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Abstract We use Inductive Logic Programming (ILP) to learn classifiers for generic object
recognition from point clouds, as generated by 3D cameras, such as the Kinect. Each point
cloud is segmented into planar surfaces. Each subset of planes that represents an object is
labelled and predicates describing those planes and their relationships are used for learning.
Our claim is that a relational description for classes of 3D objects can be built for robust ob-
ject categorisation in real robotic application. To test the hypothesis, labelled sets of planes
from 3D point clouds gathered during the RoboCup Rescue Robot competition are used as
positive and negative examples for an ILP system. The robustness of the results is evaluated
by 10-fold cross validation. In addition, common household objects that have curved sur-
faces are used for evaluation and comparison against a well-known non-relational classifier.
The results show that ILP can be successfully applied to recognise objects encountered by a
robot especially in an urban search and rescue environment.

Keywords Object classification · Inductive logic programming · Machine learning · Urban
search and rescue · 3D point cloud

1 Introduction

In this work, we use machine learning to build an object classifier for an autonomous robot
in an urban search and rescue operation. The primitive input to the classifier is a 3D range
image, representing a partial view of the environment. Generic object recognition requires
the representation of classes of objects and a classification method to recognise new objects.
Object features may be visual, structural, functional, etc.
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Fig. 1 Range image and its correspondent point cloud (coloured) from front and top view (Color figure
online)

3D depth cameras, such as the Microsoft Xbox Kinect and ASUS Xtion PRO LIVE, are
now becoming widely used because they provide both range and video images and their cost
are much reduced compared with previous generations of such cameras. In a range image,
each pixel’s value represents the distance of the sensor to the surface of an object in a scene
from a specific viewpoint (Gachter 2005; Gachter et al. 2006). This can be used to infer the
shape of the object (Hegazy and Denzler 2009). These sensors, also incorporate a colour
video camera but in this paper, we only use the depth information for object recognition as
colour calibration under different lighting conditions is problematic (Opelt 2006). A range
image can be transformed into a set of 3D coordinates for each pixel, producing a point
cloud. Figure 1 shows a range image of a staircase with four steps, taken by a robot posi-
tioned in front of the staircase. In this grey scale image, the darker colour represents closer
surfaces. For more clarity, a colour-mapped version is also presented. The range image is
converted into a point cloud. Some points in this cloud are removed because they are far
away such as the points in the yellow region of the colour-mapped version. The figure also
includes front and top views for the same point cloud. The point cloud is segmented into
planes that are identified by unique colours. A range image only provides a partial view of a
scene, since it is taken from one viewpoint. Constructing a complete 3D point cloud for an
object requires multiple views.

In our current experiments, we extract planes from the 3D point cloud and use them as
primitives for object recognition. Planes are useful in built environments, including indoor
urban search and rescue for identifying floors, walls, staircases, ramps and other terrain that
the robot is likely to encounter. For outdoor environments, other primitives may be used.
However, the emphasis in this paper is object recognition in indoor environments. An ILP
system is used to discover the properties and relationships between the planes that form an
object and to represent them as logical rules, based on the training examples and background
knowledge (Muggleton 1991). In the following sections, we describe the plane extraction
method, the learning algorithm and the experimental results that demonstrate the utility of
this approach.

An earlier version of this paper was presented at 22nd International Conference on Induc-
tive Logic Programming (Farid and Sammut 2012b). In this paper, we provide more details
and, in the earlier version, we had not considered noise tolerance. We have performed an en-
tirely new set of experiments for this revised paper, including noise handling. We have also
extended feature selection, examining prior filtering of redundant predicates and using mea-
surements such as the amount of compression and the number of rules in our evaluations. We
also add new comparisons between ALEPH (Srinivasan 2001) and Metagol (Stephen Mug-
gleton et al. 2013). We show the usefulness of ILP’s human-readable representation and also
test the robustness of learning for a different camera and variations of object shapes. Finally,
we compare the accuracy of our method with a well-known non-relational object classifier
on images of some common household objects.
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Fig. 2 The rescue robot platform

2 Background and related work

A considerable amount of research has been devoted to generic object recognition (Opelt
2006; Vasudevan et al. 2007; Shin 2008; Endres 2009), which is required by robots in many
tasks. For example in service robotics applications, such as a catering or a domestic robot
(Shin 2008), the robot must recognise specific kinds of tableware. In industrial applications,
the robot has to distinguish a set of products (Endres 2009). We are mostly interested in
urban search and rescue (USAR), where a team of robots is sent to a disaster site. The robots
are intended to search for victims and return to the human rescuers about the location and
condition of the victims. The RoboCup Rescue Robot competition is a test bed for research
in USAR (Kadous et al. 2005) and is the source of most of the training data used in our
experiments.

In recent years, statistical methods such as SIFT (Lowe 1999) have become popular in
object recognition. However, these are limited to recognising individual objects that have
been previously seen and stored in the vision system’s database. In generic object recog-
nition (GOR) (Fergus et al. 2003), the system learns to recognise an object as belong-
ing to a generic class (Froimovich et al. 2007), as one would expect in concept learning.
A generic description of an object class has been suggested as a combination of structural
and functional concepts extracted from input data by Froimovich et al. (2002). Pechuk et al.
(2008) have developed a function-based object classification method. In addition, Posner et
al. (2007, 2008) suggest a semantic labelling system for outdoor urban workspaces that uses
SVMs for classification. Although, SVMs can be used for object recognition, they cannot
provide information about an object’s structure, which is needed for robot action planning,
as we explain later. In contrast, relational learning is well suited for learning object classes,
provided that the primitive features needed for recognition can be reliably extracted from
the image. Xu and Petrou (2010) have used Markov logic networks for scene interpretation
and categorisation.

Our approach is most closely related to Shanahan (2002), Shanahan and Randell (2004)
who uses a logic program as a relational representation for 3D objects in 2D line drawings,
and abduction is used in object recognition. We have extended this representation, replac-
ing the 2D lines with 3D planes. Furthermore, we use ALEPH (Srinivasan 2001) to learn the
logic programs from instances obtained by a robot equipped with a depth camera. Originally
this was a SwissRanger SR-3000 camera, which has now been replaced by a Kinect. The
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Fig. 3 Roll and pitch ramps in a
RoboCup rescue arena

robot is shown in Fig. 2. It was designed to participate in the RoboCup Rescue Robot com-
petition, held annually. The competition arena uses elements designed by the US National
Institute of Standards and Technology (NIST 2010) to certify robots for emergency opera-
tions. These elements are typical of hazards that might be expected in buildings damaged by
a disaster such as an earthquake.

Robots developed for the rescue competition have been successfully deployed in the
Fukushima nuclear reactor damaged in the earthquake and tsunami that struck Japan in
March 2011. A portion of a typical arena is shown in Fig. 3. The task for the robot is to
traverse the arena, searching for victims while making a map of the area. Rescue robots may
be tele-operated or autonomous. Our rescue robot team has won the RoboCup award for
best autonomous robot three years in succession 2009–2011.

When running autonomously, recognition of objects is essential so that the robot knows
how to behave. For example, recognising a staircase tells a wheeled robot that it must avoid
that object, whereas a tracked robot, such as the one in Fig. 2 is capable of climbing stairs but
it must reconfigure the flippers to be able to climb successfully. A relational representation
is useful in this application because we wish to recognise objects that are characterised by
relationships between their parts, as in the steps that constitute a staircase, and the number
of parts may not be fixed, as the number of steps in a staircase can vary.

Before discussing the ILP methods used to learn to recognise objects in the arena, we
first discuss the pre-processing required for feature extraction.

3 Feature extraction

We use the plane as the primitive for describing objects, where an object is considered to be
composed of a set of planes derived from a point cloud. To find these planes, each point’s
normal vector is calculated and used to segment the point cloud. That is, neighbouring points
are clustered by the similarity of their normal vectors which is based on the angle between
them as explained in our previous work (Farid and Sammut 2012a). Figure 1 shows an exam-
ple of planes found using this method. Attributes of the planes are then calculated, including
the spherical coordinate representation of the planes normal vector and the relationships be-
tween pairs of planes, e.g. the angle separating them. After extracting these features, sets
of planes are labelled according to the class to which they belong. The ALEPH ILP system
(Srinivasan 2001) builds a classifier for each class, where objects belonging to that class are
considered positive examples and all other objects are treated as negative examples.

In addition to the spherical coordinate representation of a plane’s normal vector (θ and
ϕ) (Vince 2005), where θ is defined as zero for undefined situations, other attributes are
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Fig. 4 Colour image and segmented point cloud (front view), representing convex hull and normal vector
for each region (Color figure online)

Fig. 5 East (B, A),
covers (A, C), connected (B, C)

derived from the convex hull of the plane. These are the diameter and width of the convex
hull and the ratio between these values. The plane’s bounding cube is used to calculate the
ratios between the three axes, two by two. The final plane feature is the axis along which the
plane is most distributed. Figure 4 shows the results of segmentation, convex hull creation
and normal vector representation for a scene that contains a pitch/roll ramp and maze wall
objects.

After planes are found and their individual attributes are calculated, we then construct
relations between each pair of planes. The first relation is the angle between the normal
vectors of each pair of adjacent planes. The second is a directional relationship (Peuquet and
Ci-Xiang 1987; Dönderler et al. 2000) that describes how two planes are located with respect
to each other. For example, as shown in Fig. 5, rectangle B is located on the ‘east’ side of
rectangle A, from the perspective one 2D view. Also rectangle A covers C, while rectangles
B and C are connected. Since planes exist in 3D space, we project the 3D view onto two
2D views and find spatial-directional relationships in each 2D view. A bounding cube, with
respect to the sensor’s coordinate frame, is generated for each set of points assigned to
a plane. Then, two projections of this cube are used to represent the minimum bounding
rectangles for the region from each of the two views. The projections are on the XY plane
(front view) and the ZX plane (top view). Having two 2D views of a 3D object is sufficient
to represent its bounding rectangles.

4 Learning object classes

To label training and test examples, we developed a user-interface that processes each range
image, converts it to a point cloud and then shows the result of point cloud segmentation to
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Fig. 6 Colour legend (top), colour image and segmented point cloud (front view) for box (Color figure
online)

a human trainer who chooses a set of coloured regions to form a positive example of an ob-
ject and a negative example for some other objects. The trainer labels set of planes with the
class to which the object belongs, e.g. staircase, wall, and pitch/roll ramp. Each image may
contain several objects, which the system will learn to distinguish and recognise. For exam-
ple, Fig. 4 contains a ‘pitch/roll ramp’ and a maze ‘wall’, and Fig. 6 contains three classes
as ‘wall’, ‘desk-top’ and ‘box’. ALEPH is used to construct one classifier for each type of
object. For example, to learn to recognise a staircase, all the objects labelled as staircases
are treated as positive examples and all other objects are considered negative examples. In
these experiments, the range images are obtained from a Microsoft Xbox Kinect. The same
method has also been applied to images from a SwissRanger SR-3000 and the Asus Xtion
PRO LIVE.

After labelling, the data set is ready to be used for learning. The labelled planes are
represented as a set of Prolog ground clauses. Figure 6 shows the legend for the colours
used, the point cloud segmentation with each region’s convex hull and normal vector and
the corresponding colour image. The red region, region 1, represents the wall, while the
yellow region, region 4, represents the top of a desk. For this example, we define a pos-
itive example for the class “box” that includes regions 2, 3 and 5, creating the predicate
box([pl00_2,pl00_3,pl00_5]). That is, predicates of the form box(+plane-set) represent a
set of planes in an image that form an instance of the class.

A training instance is described by a set of predicates, where a subset of predicates spec-
ifies which planes constitute the example. Note that, to make each plane identifier unique,
we use a name based on the image number and plane number.

plane(pl00_1). plane(pl00_2). plane(pl00_3).

plane(pl00_4). plane(pl00_5).

The next set of predicates describes the individual attributes for each plane. The first attribute
is on which axis the plane is distributed most. To calculate this, we find the difference be-
tween the maximum and minimum values of a region’s point coordinates (�x, �y and �z)
and compare them to decide which axis should be chosen.

distributed_along(pl00_1,axisX).

distributed_along(pl00_2,axisX).
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distributed_along(pl00_3,axisX).

distributed_along(pl00_4,axisX).

distributed_along(pl00_5,axisY ).

We also use the ratio between each pair of values (�x/�y, �y/�z and �x/�z) as an-
other set of features. However, instead of using the exact value, we bin them in intervals
defined around fixed values 1,1.5,2,2.5, . . . ,10 and 10.5 (±0.25). If a ratio is bigger than
a maximum value (10.25 here), we represent it as ‘10.5 ± 0.25’. For example, ‘1.23’ and
‘1.12’ both fall in the interval ‘1 ± 0.25’. A similar discretisation is applied to another plane
feature, the ratio between the diameter and width of the convex hull. To avoid having ratio
values such as ‘0.005’, we defined negative ratio values. For example, for plane pl00_5,
�x < �z, therefore the ratio �x/�z is represented as negative value of �z/�x. Bin ratios
‘1 − 0.25’ and ‘−1 + 0.25’ are not possible based on our definition. However, we kept the
same ‘±0.25’ interval for all bins.

ratio_yz(pl00_1, ‘ − 1.0 ± 0.25’). ratio_xz(pl00_1, ‘4.5 ± 0.25’).

ratio_xy(pl00_1, ‘5.0 ± 0.25’). . . .

ratio_yz(pl00_5, ‘1.0 ± 0.25’). ratio_xz(pl00_5, ‘ − 1.5 ± 0.25’).

ratio_xy(pl00_5, ‘ − 1.5 ± 0.25’).

ch_ratio(pl00_1, ‘4.0 ± 0.25’). ch_ratio(pl00_2, ‘2.5 ± 0.25’).

ch_ratio(pl00_3, ‘3.5 ± 0.25’). ch_ratio(pl00_4, ‘2.0 ± 0.25’).

ch_ratio(pl00_5, ‘1.5 ± 0.25’).

The last plane attribute is the spherical coordinate representation of its normal vector. Similar
to the ratio representation, we use an interval centred on a particular angle. For example,
91.35 and 87.87 are binned in the interval ‘90 ± 15’.

normal_spherical_theta(pl00_1, ‘ − 90 ± 15’).

normal_spherical_phi(pl00_1, ‘135 ± 15’).

. . .

normal_spherical_theta(pl00_5, ‘ − 135 ± 15’).

normal_spherical_phi(pl00_5, ‘112 ± 15’).

Relations are derived from pairs of planes: the angle between the normal vectors of two
planes and the directional relationship for two adjacent planes from XY and XZ views. Note
that, since we use a projection of each plane on XY and XZ, two planes can appear adjacent
in one view and not in the other. For the above example, the relations are:

angle(pl00_1,pl00_2, ‘90 ± 15’). angle(pl00_1,pl00_3, ‘45 ± 15’).

angle(pl00_1,pl00_4, ‘90 ± 15’). angle(pl00_1,pl00_5, ‘45 ± 15’).

angle(pl00_2,pl00_3, ‘90 ± 15’). angle(pl00_2,pl00_4, ‘0 ± 15’).

angle(pl00_2,pl00_5, ‘90 ± 15’). angle(pl00_3,pl00_4, ‘90 ± 15’).

angle(pl00_3,pl00_5, ‘90 ± 15’). angle(pl00_4,pl00_5, ‘90 ± 15’).
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Fig. 7 Stairs with different number of planes

dr_xz(pl00_1,pl00_2, connected). dr_xz(pl00_1,pl00_2,west).

dr_xz(pl00_2,pl00_1, east). dr_xz(pl00_2,pl00_3,west).

. . .

dr_xz(pl00_5,pl00_3, connected). dr_xz(pl00_5,pl00_3, south).

dr_xz(pl00_5,pl00_4, covers).

dr_xy(pl00_1,pl00_2, connected). dr_xy(pl00_1,pl00_2,north).

dr_xy(pl00_1,pl00_3, connected). dr_xy(pl00_1,pl00_3,north).

. . .

dr_xy(pl00_4,pl00_5, is_covered). dr_xy(pl00_5,pl00_2, east).

dr_xy(pl00_5,pl00_4, covers).

Regions 2, 3 and 5, which form a box, are perpendicular to each other and this is represented
by their pair-wise angle relationships.

We use planes 1 and 2 to illustrate a directional relationship. From both views, front and
top, the regions overlap. Thus, “connected” is the value of the third argument in both direc-
tional relationships. From the XY view, region 2 (green) is below region 1 (red) and plane1
is north of plane2, giving, dr_xy(pl00_1,pl00_2,north). Similarly, projecting these planes
in the XZ view and assuming the X-axis represents north-south and the Z-axis represents
east-west, plane1 is west of plane2 in the XZ view, given by dr_xz(pl00_1,pl00_2,west).

The number of planes that form an object may differ. For example, different sets of planes
from an image can form positive examples for staircase (Fig. 7):

staircase([pl02_06,pl02_08,pl02_10,pl02_11]).
staircase([pl02_05,pl02_06,pl02_08,pl02_10]).
staircase([pl02_04,pl02_05,pl02_06,pl02_08]).
staircase([pl02_01,pl02_03,pl02_04,pl02_05]).
staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08]).
staircase([pl02_03,pl02_04,pl02_05,pl02_06]).
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Table 1 Results for 10-fold cross validation, no noise accepted

Object No. positive No. negative Accuracy =
(TP+TN)/N

Precision =
TP/(TP+FP)

Recall =
TP/(TP+FN)

Step 197 718 95.74 92.47 87.31

Staircase 237 656 99.66 98.75 100

Wall 105 803 98.79 97.96 91.43

Box 143 771 96.28 94.31 81.12

Pitch/roll ramp 131 201 97.59 96.95 96.95

mean ± std. (percentage) 97.61 ± 1.65 96.09 ± 2.63 91.36 ± 7.54

Table 2 Results for 10-fold cross validation, some noise accepted

Object No. positive No. negative Accuracy Precision Recall

Step 197 718 95.63 89.05 90.86

Staircase 237 656 99.33 98.33 99.16

Wall 105 803 97.58 87.39 92.38

Box 143 771 95.84 85.23 88.81

Pitch/roll ramp 131 201 97.89 95.59 99.24

mean ± std. (percentage) 97.25 ± 1.54 91.12 ± 5.59 94.09 ± 4.83

staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08,pl02_10]).
staircase([pl02_04,pl02_05,pl02_06,pl02_08,pl02_10,pl02_11]).
staircase([pl02_01,pl02_03,pl02_04,pl02_05,pl02_06,pl02_08,pl02_11]).

5 Evaluation

5.1 Initial evaluation

To evaluate the learning system, which we call PLOCRL (PLane-based Object Categorisa-
tion using Relational Learning), we use 10-fold cross-validation. In one experiment, we do
not allow any rule to cover any negative example, while in the second experiment, some
false positives are accepted. There is a parameter in ALEPH for this purpose that can be set
by “set(noise, +V)”. “V” is an integer value that defines the upper bound on the number
of false positives allowed and we set it to 10 in our experiment. However, none of the rules
covered more than 8 false positives in practice. The performance of the learning algorithm
is measured by accuracy, precision and recall as shown in Table 1 and Table 2.

The classifiers achieve high accuracy because we have ensured that the training data
include images taken from several viewpoints. For example, a box, depending on the view-
point, may appear to have two or three sides. The longest side of the box may be horizontal,
vertical or diagonal. By including examples of all these variations, we can train the classi-
fiers to handle different perspectives. The features used in describing objects also affect the
generality of the classifier. We construct features that are, as much as possible, invariant to
transforms and thus, enable the learning algorithm to find general descriptions.
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An example of a learned classifier for the concept of “staircase” assuming no false pos-
itives are allowed, is shown below. It was constructed from 237 positive examples and 656
negative examples.

[Rule 1] [Pos cover = 186 Neg cover = 0]

staircase(B) : −
member(C,B), member(D,B),

dr_xz(D,C, east), member(E,B),

angle(E,C, ‘0 ± 15’), dr_xy(E,D, south).

[Rule 2] [Pos cover = 213 Neg cover = 0]

staircase(B) : −
member(C,B), member(D,B),

angle(D,C, ‘0 ± 15’), member(E,B),

angle(E,D, ‘90 ± 15’), angle(E,C, ‘90 ± 15’),

distributed_along(E,axisX).

[Rule 3] [Pos cover = 127 Neg cover = 0]

staircase(B) : −
member(C,B), member(D,B),

dr_xy(D,C, south), member(E,B),

angle(E,D, ‘0 ± 15’), angle(E,C, ‘0 ± 15’).

In these rules, the set of planes that constitute an object is denoted by variable ‘B’. Thus,
member(X, B) means X is a plane from plane set B.

The first rule defines plane set B as a staircase if it has two planes C and D that D is to
the east of C in the XZ-view. It also contains plane E, which is approximately parallel to
plane C. Also, the spatial-directional relationship between planes E and D in the XY-view is
south. This rule covers 186 positive examples (above 78.48 % of all positive examples) and
no negative examples.

The second rule defines B as a ‘staircase’ if B has planes C, D parallel to each other
and E is distributed mostly along X-axis and perpendicular to C and D. This rule cov-
ers 213 positive examples (above 89.87 % of total positives) and no negative exam-
ples.

Finally, the third rule represents plane sets having at least three planes C, D and E where
E is parallel to C and D, while D is to the south of C in the XY-view. This rule covers more
than 53.58 % of the positive examples.

Classifiers learned when allowing some false positives are mostly shorter. For example,
in the case of “staircase”, three rules are induced. Two of these rules are similar to rule 2
and 3 above. However rule 1 changes, as shown below, with more positive example cover-
age:
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Table 3 Comparing
compression average with and
without noise tolerance

Object Without Noise Tolerance With Noise Tolerance

step 16.33 32.6

staircase 170.00 173.67

wall 11.25 11.25

box 09.06 15.43

Pitch/roll ramp 18.5 49

Table 4 Comparing the number
of rules with and without noise
tolerance

Object Without Noise Tolerance With Noise Tolerance

step 15 10

staircase 3 3

wall 8 8

box 17 14

Pitch/roll ramp 12 4

[Rule 1] [Pos cover = 204 Neg cover = 7]

staircase(B) : −
member(C,B), member(D,B),

dr_xy(D,C, south), member(E,B),

distributed_along(E,axisX), dr_xy(E,D, south).

To compare the results obtained when noise is tolerated or not, we consider the number of
rules induced, the number of predicates for each rule, and finally the number of positive
and negative examples covered by each rule. We use the compression measure taken from
ALEPH, P-N-L+1 where P and N are the number of positive and negative examples covered
by the rule and L is the number of literals. The average value of this measure and the number
of rules are shown in Table 3 and Table 4 for each object class for two experiments men-
tioned. These tables show that allowing some tolerance to noise gives shorter rules, fewer
rules and more compression and greater coverage. Thus, accepting some false positives is
preferred.

In many cases, it is difficult to interpret and label part of an image without understanding
its context (Esposito and Malerba 2001). ILP’s ability to create relational concept descrip-
tions can assist in learning such context dependencies. One of the most useful attributes of
ILP is that learned concepts can become background knowledge for later learning, thus al-
lowing the system to build complex hierarchical representations. For example, a ‘staircase’
may be described as a set of planes but a more general description might be that a staircase is
an ordered set of steps, where the concept of “step” has been previously learned. A recursive
definition of staircase would allow a variable number of steps.

We first used ALEPH to construct concepts using additional background knowledge.
The concept “step” was first learned, requiring 9 rules, 4 of them had less than 10 % positive
coverage. Thus, we only show the 5 remaining rules here:



Mach Learn

[Rule 1] [Pos cover = 115 Neg cover = 8]

step(B) : −
n_of _parts(B,2), member(C,B),

member(D,B), dr_xy(C,D,north),

normal_spherical_theta(C, ‘ − 90 ± 15’),

distributed_along(C,axisX), distributed_along(D,axisX).

[Rule 3] [Pos cover = 128 Neg cover = 1]

step(B) : −
n_of _parts(B,2), member(C,B), member(D,B),

normal_spherical_theta(C, ‘ − 90 ± 15’), angle(D,C, ‘90 ± 15’),

distributed_along(D,axisX).

[Rule 4] [Pos cover = 24 Neg cover = 1]

step(B) : −
n_of _parts(B,2), member(C,B),

member(D,B), angle(D,C, ‘0 ± 15’), dr_xz(D,C, east).

[Rule 7] [Pos cover = 24 Neg cover = 1]

step(B) : −
n_of _parts(B,2), member(C,B),

member(D,B), normal_spherical_phi(D, ‘112 ± 15’),

dr_xy(C,D, connected), dr_xy(C,D,north).

[Rule 8] [Pos cover = 40 Neg cover = 0]

step(B) : −
n_of _parts(B,2), member(C,B), member(D,B),

ratio_xz(D, ‘10.5 ± 0.25’), dr_xz(C,D,west).

We then ran two experiments. In the first experiment, we added all “step” rules to the back-
ground knowledge, while in the second experiment, we just added the rules that had at
least 10 % coverage on positive examples—the 5 best “step” rules mentioned above—to the
background knowledge.

The result of the first experiment was just one rule that defines “staircase” based on “step”
as follows. This rule covers all positive examples and a small number of negative examples.

[Rule 1] [Pos cover = 237 Neg cover = 6]

staircase(B) : −
subset(C,B), step(C),

subset(D,B), step(D), intersect(C,D).
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Table 5 Mean and std. (%) for
10-fold cross validation before
and after disabling some
predicates

Experiment Accuracy Precision Recall

0 97.25 ± 1.54 91.12 ± 5.59 94.09 ± 4.83

1 96.87 ± 2.41 90.17 ± 8.44 93.4 ± 6.35

2 97.01 ± 2.29 91.25 ± 7.68 92.02 ± 7.79

3 97.16 ± 2.41 93.52 ± 6.01 90.49 ± 12.3

This rule says that plane set B is a staircase if it contains plane sets C and D, both of which
are steps and intersect each other, meaning that they are different and have at least one plane
in common.

The second experiment yields two rules. The first rule that uses “step” covered 235 out
of 237 positive examples and 5 negative examples.

[Rule 1] [Pos cover = 235 Neg cover = 5]

staircase(B) : −
member(C,B), member(D,B), angle(C,D, ‘0 ± 15’),

distributed_along(D,axisX), subset(E,B), step(E).

[Rule 2] [Pos cover = 7 Neg cover = 0]

staircase(B) : −
member(C,B), ratio_yz(C, ‘8.0 ± 0.25’),

ratio_xz(C, ‘9.0 ± 0.25’).

Thanks to the assistance of Stephen Muggleton and Dianhuan Lin, we were able to com-
pare the results from ALEPH with Metagol (Muggleton et al. 2013). Muggleton and Lin
attempted to learn the recursive concept of staircase using a simplified version of the data
set that just contains “angle” predicates. Metagol is capable of predicate invention and thus,
the “p_a” predicate, which is the concept of a step, was created automatically. The clauses
learned by Metagol are:

staircase(B) : −p_a(B).

staircase([X,Y,Z|B]) : −
p_a([X,Y,Z]), staircase([Z|B]).

p_a(B) : −
member(X,B), member(Y,B),

angle(X,Y, ‘90 ± 15’), member(Z,B), angle(X,Z, ‘0 ± 15’).

5.2 Feature evaluation

In this section, we describe three experiments with ALEPH in which we try to determine
the most informative predicates and which of the less informative ones can be eliminated.
In the first experiment, we remove the 2D spatial-directional predicates. In the second, we
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Table 6 Comparing
compression average for two
selected experiments

Object Experiment 1 Experiment 2

step 32.6 13.29

staircase 173.67 144

wall 11.25 8.9

box 15.43 3.41

Pitch/roll ramp 49 50.33

also eliminate “ratio_yz”, “ratio_xy”, “ratio_xz” and “distributed_along”. In the last ex-
periment we remove “ch_ratio”, only keeping “angle”, “normal_spherical_theta” and “nor-
mal_spherical_phi”. Using the same data, the 10-fold cross validation results are presented
in Table 5, while experiment 0 shows the result when no predicate is removed. As there is no
significant loss of accuracy, all the removed predicates are redundant. However, the length
of the concept description increases while the average compression has decreased as shown
in Table 6. In this table, we compare two learning runs: in the first, no predicate is removed
and in the second, we keep the minimum set of predicates “angle”, “normal_spherical_theta”
and “normal_spherical_phi”. So if simplicity of the description and compression are used as
evaluation criteria, the eliminated predicates are not redundant, as they allow more compact
descriptions to be learned. An example is shown below:

[Rule 1] [Pos cover = 143 Neg cover = 2]

staircase(B) : −
member(C,B), member(D,B),

angle(D,C, ‘0 ± 15’), member(E,B),

angle(E,D, ‘0 ± 15’), angle(E,C, ‘0 ± 15’).

[Rule 2] [Pos cover = 213 Neg cover = 1]

staircase(B) : −
member(C,B), member(D,B),

angle(D,C, ‘0 ± 15’), member(E,B),

angle(E,D, ‘90 ± 15’), angle(E,C, ‘90 ± 15’).

[Rule 3] [Pos cover = 92 Neg cover = 0]

staircase(B) : −
n_of _parts(B,4), member(C,B),

member(D,B), angle(D,C, ‘0 ± 15’).

The first rule defines plane set B as a staircase if B has at least three planes C, D and E
that are approximately parallel.

The second rule considers plane set B to be a staircase if B contains three planes C, D
and E, where C and D are parallel and both are perpendicular to E. This rule is similar to the
invented predicate, “p_a”, that appeared in the previous section using Metagol.

The third rule states that a plane set B having four planes is a staircase if it has two planes
parallel to each other.
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Fig. 8 Spiral staircase (colour
image) (Color figure online)

Fig. 9 One image of spiral stairs and its point cloud segmentation result

An advantage of ILP is the readability of its output. This is useful for expert interpretation
of the learned concept and also helpful to novices in a domain. For example, in our earlier
training attempts, we used a smaller training set for “staircase” (237 positive examples and
637 negative examples). In that experiment, we had removed 2D spatial-directional relation-
ship predicates, as in experiment 1 above. The learned classifier contained three rules, one
of which was:

[Rule 3] [Pos cover = 92 Neg cover = 0]

staircase(B) : −
n_of _parts(B,4).

That is, a set of four planes was considered to be a staircase. This indicated that the training
set did not include negative examples that had four planes. By adding few such negative
examples (six in practice), the more specific rule was induced as below. Thus, readability of
the concept description, as obtained in ILP, facilitated analysis of the training data.

[Rule 3] [Pos cover = 92 Neg cover = 0]

staircase(B) : −
n_of _parts(B,4),

member(C,B), distributed_along(C,axisX).

5.3 Different camera and different training sets

For the third evaluation, we captured data using an ASUS Xtion PRO LIVE sensor, which
is similar to the Kinect. We also checked the robustness of learning for variations of object
shapes. For example, can a spiral staircase (Fig. 8) be recognised by rules trained on straight
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Table 7 Results for testing new
data (spiral staircase) using
existing rules

Object No. positive No. negative Accuracy Precision Recall

Staircase 948 0 95.15 100 95.15

Table 8 Results for 10-fold
cross validation after adding
spiral staircase to the data set

Object No. positive No. negative Accuracy Precision Recall

Staircase 1185 656 99.51 99.25 100

Table 9 Chosen subset of rgbd-dataset used for the last evaluation

Object No. positive No. negative No. of physically
distinct instance sets

Number of images for each
physically distinct instance set

ball 276 1076 7 [41, 39, 40, 40, 39, 39, 38]

bowl 193 1159 6 [29, 29, 29, 27, 40, 39]

cap 126 1226 4 [31, 33, 31, 31]

cereal box 144 1208 5 [28, 30, 30, 29, 27]

coffee mug 240 1112 8 [27, 27, 27, 27, 26, 27, 40, 39]

kleenex 189 1163 5 [38, 39, 40, 32, 40]

lemon 184 1168 6 [29, 33, 30, 30, 32, 30]

Total 1352

staircases and how is accuracy improved by including examples of spiral staircases. Figure 9
shows one scene with its point cloud segmentation. In these experiments, we accept some
noise and the spatial-directional relationship predicates are eliminated. To test the robustness
of the rules trained on mostly straight staircases, 948 new examples from a spiral staircase
were classified. More than 95 % accuracy is obtained, as shown in Table 7. When these
948 examples from the spiral staircase are added to the data set and tested with 10-fold
cross validation, the accuracy rises further, as shown in Table 8. Both results indicate the
robustness of the classification method.

5.4 Comparison with a non-relational object classifier

In this experiment, we test the accuracy of our method on images of some common house-
hold objects collected using an RGB-D camera, organized into 51 categories and presented
by Lai et al. (2011) (http://www.cs.washington.edu/rgbd-dataset). Each object in this dataset
was placed on a turntable and a sequence of videos was taken for each complete rotation.
This procedure was repeated three times with different camera positions to guarantee mul-
tiple views. We also would like to compare the result with a non-relational classifier (Bo
et al. 2011) using the same dataset. For this experiment, we have chosen 7 categories ‘ball’,
‘bowl’, ‘cap’, ‘cereal box’, ‘coffee mug’, ‘kleenex’ and ‘lemon’. Using the original captured
and cropped images, we sub-sample each sequence by taking every 20th frame. Figure 10
shows some instances (coloured image version) of the chosen categories. Each image in the
dataset is taken as a positive example for its category and a negative example for the rest.
The number of physically distinct instances for each category and number of positive and
negative examples used for this experiment are presented in Table 9.

http://www.cs.washington.edu/rgbd-dataset
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Fig. 10 Seven categories with some physically distinct instance sets

In this evaluation, we use the same method as Bo et al. (2011), that is, 10 train/test
splits that randomly choose one physically distinct instance set as the test set and the rest
as the training set in each iteration. A physically distinct instance set is a collection of
images from a particular type of object taken from different angles. We have used their
MATLAB code.1 However, we have modified their category recognition method based on
the documentation they provided in their C++ code, i.e. using the ‘linear’ option for scaling
the training and testing data. Since they have introduced some depth kernel descriptors for
object classification using depth and colour images, we have used gradient kernel descriptors
(Gradient KDES) and local binary pattern kernel descriptors (LBP KDES) separately. The
average accuracy of classification using the above descriptors and our method are shown
in Table 10. Similar to our previous evaluations, some false positives were accepted in our
method.

1http://www.cs.washington.edu/ai/Mobile_Robotics/projects/kdes/.

http://www.cs.washington.edu/ai/Mobile_Robotics/projects/kdes/
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Table 10 Comparison to other
method using rgbd-dataset Method Accuracy (mean ± std.) (percentage)

Gradient KDES 89.07 ± 5.10

LBP KDES 86.51 ± 3.10

PLOCRL 87.90 ± 0.91

Table 11 Number of rules
induced Object Number of rules

ball 30

bowl 27

cap 21

cereal box 7

coffee mug 36

kleenex 39

lemon 27

Although our method is based on ‘plane’ primitives, the accuracy is comparable to a
state-of-the-art object classifier when it is tested on common objects that have curved sur-
faces. Moreover, our method describes the relationship between subparts which we claimed
to be a useful feature of relational learning. In addition, our relational method is able to learn
by using previously learned concepts in the background knowledge. These two properties
are not present in other methods such as the depth kernel descriptors we used for comparison
here.

Because we have only used ‘plane’ primitives, we expected lower accuracy for this ex-
periment in comparison to our previous experiments, which used objects with mostly planar
surfaces. Somewhat surprisingly, the accuracy is quite high. However the average number
of rules induced for each object class for categorisation increased as shown in Table 11.
Extending primitives to more shapes such as cylinders and spheres should lead to improve-
ments in accuracy, but particularly should result more readable rules and faster learning.

6 Conclusion

This paper demonstrates the ability of ILP to learn relational representations of object classes
from 3D point clouds. By using the plane as a primitive component, a point cloud is seg-
mented using point–based surface normal vectors. Plane features and plane-pair relation-
ships, such as the angle between planes and their directional relationships, are used to con-
vert the input data into training examples for ALEPH. Preliminary experiments have also
been conducted with Metagol (Muggleton et al. 2013). 10-fold cross validation indicates
that this approach is capable of producing highly accurate classifiers. Further experiments
with Metagol are intended since this system is capable of predicate invention.

The region growing algorithm can benefit from a noise reduced point cloud, since the
normal vector calculation and the region growing algorithm are sensitive to the noise and
might produce incorrectly merged regions. Noise reduction algorithms such as jump edge
filtering (Holz et al. 2011) may be suitable, especially for finding better boundaries (Cang
and Hegde 2009; Sotoodeh 2006; Weber et al. 2011) for each region.
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We would like to learn to recognise a greater variety of objects from the rescue environ-
ment, as well as objects in home and office environments, extending the method to more
domains and objects with curved surfaces. Although we showed that our method can be
applied to objects with curved surfaces, it will be more helpful to construct a variety fea-
tures, such as generalised cylinders, spheres and other shape primitives, as well as planes
for the pre-processing. By extending the primitives from planes to a larger set of primitives,
the number of extracted primitives and consequently the complexity of the rules should be
reduced.

We intend to perform further testing on data sets that contain more similar objects. Al-
though we have learned ‘kleenex’ and ‘cereal box’ or ‘ball’ and ‘lemon’ categories, there is
still some analysis to be done on discriminating categories that have similar shapes. Other
features may help to distinguish them more clearly.

Some features, such as directional relationships, can be modified to be more suitable
for 3D space. A hierarchical structure that combines the spatial configuration with other
information (Antanas et al. 2012) may also be a fruitful area to study.

Other modifications of the features can also improve performance. For example, the fea-
ture ch_ratio(plane, ratiobin), gives the ratio between diameter and width of a region’s con-
vex hull. This feature might appear in some rules with different consecutive ‘ratiobin’ values
for the same object class, e.g. ‘2 ± 0.25’, ‘2.5 ± 0.25’ and ‘3 ± 0.25’. If we introduce an
interval for ‘ratiobin’, the three values can be represented as [2−0.25,3+0.25]. As a result,
the number of rules can be reduced. Another option is to add this kind of generalization into
the learner.

The system can be modified to operate in an unsupervised learning mode, where the user
does not need to label plane sets. Instead, we use CAD models to extract features for each
object class as suggested by Böhm and Brenner (2000). Another option is using previously
segmented data, similar to those which we have used for the final experiment here.

The image pre-processing is parameterised so that it can be applied to a variety of range
images. We have tested our system using a SwissRanger SR-3000, the Microsoft Xbox
Kinect and ASUS Xtion PRO Live sensors. These parameters, threshold values and bin
sizes can be learned, rather than having them defined by the user.

In this work, we have chosen to build one binary classifier for each class. We would like
to compare this against building a single multiclass classifier and how this affects the perfor-
mance. For this purpose, we can compare our current one-vs.-rest approach, which Rifkin
and Klautau (2004) claim is more accurate than other multi-class approaches. However,
Abudawood and Flach (2011) question this technique for first-order learning and suggest
forming one rule set by combining the rules.

Acknowledgements The authors thank Stephen Muggleton and Dianhuan Lin for their assistance in run-
ning Metagol on the staircase data.
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