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Situated robot learning for multi-modal instruction
and imitation of grasping
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Abstract

A key prerequisite to make user instruction of work tasks by interactive demonstration effective and convenient is situated
multi-modal interaction aiming at an enhancement of robot learning beyond simple low-level skill acquisition. We report
the status of the Bielefeld GRAVIS-robot system that combines visual attention and gestural instruction with an intelligent
interface for speech recognition and linguistic interpretation to allow multi-modal task-oriented instructions. With respect
to this platform, we discuss the essential role of learning for robust functioning of the robot and sketch the concept of an
integrated architecture for situated learning on the system level. It has the long-term goal to demonstrate speech-supported
imitation learning of robot actions. We describe the current state of its realization to enable imitation of human hand postures
for flexible grasping and give quantitative results for grasping a broad range of everyday objects.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

How can we endow robots with enough cognitive
capabilities to enable them to serve as multi-functional
personal assistants that can easily and intuitively be
instructed by the human user? A key role in the re-
alization of this goal plays the ability ofsituated
learning. Only when we can instruct robots to exe-
cute desired work tasks by means of a combination
of spoken dialog, gestures, and visual demonstration,
robots will lose their predominant role as specialists
for repeatable tasks and become effective to support
humans in everyday life.

A basic element ofsituated learningis the capabil-
ity to observe and successfullyimitate actionsand – as
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a prerequisite for that – to establish a common focus of
attention with the human instructor. For multi-modal
communication, additional perceptive capabilities in
the fields of speech understanding, active vision, and
in the interpretation of non-verbal cues like gestures
or body posture are essential and have to be included
and coordinated.

We report on progress in building an integrated
robot system within the framework of the Special
Collaborative Research Unit SFB 360 ‘Situated Arti-
ficial Communicators’. In the course of this long-term
program, many modules implementing partial skills
were at first realized and evaluated as stand alone
applications[4,7,18,20,34], but their integration is an
additional research task and a key issue towards the
realization of intelligent machines[25,29].

As the development of integrated learning architec-
tures for real world tasks poses an enormous challenge
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[35], there can hardly be found any efforts to scale
learning from the lower level of training single skills
up to a multi-stage learning across the overall system.
A primary reason is that most learning approaches
rely on highly pre-structured information and search
spaces. Prominent examples are supervised learning
of target outputs, unsupervised learning of clusters, or
learning of control tasks with a (usually small) num-
ber of predefined variables (pole balancing, trajectory
learning). Here exist well understood approaches like
gradient based learning, support vector machines, vec-
tor quantization, or Q-learning, which yield for certain
tasks remarkable results, e.g. in speech–image inte-
gration [26], trajectory learning[19,22,44], in object
recognition and determination of grasp postures[28],
sensor fusion for grasp planning[1], or grasp opti-
mization[30].

In real world learning a well defined pre-structuring
of the data with respect to the given task is an es-
sential part of the learning itself; the system has to
find lower-dimensional relevant manifolds in very
high-dimensional data and detect important regu-
larities in the course of learning to use these to
improve its capabilities. Furthermore, for a sophis-
ticated robot with many motor degrees of freedom
or for a cognitive system – as the one discussed
here – finding a solution by exploration of new ac-
tions is not suitable because the search spaces in-
volved are extremely high-dimensional and by far too
complex.

Current practice aims at developing well-scalable,
homogeneous and transparent architectures to create
complex systems. Somewhat ironically, successful
examples of this strategy tend to cluster in the small-
or mid-size range, while truly large and complex
systems seem to defy our wishes for ‘formatting
away’ their complexity by good bookkeeping alone.
It seems not unlikely that it is one of the hallmarks of
complex systems that they confront us with limited
homogeneity, evolutionarily grown layers of over-
lapping functionality and bugs that may even amal-
gamate with features. Looking at biological systems
with their enormous complexity, we see that these by
no means resemble orthogonal clockworks; instead,
they consist of a tangle of interwoven loops stabi-
lized by numerous mechanisms of error-tolerance and
self-repair. This suggests that a major challenge for
moving to higher complexity is to successfully adopt

Fig. 1. Interaction with the GRAVIS-system using speech and
gesture.

similar approaches to come to grips with systems that
we cannot analyze in their full detail.

In the present paper, we address these issues in the
context of a longer-term research project aiming at the
realization of a robot system that is instructable by
speech and gestures (Fig. 1). For the aforementioned
reasons, we have pursued the development of this sys-
tem in an evolutionary fashion, without the require-
ment that a global blueprint had to be available at each
stage of its development. InSection 2, we report our
experiences with this approach and give an overview
of the current stage of the evolved system.

In Section 3, we focus our discussion on the issue
of learning within such a system and argue for three
major levels at which learning has to be organized:
(i) an ontogenetic levelwhich exploits learning meth-
ods in order to create initial system functions (such
as object classifiers) from previously acquired train-
ing data in an off-line fashion, (ii) arefinement levelat
which on-line learning is used locally within a func-
tional module, with the main effect of increasing the
module’s robustness or refining its performance, but
with no or little need of explicit coordination with
adaptive processes in other modules, and (iii) asitu-
ated levelat which different learning methods are com-
bined in a highly structured way in order to achieve
short-term situated learning at the task level. While
all three learning levels are important, undoubtedly it
is the uppermost,situated levelwhich currently poses
the most exciting research challenge.

In Section 4, we propose an approach how to
organize learning at this level. Our proposal is
strongly motivated by the idea of imitation learning
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[2,3,6,8,23,24,32], which attempts to find a successful
‘action template’ from the observation of a (human)
instructor. This requires to (i) endow the robot system
with sufficient perceptive capabilities to recognize and
observe the action to imitate; (ii) transform the ob-
served action into an internal representation, which is
well matched to the system’s own operating character-
istics (in particular, its different ‘sensory perspective’
and ‘instrumentation’ with actuators); (iii) be able to
physically execute a suitable action by itself. Focus-
ing on the important task ofimitation grasping, we
describe inSection 5an initial implementation of
this scheme, using our current system as a platform
for the necessary and considerable, perceptual and
motor anchoring of such an imitation learner in its
environment.Section 6then presents some results on
imitation grasping of common everyday objects with
the system implemented so far.

At all levels, the results of learning can – by its very
nature – at best be partially predicted, further eroding
the idea of the availability of a fixed system blueprint.
In Section 7, we therefore argue for adatamining
perspectivefor coping with systems of such kind.
As a concrete example, we briefly describe a power-
ful multi-modal monitoring system (AVDisp) that has
been developed in our lab very recently and we report
some experiences from applying this approach to our
robot system. Finally,Section 8presents some con-
clusions.

2. System design and overview

Due to the long-term development of our system,
the ideal perspective to define constraints and a uni-
fied framework beforehand to facilitate building a cog-
nitive learning architecture had to be replaced by an
‘evolutionary approach’ to also integrate modules that
were developed in different research contexts and not
necessarily designed in view of being utilized in the
described system. This led to the development of a
rather flexible architecture, based on a distributed ar-
chitecture communication system (DACS[14]) devel-
oped earlier in the framework of the SFB 360. In this
framework, very heterogeneous components can be
accommodated as separate and parallel processes, dis-
tributed over several workstations and communicat-
ing mainly via message passing supported by DACS

Fig. 2. Schematic picture of the current system architecture.

(some modules also use more sophisticated commu-
nication facilities of the DACS package). In this way,
we have been able to integrate a large number of mod-
ules, which use different programming languages (C,
C++, Tcl/Tk, Neo/NST), various visualization tools,
and a variety of processing paradigms ranging from
a neurally inspired attention system to statistical and
declarative methods for inference and knowledge rep-
resentation[25,29].

The current system can be coarsely subdivided into
four major functional clusters depicted schematically
in Fig. 2. The speech processing(left) and thevi-
sual attentionmechanism (right) provide linguistic
and visual/gestural inputs converging in anintegra-
tion module. This maintains a short-term memory of
objects and their 3D-coordinates and passes control
to the arm/hand manipulatorif an object is unam-
biguously referenced by speech or gesture or their
combination. We found that the coordination of all
these functional modules can be very conveniently
achieved by finite state machines implementing data
driven state transitions. Additionally, speech com-
mands like ‘calibrate skin’, ‘park robot arm’, etc. can
trigger specific actions. The most important function-
alities of these four building blocks are summarized
below for convenience.

2.1. Visual attention

The basic behavior of the active vision system
is – driven by an attention system – to explore the



132 J.J. Steil et al. / Robotics and Autonomous Systems 47 (2004) 129–141

scene autonomously and search for salient points and
objects, including hands and pointing fingers. The
attention behavior is based on an active stereo vision
camera head and works in full 3D-space. At the lower
level it consists of a layered system of topographically
organized neural maps for integrating different feature
maps into a continually updated saliency map[20],
similar to mechanisms proposed in[9,12,38]. Incor-
porating an additional fadeout map and results from a
hand detection module, it forms a final attention map
whose highest peak determines the next fixation. If
a pointing hand is detected, a further module com-
putes a 3D-pointing cone and restricts the attention
to the corresponding region. A holistic, neural object
recognition system[18] determines whether a known
object has been seen and can be transferred into the
short-term memory of the integration module.

2.2. Speech processing and understanding

To enable speech interaction and communication
between the user and the artificial communicator, our
system imports a module for speaker-independent
speech understanding[13]. The recognition process
is directly influenced by a partial parser which pro-
vides linguistic and domain-specific restrictions on
word sequences derived from previous investigations
on a word corpus. Therefore, partial syntactic struc-
tures instead of simple word sequences are generated,
like e.g. object descriptions (the red cube) or spatial
relations (in front of). These are combined by the
subsequent speech understanding module to form lin-
guistic interpretations. The instructor neither needs
to know a special command syntax nor the exact
terms or identifiers of the objects. Consequently, the
speech understanding system has to face a high de-
gree ofreferential uncertaintyfrom vague meanings,
speech recognition errors, and un-modeled language
structures.

2.3. Modality integration and dialog

In integration of speech and vision, this referential
uncertainty has to be resolved with respect to the vi-
sual object memory. Here the system uses a Bayesian
network approach[40], where the different kinds of
uncertainties are modeled by conditional probability
tables that have been estimated from experimental

data. The objects which are denoted in the utterance
are those explaining the observed visual and verbal
evidences in the Bayesian network with the maximum
a posteriori probability. Additional causal support for
an intended object is defined by an optional target
region of interest that is provided by the 3D-pointing
evaluation. The intended object is then used by the di-
alog component for system response and manipulator
instruction. The dialog system is based on an inves-
tigation of a corpus of human–human and simulated
human–machine dialogs[7]. In particular, it asks for
a pointing gesture to resolve ambiguities in the cur-
rent spoken instruction with respect to the actual state
of the memory. The overall goal of this module is to
continue the dialog in every situation.

2.4. Robot arm and hand

Manipulation is carried out by a standard 6-DOF
PUMA manipulator operated with the real-time
RCCL-command library[36]. It is further equipped
with a wrist camera to obtain local visual feedback
during the grasping phase. The grasping is carried
out by a 9-DOF dextrous robot hand developed at
the Technical University of Munich[37]. It has three
approximately human-sized fingers driven by an hy-
draulics system. The fingertips have custom built
force sensors to provide force feedback for control
and evaluation of the grasp. Recently, we have added a
palm and rearranged the fingers in a more human-like
configuration in order to allow a larger variety of
two- and three-finger grasps and equip the hand with
a tactile display of 8× 8 force sensors on the palm.

The grasp sequence starts with an approach move-
ment to the 3D-coordinates determined by the vision
and integration modules. Based on visual feedback, it
centers the manipulator above the object and finally
grasps it, starting from an initial hand pre-shape,
slowly wrapping all fingers around the object and em-
ploying force feedback from the fingertip and palm
sensors to detect contacts. Notice that this grasp-
ing strategy significantly differs from analytical ap-
proaches, which first compute optimal grasp points on
the known object surface and finally employ inverse
hand kinematics to achieve these contact points[17].
Fig. 3 shows a time-evaluation of the grasp sequence
for a preprogrammed grasp. After a successful grasp,
a similar chain of events allows the robot to put the
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Fig. 3. Evaluation of a predefined grasp sequence based on data
collected by the system monitoring tool AVDisp.

object down at another gesturally selected location. To
add flexibility to this fixed grasp behavior and enable
grasping of irregular shaped real world objects, we
added an imitation capability in the choice of grasp
prototypes based on human observation as detailed in
Sections 4 and 5.

3. Structuring of learning

Learning is a very multi-faceted phenomenon and
its complexity is amply reflected in the numerous dif-
ferent proposals on how to relate and implement its
various aspects. Theoretical considerations motivate
a ‘horizontal subdivision’ of learning into the major
types of unsupervised, supervised, and reinforcement
learning (with still a substantial number of approaches
distinguishable both at the conceptual and algorith-
mic level within each type). Recently there has been
a stimulating discussion that such a subdivision may
even be reflected in anatomically distinguishable sub-
systems of the brain[11]. While such a subdivision is
highly attractive in many respects, we think that there
is another very important but different dimension of
learning: thetime scaleat which learning can take
place.

At the slowest time scale (which we will call theon-
togenetic level) learning methods are used in order to
create initial system functions by off-line algorithms,
usually operating on rather large data sets prepared in

contexts that do not require an already trained system.
Examples in our system are the unsupervised training
of the sensory front end of a neural-network-based ob-
ject classifier, the supervised training of recognition
modules (e.g. for object identity[18] or for continuous
hand posture[27] as explained in some more detail in
Section 5). Learning at this ontogenetic level does not
involve any behavior of the robot; instead, it permitted
us the creation of important initial subsystem function-
alities which would have been much harder to obtain
by explicit programming alone. While this level can
extend even into quite high levels of abstraction (e.g.
the computation of probability tables for Bayes nets to
integrate visual and speech recognition results at the
symbolic level[40]), its contribution becomes ‘frozen’
afterwards, since the employed techniques frequently
assume the availability of the target modules in isola-
tion, without the complex interactions resulting from
being embedded in the complete and working system.

The secondlocal refinement levelcomprises those
learning processes whose adaptive changes occur
on-line, during (and based on) the actual behav-
ior of the robot and refine its initial capabilities.
The increased complexity imposed in this way is
compensated by requiring the adaptive changes to
be (at least largely) local to each module, so that
learning processes at the second level can become
‘encapsulated’ in a single functional module, thereby
allowing to achieve a good balance between bene-
fits and implementability. Typical examples in our
system are the adjustment of subsystem calibrations
(e.g. on-line color-recalibration of the vision system),
slow adaptation to changing environment conditions
(e.g. ‘habituation’ of the fingertip sensors, dynamic
renormalization of the feature weights in the saccadic
system with respect to the current feature statis-
tics, continuous update of the skin color model, or
forgetting factors in the object memory), and mech-
anisms to ensure that system variables remain well
inside their operating ranges. This level can be con-
sidered as hosting most of the ‘long-term plasticity’
of our system, and its algorithms can largely be
based on ideas of statistical learning. We found that
the isolated contribution of the adaptivity of sin-
gle modules on system performance is often rather
small; however, the good tuning ofmanyparameters
has a big impact on overall system reliability and
performance.
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Finally, the thirdsituated leveladdresses the chal-
lenge to make rapid (ultimately ‘one-shot’) learning
feasible. This cannot rely exclusively on slow and
repeated adaptations; instead, this level has to rapidly
coordinate adapted subsystem functionalities in very
structured, situation-specific and cross-modular ways.
Clearly, coming up with workable learning mech-
anisms at this situated level poses a significant re-
search challenge. The notion of imitation learning
has emerged as a very promising paradigm to cope
with this challenge. There is a considerable debate
in current literature, in which way an architecture
for imitation learning could coordinate the required
subsystem functionalities. Some researchers focus on
using ‘neurally inspired’ building blocks of visual
processing[42] as their primitives, others approach
the problem from the perspective of attention mod-
eling [12], or perception–action systems[6], imple-
menting either a kind of ‘imitation at the processing
level’, or focusing on imitation at the level of joint
angles[19]. Whenever such systems execute actions
in the real world, their ‘inner workings’ are con-
siderably affected by the physical constraints of the
real robot system available. In particular, the ad-
vent of more human-like and human-sized robots
has had a major impact on the development of tech-
niques for motor-learning and skill transfer in this
area.

In the context of our own system, we have started
to pursue these ideas within a paradigm ofsituated
learning for imitation grasping. In Section 4we pro-
pose a learning architecture intended to address the
issues at the situated level. With the system described
in Section 2as a basis, we have started to implement
learning on this highest level of abstraction to enable
our robot system to carry out a variety of grasps of
everyday objects, visually observing and imitating a
human instructor who indicates useful grasp postures
with his or her own hand.

4. An architecture for situated learning

As pointed out in the previous section, to enable
learning at the short time scale of the situated level will
depend in an essential way on the highly structured
interplay of several functional loops, complementing
each other in a tightly coupled fashion to cope with

the joint constraints of high-dimensional search spaces
and small number of training samples. In the follow-
ing, we argue that a suitable interlocking of the three
functional loops ofobservation, internal simulation,
and sensorimotor explorationcan lead to a scheme
that appears sufficiently powerful to enable fast situ-
ated learning.

The objective of theobservation loopis to gain a
promising ‘action template’ that permits us to dra-
matically cut down the otherwise huge search spaces
for the other two learning loops. This requires one
to watch the environment, respectively, the instruc-
tor, in order to (i) extract relevant features, events,
and chains of observed partial actions, (ii) translate
these from the observed to an intrinsic perspective,
and (iii) exploit them for forming an action template
that is focused on promising regions of the a priori
very high-dimensional search space.

At a second stage the observed action template
has to be improved further using aninternal simula-
tion loop, exploring possible actions in the vicinity
of the observed template and selecting promising
action candidates. At this stage it is important to
perform learning from an ‘intrinsic’ perspective in
order to incorporate available model knowledge (e.g.
about kinematic and sensor constraints of the actu-
ally used hardware), which becomes merged with
constraint information made available from the ob-
servation component. The computational basis of
this component is a dynamics-based grasping sim-
ulation, allowing the application of reinforcement
learning methods to improve the grasping strategy.
Due to the availability of full information about joint
angles, applied wrenches, or contact points in the
simulation, we can make predictions (valid to the
extent that the model is accurate) about grasp quality
to generate a suitable reward signal even in the ab-
sence of corresponding tactile sensors in the actual
TUM-hand.

We think that thissearch space restricted reinforce-
ment learning, where the exploration of actions can
be restricted to a neighborhood of the observed suc-
cessful trajectory, is the adequate technique to gener-
ate promising action candidates. This combination of
observation and reinforcement learning appears very
flexible: the neighborhood can be chosen small where
highly reliable observations are available, whereas
more exploration may be needed where poor data are
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given. A typical candidate for the application of this
approach in our scenario would be the initialization
of a grasping sequence with respect to the approach
direction and hand pre-shape based on visual ob-
servation of a human hand, which can be obtained
by earlier developed hand and fingertip recognition
methods (seeSection 5and[27,29]).

Finally, the thirdsensorimotor loopis responsible
for actually carrying out those action candidates that
have been identified as most promising by the other
two components. Since the internal simulation model
and its observation-based refinement can always only
approximate the actual situation, actual execution of
the action is faced with two alternative evaluation cri-
teria: (i) a maximization of knowledge gain with the
consequence of ‘risky’ actions, for instance, near de-
cision boundaries; (ii) a maximization of robustness
with the consequence of conservative actions in max-
imal distance to decision boundaries, leading only to
minimal information gain.

Fig. 4 shows the interaction of the different loops.
The observation loopacquires example actions from
the human instructor, thesimulation loopprovides
refinements of the observed strategies and adapta-
tion to the constraints imposed by the robot system.
This changes robot learning into an interactive sit-
uated learning process, which uses speech and the
multi-modal perceptual channels for an effective op-
timization of the system’s exploration.

Fig. 4. Multi-stage architecture for the integration of different
learning paradigms to enable situated learning on the system level.
Shown are the interlocking three functional loops ofobserva-
tion of example actions,internal simulation, and sensorimotor
exploration.

5. Towards imitation grasping: observation,
simulation, and control of hand posture

While we do not have a full implementation of
the described architecture yet, we can report an ini-
tial implementation of some of its major features for
the scenario of situated learning of grasping of com-
mon everyday objects, such as depicted inFig. 8. In
this scenario, the observation component is a vision
module permitting observation and 3D-identification
of a human hand posture indicating to the robot a
sample of the to-be-used grasp type. The identified
hand posture is transformed to the joint angle space
of the robot hand and is used at the same time as an
initial posture for the physics-based simulation of a
corresponding grasp as shown inFig. 5.

The hand posture recognitionuses a system for
visual recognition of arbitrary hand postures which
was previously developed in our group. It works in
real time, however, currently is restricted to a prede-
fined viewing area. For a more detailed description
of the underlying multi-stage hierarchy of neural net-
works which first detect the fingertips in the hand
image and then reconstruct the joint angles from the
fingertip positions see[27,29]. In the context of the
present paper, it is a good example for a neurally
inspired processing module, which has been refined
in an evolutionary way over a number of years and
employs learning mainly at the ontogenetic and, to a
minor extent, also at the refinement level. Image lo-
cations of the fingertips are identified by a two-level
hierarchy of several neural networks trained during
an off-line phase. A further processing stage, employ-
ing a Parameterized Self-organizing Map(PSOM,

Fig. 5. Grasp evaluation in physics-based simulation using contact
friction cones (left) and the force closure polytope (lower right).
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Fig. 6. Observation and recognition of continuous human hand
postures to obtain an initial pre-grasp posture for autonomous
grasping of the anthropomorphic robot hand. In the upper right part
the observed human hand is shown on the screen together with the
reconstructed hand posture visualized by the rendered computer
hand. Below is shown the operation of the PSOM network which
obtains the inverse transform from fingertip positions found from
observation in the 2D-images to the joint angles of the hand. To
the left, the resulting TUM-hand posture can be seen.

[41]), transforms the obtained 2D-features (fingertip
locations) into the joint angles of an articulated hand
model approximating the geometry of a five-fingered
human hand. Because the PSOM replaces the discrete
lattice of the SOM with a continuous manifold and
allows to retrieve the inverse of each learned map-
ping automatically, it can be trained with data of the
analytically computable forward transform from the
3D-posture to the 2D-locations.

However, to actuate the robot-hand, the recon-
structed joint angles cannot be used directly, because
the robot hand shown inFig. 6 has three fingers only
and differs in palm and finger sizes, proportions of
the phalanges, and the arrangement of the fingers at
the palm. Additionally, the sensory equipment and
control concepts differ, such that we first have to
transform the observed human joint angles into an
internal perspective to obtain a posture of the robot
hand that is approximately equivalent with respect to
the functional properties of the grasp. Geometrically,
this transformation maps the different joint angle
workspaces and reflects the kinematic constraints
imposed by the coupled joints of the robot hand. Fur-
thermore, we lack direct joint angle measurements in
the TUM-hand and therefore rest grasping on force
feedback obtained from the custom built fingertip

sensors and a recently added palm sensor (seeFig. 6).
With the latter we can evaluate the shape of an object
when carrying out a power grasp, while the fingertip
sensors are primarily used for precision grasps.

From the perspective of imitation learning, these in-
compatibilities between a human and our robot hand
are nothing but the manifestation of the gap between
the characteristics of the observed system and the
imitator’s own sensorimotor equipment plus the differ-
ent sensory views of the situation. In the present sys-
tem, the observation component contributes to closing
that gap by providing a good initial hand posture from
which the robot grasping is started.

This initial posture can be used by theinternal
simulationto generate a grasping sequence. The sim-
ulation utilizes the real-time dynamics-based package
Vortex [39], which allows accurate object motion and
interaction based on Newtonian physics. We extended
the package to provide static and dynamic friction for
contacts, which is crucial for successful grasp simu-
lation. To generate the finger trajectories, we use an
algorithm that attempts to confine the object by in-
crementally flexing the fingers in a cage-like fashion,
evaluating contact conditions on the way. Although
contacts are simulated on the basis of point contacts
and thus are necessarily coarse, they provide full force
feedback, which is not available with our real world
tactile fingertip and palm sensors. When all further
finger movements have become blocked by object
contacts, the grasp is considered as complete and
evaluated according to a quality function[5], which
we evaluate by numerical solution of linear matrix
inequalities as recently suggested in[15]. Fig. 5 illus-
trates the friction cones of a successful grasp together
with the resulting polytope of applicable forces. One
of the next steps will be to use this information in
order to conduct a search for an improved initial con-
dition before the grasp sequence is actually carried
out with the real hand.

6. Results for imitation based grasping

Before implementation of the imitation grasping
subsystem described above, our system had to use
pre-programmed associations between known objects
and suitable grasps that had been ‘hand-tuned’ for
a limited range of objects in rather labor-intensive
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experiments. From this work, we also knew that our ar-
tificial hand – despite its serious limitations – can grasp
a large number of real world objects. However, due to
the enormous range of possible shapes, generalizing
pre-programmed grasps to new and general objects
is a rather hard task. Therefore we tried two imita-
tion strategies with our system: (i) a ‘naı̈ve’ imitation
strategy, in which the observed joint angle trajectories
(after their transformation into the three-finger geom-
etry) were directly applied to control the fingers of the
TUM hand during the grasp, until complete closure
around the object; (ii) a strategy in which the visually
observed hand posture is matched to the initial condi-
tions of a power grip, a precision grip, a three-finger
and two-finger grip, respectively, in order to identify
the grip type. Then, using the initial condition for
that grip type, the closing of the fingers takes place
autonomously using the same algorithm as employed
in the simulation, evaluating tactile feedback from the
fingertips to sense stable object contact (Fig. 7).

Success with the ‘naı̈ve’ strategy: (i) was very lim-
ited such that a quantitative analysis was not even
worthwhile. This reflects the fact that a purely visual
servoing is hardly appropriate for successful grasp-
ing, which has to take into account haptic feedback
as well. It underlines that in such cases a mixed strat-
egy is required, using information from visual obser-
vation as a useful constraint for an action sequence
guided to a significant extent under proprioceptive
feedback. Indeed, and in line with this expectation,
strategy (ii) yielded by far better results, permitting

Fig. 7. Prototypic grasps with two or three fingers.

successful grasping of many previously unknown ob-
jects. Here, the human grasping gesture instructs the
robot to select the most appropriate grasp type for the
given object and its orientation on the desk. The table
in Fig. 8shows the results of a quantitative experiment
in which 21 objects were repeatedly grasped (10 tri-
als for each object) under setting (ii) (numeric entries
showing the number of successful trials for the partic-
ular grasp type/object pairing, while dashes indicate
infeasible pairings).

Fig. 8. Imitation based grasping of everyday objects sorted with
respect to the number of successful trials (10–0) out of 10 grasp
attempts, using the most suitable strategy. The remaining standard
grasps are indicated as ‘+’: also possible, ‘(+)’: possible but with
less chances of success, ‘−’: not possible. The propeller (no. 2)
needs a specialized grasp. The final column gives the number of
trials, which are robust against rotation of the hand after lifting
up (‘+’: robust in all trials).
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The evaluation of the experiment reveals some inter-
esting details. Six objects can successfully be grasped
in all of 10 trials if the most suitable grasp type is used.
An additional object, the wooden ‘propeller’ (object
no. 2 in Fig. 8), is of a particularly complex shape
and cannot be grasped by any of the aforementioned
grasp types. However, successful grasping of this ob-
ject is possible with a specialized grasp derived from
the three-finger grasp (see lower left corner image of
Fig. 8). The last two objects (keys, no. 20, and pencil,
no. 21) are very close to the limits of the hardware ca-
pabilities of our hand and can currently not be grasped
at all, remaining as a challenge for further improve-
ments.

Further experiments revealed that often small
changes in the pre-grasp posture have a large impact
on the grasping success. Therefore our next step will
be to exploit the simulation stage for optimizing the
initial condition before actually executing the grasp,
as indicated inSection 5. Possible free parameters to
be evaluated in such a simulation are the exact initial
joint angles of the fingers, the exact relative position
of the hand to the object, and the closing speeds of
the fingers.

7. A datamining perspective on robot learning

Regarding learning as a central ingredient to facil-
itate the construction of complex systems shifts our
view from a complex robot whose behavior unfolds
according to well-chosen, explicitly designed control
mechanisms to a view in which a robot much more
resembles a kind of ‘datamining engine’, foraging
flexibly for information and regularities in the sensory
images of its environment. This suggests to adopt a
similar perspective as in the field of datamining, and
exploit algorithms from that area, which appear of
considerable interest for advanced robots with their
need to cope with uncertainty and situations too com-
plex to be amenable to full analysis on the basis of
‘first principles’.

Specifically, we think that recent progress in
content-based image database indexing and retrieval
[31,33] may have much to offer for learning robots.
Future intelligent robots should be endowed with
some kind of episodic long-term memory to accumu-
late visual and other sensory data. Using raw sensor

images for this purpose has many attractive features,
provided we can solve the task of efficiently index-
ing into and navigating within large collections of
such data[21]. Unlike symbolic scene descriptions,
raw sensor images are easy to acquire and collect.
Moreover, they do not enforce a prior commitment
onto a narrow range of possible future queries but
remain ‘open’ to inspection under aspects that may
be unforeseeable at the time of their acquisition. This
flexibility may be one of the reasons why also the
memory system in our brain offers an apparently
visually organized interface to our episodic memory.

In fact, recent progress in semantically organizing
large image collections with machine learning tech-
niques for unsupervised category formation[10] and
automatic labeling with classifiers previously trained
on a variety of visual object domains[43] (so that
human keyword assignment becomes dispensable)
can be seen as the first promising steps towards the
self-organized structuring of a larger body of sensory
experience for an artificial cognitive system. Obvi-
ously, any progress along these lines is also of im-
mediate significance for robotics, a field which may
motivate us to extend such approaches to additional
modalities, e.g., collecting and organizing a database
of haptic experiences for dextrous object manipu-
lation. Such ‘life-long’ learning may turn out to be
the only viable solution to acquire the huge mass of
world knowledge that is required for even moderately
‘intelligent’ behavior.

A very important prerequisite in this respect is a sys-
tem for data collection, diagnosis, and monitoring. Our
system currently employs more than 30 distributed
processes with many functional submodules such that
tracing their behavior, the collection of sensor data,
and the detection of errors becomes a non-trivial task.
To better cope with this challenge, we have com-
bined adaptive visualization techniques with the rather
recent approach of sonification in order to convey
an informative, yet intuitive multi-modal display[16]
(AVDisp – Audio Visual Display,Fig. 9). This appli-
cation collects computational results, useful status in-
formation, and data from all distributed processes, tags
all these messages with time-stamps, and displays the
state of the overall system and the interactions of its
functional modules. It enables us to build up a database
of all relevant information describing the system be-
havior and carry out an analysis of the time-behavior
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Fig. 9. AVDisp: an Audio-Visual Display for system monitoring,
data collection, and generation of user feedback (see[16]).

of the complete system (like shown inFig. 3). We
found that this interface, originally inspired from the
datamining perspective, was already very helpful in
the final debugging and tuning phases of the complex
system on the engineering level and now provides a
valuable basis for implementing more sophisticated
learning capabilities of our system.

8. Conclusions and outlook

Our initial assumption is that situated and multi-
modal interaction is a key prerequisite for learning in
artificial intelligent perception–action systems. Thus,
we will proceed with the development of the current
platform and use it as a basis for a systematic re-
finement of the described learning architecture. The
longer-term goal is to demonstrate speech enabled im-
itation learning for instructing grasping tasks, because
multi-fingered grasping combines many of the highly
developed capabilities of the human cognitive system:
the recognition of object shape, type, position and ori-
entation in space; the respective and for the intended
task appropriate choice of a grasp; the actual realiza-
tion of the grasp under complex kinematic constraints;
and the following immediate optimization of finger
positions and contact force with respect to grasp sta-
bility and manipulability.

We believe that this research program is promis-
ing if a sufficiently developed technological basis is
available. This basis seems crucial for higher level
architectures and includes sophisticated hardware for
data acquisition and action like an articulated dextrous

hand as well as algorithms for robust implementation
of the perceptual skills. In particular for the imitation
of grasps, we expect progress in the nearer future from
improvements in the field of multi-fingered hands, es-
pecially with respect to robustness and tactile sens-
ing. Concerning intelligent control, it is important to
have at our disposal a sufficiently high number of ro-
bust and adaptive partial skills, a prerequisite toward
which many efforts have been made in the course of
the Special Collaborative Research Unit SFB 360.

The key towards an integrated architecture is a
design, which endows the system with a fruitful in-
terrelation of different aspects of learning and their
various techniques on the different levels to generate a
flexible and incrementally improving combination of
these partial skills and modules. Here we see the main
focus of the described learning architecture, know-
ing that this goal may be reached only by long-term
efforts and in incremental steps. We are aware, that
in view of the enormous complexity of the respective
challenges, this research program also calls for a close
collaboration of robotics with neighboring disciplines
like neurobiology or cognitive science and we expect
many insights and inspirations from these fields.
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