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Abstract—Advances in the miniaturisation of inertial sensors
have allowed the design of compact wireless inertial orientation
trackers. Such devices require data fusion algorithms to process
sensor data into estimated orientations. This paper examines
the problem of inertial sensor data fusion and compares two
alternative methods for orientation estimation: complementary
filtering and Kalman filtering. Experiments are presented to
assess the performance and accuracy of the resulting filters.
The complementary filter structure is demonstrated to require
up to nine times less execution time, while maintaining better
accuracy across different movement scenarios, than the Kalman
filter structure.

I. INTRODUCTION

Wireless inertial posture tracking offers the possibility to
perform realtime capture of a subject’s movements over an
almost unlimited area. In contrast to traditional optical, ultra-
sonic, or magnetic capture systems, inertial tracking requires
no external infrastructure to define the tracking volume. This
capability in turn allows for the development of new appli-
cations in diverse areas, such as assisted living, computer
interaction and animation.

Many inertial measurement units have been developed
within the Wireless Sensor Network (WSN) community. These
vary from simple activity detection devices based on ac-
celerometers [1], [2] to full 3-degree of freedom (3DoF)
orientation tracking devices comprising accelerometers, mag-
netometers and rate gyroscopes [3]–[5].

By combining data from multiple 3DoF trackers mounted
on the major limb segments of a subject’s body, with a forward
kinematic model of the subject’s skeleton a three-dimensional
representation of the subject can be recreated [6].

In order to reconstruct the major parts of the body fifteen
sensors are required [7]. Existing commercial solutions [8],
[9] use a wired network on the body with a central wireless
transmitter. This imposes restrictions on the subject as they
must wear a special suit to mount the sensors and cables
which may reduce freedom of motion. Fully wireless systems
reduce the encumbrance of the subject as sensors are fully
autonomous and can be worn in discrete straps. An example
wireless posture capture system in operation, with a simple
ten sensor body model, is shown in Fig. 1

Fully wireless posture tracking presents challenges in how
to stream data from multiple sensor devices in realtime.
Transmitting raw sensor data, at the high update rates required

Fig. 1. Orient wireless posture capture system in action

for accurate numerical integration of rate gyroscope data,
requires a relatively high data rate per device. Systems using
this technique are severely limited in the number of devices
they can support on a single radio channel [10] and cannot
support full body tracking on a single channel. An alternative
approach is to process the sensor data locally on each device
and transmit the estimated orientation at a lower frequency.
As numerical integration is performed on the device the
transmitted update rate can be substantially reduced while
still conforming to the Nyquist sampling criterion. In previous
work [11] this approach has been demonstrated to provide up
to a 79% reduction in data rate compared to transmitting raw
data. By utilising local processing to reduce transmitted data
rate the Orient system is capable of tracking the full posture
of a subject, at a frame rate of 64Hz, using a single 250kbps
radio channel.

In order to perform local estimation of device orientation it
is necessary to design an orientation estimation filter suitable
for use on a low power WSN device. Such devices, powered by
small batteries, require low complexity algorithms in order to
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reduce power consumption and processing latency. This paper
examines two orientation estimation algorithms, their accuracy
and their processing requirements. Section II provides an
overview of orientation estimation theory, while Section III
presents an experimental comparison of the different filter
implementations.

II. THEORY

The goal of the orientation estimation filter is to provide
an estimate of the rotation between the local body co-ordinate
frame of the sensor and a global fixed world frame. 3DoF iner-
tial measurement devices typically use nine sensors comprising
triads of accelerometers, magnetometers and rate gyroscopes.
These allow the device to measure the components of the
device acceleration vector, magnetic field vector and rotational
rate vector in the local body co-ordinate frame.

Orientation estimation is typically performed by fusing es-
timates from two separate estimation methods: rate gyroscope
integration and vector observation.

Rate gyroscope integration provides an estimate of the
relative rotation from an initial known rotation. As the angular
velocity measured by the rate gyroscopes is directly integrated
this method provides smooth estimates even during rapid
movement.

q̂t = q̂t−1 +
1

2∆t
(0, ω⃗)⊗ q̂t−1 (1)

Rate gyroscope integration can be implemented very effi-
ciently using the difference equation (1) where q̂ is the
estimated orientation, in quaternion form; ∆t is the sample
period; ω⃗ is the angular rate vector in radians per second;
and ⊗ is the quaternion multiplication operator. After each
update the estimated quaternion should be re-normalised to
minimise the effects of rounding errors in limited precision
implementations.

The integration process has two significant disadvantages.
Firstly, any bias in ω⃗ will result in an increasing cumulative
error in the estimated orientation. Secondly, the initial orien-
tation of the device must be known.

Vector observation provides an estimate of the orientation
relative to a fixed world co-ordinate frame. By measuring the
position of two, or more, vectors in the local co-ordinate frame
of a device and comparing these with the known position of
the vectors in the fixed co-ordinate frame the rotation between
the two frames can be calculated. Formally, we want to find
the rotation R such that

b⃗i = Rw⃗i ∀i ∈ (1, . . . , n) (2)

where b⃗1, . . . , b⃗n are the set of observed vectors in the lo-
cal body co-ordinate frame, and w⃗1, . . . , w⃗n are the set of
reference vectors in the global world co-ordinate frame. For
wireless inertial orientation trackers the reference vectors used
are the direction of acceleration due to gravity, defining the
z-axis of the world co-ordinate frame, and the direction of
the Earth’s magnetic field vector projected into the horizontal
plane, defining the world x-axis.

In general, with vector observations corrupted by noise, no
solution for R exists. Non-optimal solutions solve this by
discarding some of the information contained in one of the
vectors. For example, the algorithm used on the Orient devices
is defined as

e⃗3 =
a⃗

∥a⃗∥ (3a)

e⃗1 =
m⃗− e⃗3(e⃗3 · m⃗)

∥m⃗t − e⃗3(e⃗3 · m⃗t)∥
(3b)

e⃗2 = e⃗3 × e⃗1 (3c)

R̂ = [e⃗1 : e⃗2 : e⃗3]T ≡ q̂ (3d)

where a⃗ and m⃗ are the observed acceleration and magnetic
vectors respectively. This method discards the vertical compo-
nent of the magnetic field measurement. A similar approach
is taken by the TRIAD [12] and FQA [13] algorithms. Opti-
mal solutions, such as the QUEST [14] algorithm, minimise
Wahba’s [15] loss function

L(R) =
1
2

n∑

i=1

ai |⃗bi −Rw⃗i|2 (4)

where ai are non-negative weights applied to each vector to
account for their individual accuracy.

Vector observation has the advantage that it provides an
absolute estimate of orientation, however, as observations of
the acceleration due to gravity are corrupted by acceleration
due to subject movement, it suffers from high frequency noise.

In order to provide accurate orientation estimates, which
preserve the high frequency response of rate gyroscope inte-
gration and the absolute estimate provided by vector observa-
tion, data fusion must be performed. Two approaches will be
discussed: complementary filtering and Kalman filtering.

A. Complementary Filtering
Complementary filters can be used to combine two different

measurements of a common signal with different noise prop-
erties to produce a single output. A typical example would
be combining measurements of a signal with low and high
frequency noise. By choosing complementary low– and high–
pass filters the resulting transfer function applied to the signal
is

H(s) = HLP (s) + HHP (s) = 1 (5)

This has the advantage that no group delay is applied to the
signal.

The two estimation approaches previously outlined are
suitable for integration into a complementary filter. Recall
that, the rate gyroscope integration method suffers from low
frequency drift, while the vector observation method suffers
from high frequency movement errors.

We can now define a complementary filter equation

q̂t =

{
q′t + 1

k (q′′t − q′t) |∥a∥ − 1| < aT

q′t |∥a∥ − 1| ≥ aT
(6)

where q′ and q′′ are the rate gyroscope integration and vector
observation estimates respectively, k is a filter co-efficient
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that controls blending of the two estimates, and aT is a
threshold for optionally gating the vector observation during
linear accelerations. High frequency response is maintained by
the first term while low frequency drift correction is provided
by the second term. The filter co-efficient, k, controls the rate
at which drift correction is performed. For small values of k
drift correction is fast but more movement induced noise is
passed through the filter while larger values result in less high
frequency noise but slower drift correction.

In order to reduce movement noise further a gating process
is used where drift correction is only performed when the
magnitude of the measured acceleration vector is within a
bound of 1g. This limits the number of erroneous drift
corrections by only performing corrections while the device
is not experiencing significant linear accelerations.

B. Kalman Filtering
The Kalman filter structure is often used for orientation

estimation [3], [16]–[18]. Kalman filters use knowledge of
the expected dynamics of a system to predicate future system
states given the current state and a set of control inputs.
Formally this is given by

x⃗k+1 = Ax⃗k + Bu⃗k + w⃗k (7)

where: x⃗ is the state vector, A is a state transition matrix
relating the previous state to the next state, u⃗ is a control
input vector, B is a matrix relating control inputs to system
states and w⃗ is a process noise vector with covariance matrix
Qk representing uncertainty in the system dynamics.

Now given a set of indirect measurements of the state

y⃗k = Cx⃗k + v⃗k (8)

where C is an observation matrix relating system state to
observed measurements and v⃗ is a measurement noise vector
with covariance matrix Rk, the Kalman filter can be defined
as [19]

Kk = APkCT (CPkCT + Rk)−1 (9a)
ˆ⃗xk+1 = (Aˆ⃗xk + Bu⃗k) + Kk(y⃗k+1 − C ˆ⃗xk) (9b)
Pk+1 = APkAT + Qk + APkCT R−1

k CPkAT (9c)

where, K is the Kalman gain, and P is the estimation
error covariance matrix. The Kalman filter can be thought
of a predictor-corrector filter with the first term of (9b) the
prediction, according to the process model, and the second
term the correction, based on indirect measurements of the
system state.

An intuitive understanding of the filter operation can be
gathered by examining the Kalman gain equation(9a).

lim
Rk→0

Kk = AC−1 lim
Pk→0

Kk = 0 (10)

Substituting the limits of (10) into 9b, we can see that as the
measurement error, Rk, decreases greater weight is given to
the correction, while as the estimation error, Pk, decreases
greater weight is given to the prediction. The Kalman filter
can be shown to be the optimal recursive filter in the sense

that it minimises the estimated error covariance. The Kalman
filter is defined for linear systems, however, it can be extended
to support non-linear systems by linearising about the current
state. The resulting Extended Kalman filter (EKF) is no longer
strictly optimal [20].

For the purpose of this paper an EKF will be simulated using
a process model, specifically designed for realtime posture
tracking, proposed by Yun et al [16]. The state vector is
composed of the rotational rate vector and the estimated ori-
entation quaternion, while the measurement vector comprises
the observed angular rates and an estimated quaternion derived
from a vector observation technique. The angular velocity of
a limb segment is modelled by coloured noise generated by a
linear system with a white noise input. Two parameters, the
noise variance and the time constant of the linear system can
be used to tune the behaviour of the filter.

III. EXPERIMENTAL COMPARISON

In order to compare the behaviour of different data fusion
methods they were simulated using Python filter implemen-
tations fed by data captured by a real device. Both the com-
plementary filter and the EKF make use of vector observation
techniques so these were implemented to a common interface
to allow them to be interchanged. The complementary filter
structure was simulated using the Orient, TRIAD, FQA and
QUEST algorithms, while the EKF was simulated using the
QUEST algorithm, as originally proposed by Yun et al., and
with the Orient algorithm.

In all experiments sensor data, corrected for offset and scale
errors, were collected from a single Orient inertial measure-
ment unit, at its native sample rate of 256Hz, and stored to
disk. The different filter implementations were then simulated
using the captured data. For the complementary filters the
filter co-efficient, k, was set to 128 and an accelerometer
gating value, aT , of 0.1g was used to reduce gross movement
noise. These values were chosen empirically as they produced
reasonable results. For the Kalman filter process model a
deviation of 50rad2/s2 was used with a time constant of 0.5s
[21].

A. Performance

The performance of each of the filter implementations was
determined by measuring the time taken to process 1000
samples gathered by a device resting in a static orientation.
To minimise the effects of processor load in a pre-emptive
operating system, the experiment was repeated ten times and
the minimum time taken for each implementation. The results
of the performance experiment, normalised to the speed of the
fastest implementation, are displayed in Fig. 2. The fastest im-
plementations are the complementary filters using non-optimal
vector observations methods. The non-optimal methods are
approximately 2.5 times faster than the complementary filter
using the optimal QUEST algorithm, and 7-9 times faster than
the Kalman filter implementations.
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Fig. 2. Comparison of execution time to process 1000 samples

B. Accuracy
In order to provide an accurate truth reference for accuracy

comparisons the Orient sensor was mounted on a rigid frame
with three optical markers. The positions of these markers
were captured using a Qualisys optical motion capture system
synchronised to sample at the same instant as the device.
This optical data was used to calculate the true orientation
of the device using the QUEST vector observation algorithm.
In order to assess the accuracy of each filter implementation
the rotation between the truth reference and the filter estimate
was calculated, factorised into the standard aerospace Euler
angle sequence, and the Root Mean Square (RMS) and peak
errors calculated over all samples.

Two different movement scenarios were tested:
1) Simple motion – the device was hand-held and gently

moved between orientations. A single twenty second
capture was performed.

2) Walking motion – the device was mounted on the lower
leg and the subject walked at a normal pace on a
treadmill. Five trials were performed, each lasting thirty
seconds, with a single subject.

In both scenarios the device was initially at rest and movement
commenced after approximately three seconds. The initial
rest period allows the filter estimate to converge on the true
orientation before the motion begins.

For the simple motion scenario all filters tracked the motion
reasonably accurately, as illustrated by Fig. 3. Examination of
the resulting errors, shown in Table I, reveals that the comple-
mentary filters have lower errors in general than the Kalman
filters. The optimal QUEST vector observation method per-
forms almost identically to the non-optimal methods. It can
be seen that the majority of the error is found in the yaw
component which in all filters is mainly determined by the
measured magnetic field vector. The Earth’s magnetic field
can easily be distorted by ferrous objects in the vicinity of
the sensor. The lab in which the experiment was conducted
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Fig. 3. Comparison of estimated quaternion components for simple motion.
Optical – solid, Complementary – dotted, Kalman – dashed

Fig. 4. Experimental setup for capturing walking motion data

presented particular difficulty due to the presence of steel force
measurement plates in the floor of the optical capture volume.

In order to test the filter responses to different movement
scenarios the comparison experiment was repeated with a
device attached to the lower leg of a subject walking on a
treadmill, as shown in Fig. 4. The walking scenario presents
a greater challenge for the estimation algorithms as the device
is in constant motion and also experiences significant shocks
as the foot hits the ground. As can be seen from Fig. 5
the complementary filters maintain a reasonable track of the
orientation quaternion. However, the Kalman filters perform
poorly. The factorised accuracy results for all filter implemen-
tations, for the first trial, are shown in Table II. Similar results
were produced for the remaining trials. The complementary
filters are clearly more accurate than the Kalman filter. The
increase in yaw error for all implementations is attributed to
the proximity of the sensor to the steel frame of the treadmill.

C. Discussion
The results of the simulation demonstrate that the comple-

mentary filter uses significantly less processing power than the
Kalman filter. Using the optimal QUEST vector observation
method results in minimal improvement in orientation esti-
mation accuracy, however, processing requirements more than
double.
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TABLE I
FACTORISED ESTIMATION ERROR ANGLES – SIMPLE MOTION

Filter RMS Roll Error (Peak) RMS Pitch Error (Peak) RMS Yaw Error (Peak)
Complementary (Orient) 3.15◦ (6.68◦) 1.87◦ (3.54◦) 8.98◦ (17.89◦)
Complementary (TRIAD) 3.15◦ (6.68◦) 1.87◦ (3.54◦) 8.98◦ (17.89◦)
Complementary (FQA) 3.14◦ (6.65◦) 1.87◦ (3.54◦) 8.98◦ (17.89◦)
Complementary (QUEST) 3.23◦ (6.34◦) 1.26◦ (3.41◦) 9.51◦ (19.20◦)
Kalman (Orient) 3.95◦ (11.52◦) 5.42◦ (16.58◦) 9.58◦ (25.31◦)
Kalman (QUEST) 4.10◦ (10.84◦) 5.18◦ (16.88◦) 10.12◦ (25.08◦)

Fig. 5. Comparison of estimated quaternion components for walking motion. Optical – solid, Complementary – dotted, Kalman – dashed

TABLE II
FACTORISED ESTIMATION ERROR ANGLES – WALKING MOTION

Filter RMS Roll Error (Peak) RMS Pitch Error (Peak) RMS Yaw Error (Peak)
Complementary (Orient) 3.16◦ (10.17◦) 3.20◦ (13.60◦) 10.78◦ (22.29◦)
Complementary (TRIAD) 3.16◦ (10.17◦) 3.20◦ (13.60◦) 10.78◦ (22.29◦)
Complementary (FQA) 3.16◦ (10.17◦) 3.20◦ (13.60◦) 10.78◦ (22.29◦)
Complementary (QUEST) 4.00◦ (11.83◦) 2.47◦ (7.22◦) 10.88◦ (26.49◦)
Kalman (Orient) 10.04◦ (30.74◦) 8.46◦ (25.12◦) 31.81◦ (65.93◦)
Kalman (QUEST) 10.13◦ (31.96◦) 11.86◦ (27.77◦) 30.79◦ (65.98◦)

The complementary filter can be implemented using only
basic vector and quaternion maths operations allowing efficient
implementation of the filter on embedded processors support-
ing Multiply Accumulate (MAC) operations. A fixed point
version of the filter has been implemented on a Microchip
dsPIC30F3014 processor. The dsPIC is designed for digital
signal processing applications and supports single-cycle MAC
operations. The embedded implementation of the filter requires
only 280µs to compute a complete update with the processor
clocked at 7.37MHz.

The Kalman filter requires numerous matrix operations
including multiplies and inversions. The signal processing
libraries for the dsPIC require that matrix inversion is per-
formed using floating point maths. Inverting a 7 × 7 matrix,
simulated using the Microchip dsPIC simulator, requires 1.3ms
to compute. At least one such inversion is required per update.

The poor accuracy performance of the Kalman filter in the

walking test is not altogether surprising. The process model
used in the simulation assumes that the angular velocity of a
device can be modelled as a coloured noise signal. This model,
while reasonable for the gesturing motions it was designed for,
is not a good approximation of the dynamics of the leg during
walking. The inaccurate process model causes the Kalman
filter to generate bad estimates which must be corrected. Al-
ternative process models, designed specifically for the motion
of the lower leg while walking, could potentially provide an
increase in accuracy over the complementary filter.

The dependency on an accurate process model is a major
disadvantage of using Kalman filters for human posture track-
ing. The human musculoskeletal system is extremely versatile
and capable of many different motions. Different parts of the
body have different dynamics and therefore process models
must be specialised for individual body parts and movement
scenarios. Designing Kalman filters for posture tracking is
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made even harder by the fact that the control inputs to the
system, the nerve impulses from the brain controlling the
muscles, are hidden from the filter.

IV. CONCLUSIONS

Two sensor data fusion filter structures have been discussed.
Kalman filtering, commonly chosen because of its history
in control theory, does not provide a good solution to the
problem of human posture tracking. Unlike traditional Kalman
filter problems, such as aircraft attitude estimation, the process
model and control inputs are difficult or impossible to estimate.
Furthermore, different parts of the human body may require
different process models or parameter values. The assumption
of a process model governing the motion of a body part causes
the Kalman filter to produce incorrect estimates when the
process model is inaccurate. Complementary filtering, as it
has no assumptions of process dynamics, does not suffer from
these problems.

Complementary filters, due to their low complexity, require
significantly less processing resources than Kalman filters.
The complementary orientation filter outlined in this paper
has been simulated to perform up to nine times faster than
an EKF specifically designed for realtime posture estimation.
The use of non-optimal vector observation methods minimise
processing costs while introducing minimal loss of estimation
accuracy. Lower processing requirements directly result in
lower energy consumption as the processor can spend longer
periods in low power sleep states.
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