figure 2 illustrates these measures. In this figure, the nodes A, B . and C are the 
conceptual nodes common for G 1 and G2  and thus belonging to Gc. Bold lines repre-
sent the arcs (relation nodes) common to the two graphs. The arcs marked with the 
symbol ü constitute the immediate neighborhood of the graph G c (highlighted areas), 
their number i s expressed by the term ( )iG Gm

c
 in the formula above. 

The value of ( )GmH
 for a subgraph H ⊆  G in practice can be calculated as fol-

lows:  
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where cdeg G  is the degree of concept node c in the graph G, i.e., the number of the 

relation nodes connected to the concept node c in the graph G, and m(H ) is the num-
ber of relation nodes in the graph H. 

Now that we have defined the two components of the similarity measure, sc and 
sr, we will combine them into a cumulative measure s. First, the combination is to be 
roughly multiplicative, for the cumulative measure to be roughly proportional to each 
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Figure 2.  Calculation of relational similarity. 



of the two components. This would give the formula 
rc sss ×= . However, we can 

note that the relational similarity has a secondary importance, because it existence 
depends of the existence of some common concepts nodes, and because even if no 
common relations exist between the common concepts of the two graphs, the corre-
sponding pieces of knowledge are still similar to some degree. Thus, while the cumu-
lative similarity measure is proportional to sc, it still should not be zero when sr = 0. 
So we smooth the effect of sr: 

( )rc sbass ×+×= , 

With this definition, if no relational similarity exists between the graphs, that is, 
when 0=rs , the general similarity only depends of the value of the conceptual simi-

larity. In this situation, the general similarity is a fraction of the conceptual similarity, 
where the coefficient a indicates the value of this fraction. 

The values of the coefficients a and b depend on the structure of the graphs G1  
and G2  (i.e. their value depend on the degree of connection of the elements of Gc in 
the original graphs G1  and G2). We calculate the values of a and b as follows:  
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where n(Gc) is the number of concept nodes in Gc and ( ) ( )21 GmGm
cc GG +  is the num-

ber of relation nodes in G1  and G2  that are connected to the concept nodes appearing 
in Gc. 

With this formula, when 0=rs , then 
csas ×= , that is, the general similarity is a 

fraction of the conceptual similarity, where the coefficient a indicates this portion. 
Thus, the coefficient a expresses the part of information contained only in the 

concept nodes (according to their surrounding). It is calculated as the proportion 
between the number of common concept nodes (i.e. the concept nodes of Gc) and the 
total number of the elements in the context of Gc (i.e., all concept nodes of G c and all 
relation nodes in G 1 and G2 connected to the concept nodes that belong to Gc). 

When 1=rs , all information around the common concepts is identical and there-

fore they convey the same information in the two pieces of knowledge. In this situa-
tion, the general similarity takes it maximal similarity value 

css = , and consequently 

1=×+ rsba . Thus, the coefficient b is equal to 1 – a, and expresses the complemen-

tary part of information conveyed in the relationships among nodes.  

5 Examples 

The following example shows how conceptual graphs are compared. This example 
consists in the comparison of three simple conceptual graphs. The relations used in 
the graphs are the following: obj (relates actions with their objects), subj (relates 



actions with their subjects), attr (relates concepts with their attributes) and preposi-
tions (specific prepositions, such as of). 

The graphs we use in our examples are the representation of simple phrases in 
natural language:  

1) Red roses are a pretty ornament for a party. 

[Rose] (attr) [Red]

(subj) [Be] (obj) [Ornament] [Pretty](attr)

(for) [Party]  

2) Persons decorated their parties with red roses. 

[Person] [Decorate] [Party](subj) (obj)

(with) [Rose] (attr) [Red]  

3) The employee decorated the roses with a red strip for a party.  

[Employee] [Decorate](subj) (obj) [Rose]

(with) [Strip] (attr) [Red]

(for)[Party]

 

The results for the comparison of these three conceptual graphs are described in Ta-
ble 1. 

      

G1  and G2  Gc sc a sr s 

1 and 2 [Rose]→(attr)→[Red]  [Party] 0.54 0.50 0.33 0.36 
2 and 3 [Rose]  [Red]  [Decorate]  [Party] 0.72 0.47 0 0.34 
1 and 3 [Rose]  [Red]  [Party] 0.50 0.50 0 0.25 

Table 1.  An example of comparison. 

In spite of the simplicity of the examples used, we can observe the general be-
havior of the measure and how the conceptual and relational similarities are com-
bined to produce the final measure. For instance, the examples show that our measure 
values higher those graphs with connected common elements than the graphs with a 
greater number of common concepts that are not connected. This means that our 



similarity measure is focused on what is known about  the concepts (interconnection 
of concepts) and not only on just the concepts per se. 

6 Applications 

Besides the direct use of the comparison technique to handle knowledge bases, our 
motivation points to its use in some knowledge management tasks such as informa-
tion retrieval and text mining.  In fact, our experiments and results have been done in 
these areas. 

One of the main problems of current methods for information retrieval is the 
low precision of their results.  One solution to this problem is using better representa-
tions of the text content.  An example of this trend is the use of conceptual graphs as 
the representation of the content of texts (Myaeng 1990; Ellis and Lehmann 1994; 
Genest and Chein 1997).  

In some of our previous work, we have also suggested using conceptual graphs 
in information retrieval (López-López and Myaeng 1996; Montes -y-Gómez et. al. 
1999).  We proposed to perform document selection by two levels of document repre-
sentation.  In the first level, documents are represented as keyword lists and the 
searching is done using traditional retrieval techniques.  In the second level, docu-
ments are represents as conceptual graphs.  In this level the comparison of conceptual 
graphs is done, and documents are ranked according to their similarity with the query 
graph.  With this technique a increase in the precision is reached.  

This method of comparison of conceptual graphs has also potential uses in some 
tasks of text mining.  Currently, text mining is done at term level (Feldman et. al. 
1998), and then the variety of the discovered knowledge is quite restricted.   

Our main idea is to increase the potential of text mining systems again by using 
improved representations of text content (for instance, conceptual graphs).  Thus, if 
texts are represented as conceptual graphs, then the comparison of those graphs 
emerges as a basic task.  For instance, some of the text mining tasks requiring to 
compare text elements are: deviation detection (requires to compare all texts and 
detect the most dissimilar), clustering (demands to compare all texts and group those 
similar), and trend discovery (needs to compare two sets of texts and discover their 
differences and similarities). A way to quantify the similarities between texts is an 
essential element to achieve these tasks. 

7 Conclusions 

We have described a method for measuring the similarity between two conceptual  
graphs representing two pieces of knowledge in an intelligent system. The method is 
based on the idea of the Dice coefficient, a widely used measure of similarity for the 
keyword representations of texts. It also incorporates some new characteristics de-
rived from the conceptual graph structure, for instance, the combination of two com-
plementary sources of similarity: the conceptual similarity and the relational similar-
ity. 



This measure is appropriate for comparison of pieces of knowledge since it con-
siders not only the topical aspects (difficult to obtain from little pieces of knowledge) 
but also the relationships between the concepts. Thus, this approach is especially 
appropriate for little pieces of information organized in a semantic representation, 
which is the most frequent case for knowledge bases.  

The method of comparison of conceptual graphs has potential uses not only in 
intelligent agents and knowledge bases, but also in other tasks of knowledge man-
agement, such as information retrieval systems, text mining, and document classifica-
tion. 
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