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Precision agriculture dates back to the middle of the 1980’s. Remote sensing applications in

precision agriculture began with sensors for soil organic matter, and have quickly diver-

sified to include satellite, aerial, and hand held or tractor mounted sensors. Wavelengths of

electromagnetic radiation initially focused on a few key visible or near infrared bands.

Today, electromagnetic wavelengths in use range from the ultraviolet to microwave

portions of the spectrum, enabling advanced applications such as light detection and

ranging (LiDAR), fluorescence spectroscopy, and thermal spectroscopy, along with more

traditional applications in the visible and near infrared portions of the spectrum. Spectral

bandwidth has decreased dramatically with the advent of hyperspectral remote sensing,

allowing improved analysis of specific compounds, molecular interactions, crop stress, and

crop biophysical or biochemical characteristics. A variety of spectral indices now exist for

various precision agriculture applications, rather than a focus on only normalised differ-

ence vegetation indices. Spatial resolution of aerial and satellite remote sensing imagery

has improved from 100’s of m to sub-metre accuracy, allowing evaluation of soil and crop

properties at fine spatial resolution at the expense of increased data storage and processing

requirements. Temporal frequency of remote sensing imagery has also improved

dramatically. At present there is considerable interest in collecting remote sensing data at

multiple times in order to conduct near real time soil, crop and pest management.

ª 2012 IAgrE. Published by Elsevier Ltd. All rights reserved.
1. Introduction seed, fuel (used during tillage, planting, spraying, etc.) by
Precision agriculture is one of the top ten revolutions in agri-

culture (Crookston, 2006), although it has only been practiced

commercially since the 1990’s. Over one-third of US Mid-

western farmers already practice some form of precision

agriculture. Precision agriculture generally involves better

management of farm inputs such as fertilisers, herbicides,
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doing the right management practice at the right place and

the right time. Whereas large farm fields under conventional

management receive uniform applications of fertilisers, irri-

gation, seed, etc., with precision agriculture, these fields can

be divided into management zones that each receives cus-

tomised management inputs based on varying soil types,

landscape position, and management history. Precision
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Nomenclature

ALI advanced land imager

AVIRIS airborne visible/infrared imaging spectrometer

B blue

DVI difference vegetation index

EO 1 earth observing 1

EROS earth resources observation and science

EVI enhanced vegetation index

G green

GDVI green difference vegetation index

GNDVI green normalised difference vegetation index

GOSAVI green optimised soil adjusted vegetation index

GPS global positioning system

GRVI green red vegetation index

GSAVI green soil adjusted vegetation index

HyspIRI hyperspectral infrared imager

INSEY in season estimated yield

IRS Indian remote sensing

LAI leaf area index

LED light emitting diode

LiDAR light detection and ranging

MCARI modified chlorophyll absorption in reflectance

index

MSAVI modified soil adjusted vegetation index

MSS multispectral scanning system

N nitrogen

NASA National Aeronautics and Space Administration

NDI normalised difference index

NDVI normalised difference vegetation index

NG normalised green

NGNDVI normalised green normalized difference

vegetation index

NIR near infrared

NR normalised red

NSI nitrogen sufficiency index

OMNBR optimal multiple narrow band reflectance

OSAVI optimised soil adjusted vegetation index

PNSI plant nitrogen spectral index

PSSR pigment specific simple ratio

R red

RI response index

RVI ratio vegetation index

SPAD soil plant analysis development

SPOT système pour l’observation de la terre

SR8 simple ratio 8

TCARI transformed chlorophyll absorption in reflectance

index

TM thematic mapper
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agriculture offers to improve crop productivity and farm

profitability through improved management of farm inputs

(Larson & Robert, 1991; Zhang, Wang, & Wang, 2002), leading

to better environmental quality (Mulla, 1993; Mulla et al., 2002;

Mulla, Perillo, & Cogger, 1996; Tian, 2002). Other benefits

perceived by farmers include more precise hybrid selection,

rental agreements that are better aligned with actual soil

productivity, better matching of fertiliser applications to crop

yield potential, lower chemical bills and fuel costs, and

reduced compaction. Benefits to society include creation of

high technology jobs (computer hardware, computer soft-

ware, machinery guidance, soil and crop sensors, information

management, decision support systems), and mitigation of

environmental pollution arising from over-application of

nitrogen and phosphorus fertiliser.

Precision agriculture uses intensive data and information

collection and processing in time and space to make more

efficient use of farm inputs, leading to improved crop

production and environmental quality (Harmon et al., 2005).

Precision agriculture is beginning to emphasise spatial-

temporal data analysis and management rather than spatial

data analysis and management alone (Mamo, Malzer, Mulla,

Huggins, & Strock, 2003; Miao, Mulla, Randall, Vetsch, &

Vintila, 2009; Varvel, Wilhelm, Shanahan, & Schepers, 2007).

Crop yield and response to N fertiliser varies significantly

across years in response to changes in climate (Bakhsh,

Jaynes, Colvin, & Kanwar, 2000), just as it varies significantly

across the landscape in response to variations in soil type and

landscape features.

Precision agriculture involves both data collection/analysis

and information management, as well as technological

advances in computer processing, field positioning, yield
monitoring, remote sensing, and sensor design (Mulla &

Schepers, 1997). More than 30% of the growth in US agribusi-

ness (jobs, sales, exports, etc.) in the future is expected to

come from further adoption of precision agriculture by

farmers (Whipker & Akridge, 2006), including growth in

demand for both information management services and

technological advances such as global positioning system

(GPS) autosteer guidance (e.g. Real Time Kinetic technology),

variable rate irrigation, fertiliser and sprayer controllers,

robotics, and real time decision making based on sensor

networks and remote sensing. Adoption rates are also signif-

icant in Australia, Japan, Canada and Europe, specifically in

Germany, Sweden, France, Spain, Denmark and the UK.

Globally, there is little documented information about rates of

adoption for precision agriculture in the developing world.

Mondal and Basu (2009) state that countries such as

Argentina, Brazil, China, India and Malaysia have begun to

adopt precision agriculture. Precision agriculture is also

widely used in the vineyards of Chile.

The farms of the future are likely to bemanagedwithmuch

greater spatial and temporal resolution than they are with

present approaches to precision agriculture. In Chilean vine-

yards, each grape vine receives an individually customised

fertiliser prescription that varies with soil type, landscape

position and hybrid. It is not unrealistic to expect that crops on

modern US farms of the future will be managed plant-by-

plant, a huge advance over farming by soil approaches of

the past. This approach will require massive data collection

and analysis on a scale not considered feasible today,

involving stationary or mobile sensors that can measure

characteristics of individual plants in real time. Sensors of the

future could be based on satellites (Bausch & Khosla, 2010),
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airplanes (Goel et al., 2003; Haboudane, Miller, Pattey, Zarco-

Tejada, & Strachan, 2004; Haboudane, Miller, Tremblay,

Zarco-Tejada, & Dextraze, 2002; Miao, Mulla, Randall,

Vetsch, & Vintila, 2007), unmanned aerial vehicles (Berni,

Zarco-Tejada, Suárez, & Fereres, 2009; Herwitz et al., 2004),

tractors (Adamchuk, Hummel, Morgan, & Upadhyaya, 2004;

Long, Engel, & Siemens, 2008), or attached to mobile robots

(Astrand & Baerveldt, 2002) to record weed densities, crop

height, leaf reflectance, moisture status and other properties

important for decisions about fertilizer and pestmanagement.

These sensors must be robust, run on renewable energy

sources, and be able to relay information using wireless

networks (O’Shaughnessy and Evett, 2010; Wang, Zhang, &

Wang, 2006) to computers that can perform data mining

procedures and make complex management recommenda-

tions. These recommendations can be transmitted to

computers and controllers in the field that are capable of

varying the rates of irrigation, fertilisers, and herbicides at fine

spatial resolution, if not plant-by-plant.
Fig. 1 e Reflectance signatures of dry or wet soil in

comparison to reflectance signatures of a Russet Burbank

potato canopy with low or high rates of N fertiliser

application.
2. Remote sensing applications in
agriculture

Remote sensing applications in agriculture are based on the

interaction of electromagnetic radiation with soil or plant

material. Typically, remote sensing involves themeasurement

of reflected radiation, rather than transmitted or absorbed

radiation. Remote sensing refers to non-contact measure-

ments of radiation reflected or emitted from agricultural fields.

The platforms for making these measurements include satel-

lites, aircraft, tractors and hand-held sensors. Measurements

made with tractors and hand-held sensors are also known as

proximal sensing, especially if they do not involve measure-

ments of reflected radiation. In addition to reflectance, trans-

mittance and absorption, plant leaves can emit energy by

fluorescence (Apostol et al., 2003) or thermal emission (Cohen,

Alchanatis, Meron, Saranga, & Tsipris, 2005). Thermal remote

sensing for water stress in crops is based on emission of radi-

ation in response to temperature of the leaf and canopy, which

varieswith air temperature and the rate of evapotranspiration.

The amount of radiation reflected from plants is inversely

related to radiation absorbed by plant pigments, and varies

with the wavelength of incident radiation. Plant pigments

such as chlorophyll absorb radiation strongly in the visible

spectrum from 400 to 700 nm (Pinter et al., 2003), particularly

at wavelengths such as 430 (blue or B) and 660 (red or R) nm for

chlorophyll a and 450 (B) and 650 (R) nm for chlorophyll b.

Other plant pigments such as anthocyanins and carotenoids

are also important (Blackburn, 2007).

In contrast, plant reflectance is high in the near infrared

(NIR 700e1300 nm) region as a result of leaf density and

canopy structure effects. This sharp contrast in reflectance

behaviour between the red and NIR portions of the spectrum

is the motivation for development of spectral indices that are

based on ratios of reflectance values in the visible and NIR

regions (Sripada, Heiniger, White, & Weisz, 2006). These

spectral indices are often used to assess various attributes of

plant canopies, such as leaf area index (LAI), biomass, chlo-

rophyll content or N content.
The amount of radiation reflected by bare soils is affected

primarily by soil moisture and organic matter content, but

also by clay minerals and calcium carbonate or iron oxides

(Thomasson, Sui, Cox, & AleRajehy, 2001; Viscarra Rossel,

Walvoort, McBratney, Janik, & Skjemstad, 2006). Each soil

constituent has a specific spectral region where reflectance is

strongest (Ben-Dor, 2010), and a specific spectral signature.

Bare soil and crop canopies are often both present in

a remotely sensed image, and the mixture of two spectral

signatures often confounds the interpretation of reflectance

data (Fig. 1). Spectral unmixing algorithms (Huete & Escadafal,

1991), derivative spectra (Demetriades-Shah, Steven, & Clark,

1990) or spectral indices that adjust for soil effects

(Haboudane et al., 2002, 2004) are often used to isolate infor-

mation about plant characteristics when the reflectance is

affected by both sources.

Remote sensing applications in agriculture are typically

classified according to the type of platform for the sensor,

including satellite, aerial, and ground based platforms. These

platforms and their associated imaging systems can be

differentiated based on the altitude of the platform, the spatial

resolution of the image, and the minimum return frequency

for sequential imaging. Spatial resolution affects the area of

the smallest pixel that can be identified. As spatial resolution

improves, the area of the smallest pixel decreases, and the

homogeneity of soil or crop characteristics within that pixel

increases. Poor spatial resolution implies large pixels with

increased heterogeneity in soil or plant characteristics. Return

frequency is important for assessment of temporal patterns in

soil or plant characteristics. The availability of remote sensing

images from satellite and aerial platforms is often severely

limited by cloud cover (Moran, Inoue, & Barnes, 1997), whereas

ground based remote sensing is less affected by this

limitation.

Remote sensing applications in agriculture have focused

on a wide range of endeavours (Adamchuk et al., 2004; Moran

et al., 1997; Pinter et al., 2003). These include crop yield and

biomass (Shanahan et al., 2001; Yang, Everitt, Bradford, &

Escobar, 2000), crop nutrient and water stress (Bastiaanssen,

http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
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Molden, & Makin, 2000; Clay, Kim, Chang, Clay, & Dalsted,

2006; Cohen et al., 2005; Moller et al., 2007; Tilling et al.,

2007), infestations of weeds (Lamb & Brown, 2001; Thorp &

Tian, 2004), insects and plant diseases (Seelan, Laguette,

Casady, & Seielstad, 2003), and soil properties such as

organic matter, moisture and clay content, and pH (Christy,

2008), or salinity (Corwin & Lesch, 2003).
2.1. Soil sensing in precision agriculture

Precision agriculture started during the mid 1980’s with two

contrasting philosophies. The first was exemplified by the

“farming by soil” school (Larson & Robert, 1991). This school

promoted the use of soil sampling and customised manage-

ment of farm inputs by soil mapping unit. The second was

exemplified by the “Soil Sampling Management Zone” school

(Mulla, 1991, 1993; Mulla & Bhatti, 1997; Mulla, Bhatti,

Hammond, & Benson, 1992), which later became known as

“site-specific crop management”. Management zones are

relatively homogeneous sub-units of farm fields that can each

be managed with a different, but uniform customised

management practice. This school became very popular when

field comparisons of uniform versus variable fertiliser appli-

cations showed that there was considerable variability at

scales finer than soil mapping units (Mulla et al., 1992). Bhatti,

Mulla, and Frazier (1991) were the first to demonstrate that

Landsat remote sensing had significant capabilities for esti-

mating spatial patterns in soil organicmatter, soil phosphorus

and crop yield potential for use in precision agriculture

applications.

A third approach to precision agriculture began to emerge

in the early 1990’s (Hummel, Gaultney, & Sudduth, 1996),

known as proximal soil sensing. This approach was based on

continuous real-time sensing of spatial variations in soil

properties using sensors mounted on tractors. The first

application of this approach was for soil organic matter
Table 1 e Satellite remote sensing platforms and their spectra
precision agriculture (PA). P refers to purple, B to blue, G to gre
infrared, TIR to thermal infrared. Suitability class L refers to lo

Satellite (year) Spectral bands (spatial resolutio

Landsat 1 (1972) G, R, two IR (56 � 79 m)

AVHRR (1978) R, NIR, two TIR (1090 m)

Landsat 5 TM (1984) B, G, R, two NIR, MIR, TIR (30 m)

SPOT 1 (1986) G, R, NIR (20 m)

IRS 1A (1988) B, G, R, NIR (72 m)

ERS-1 (1991) Ku band altimeter, IR (20 m)

JERS-1 (1992) L band radar (18 m)

LiDAR (1995) VIS (vertical RMSE 10 cm)

RadarSAT (1995) C-band radar (30 m)

IKONOS (1999) Panchromatic, B, G, R, NIR (1e4 m)

SRTM (2000) X-band radar (30 m)

Terra EOS ASTER (2000) G, R, NIR and 6 MIR, 5 TIR bands (15e9

EO-1 Hyperion (2000) 400e2500 nm, 10 nm bandwidth (30 m

QuickBird (2001) Panchromatic, B, G, R, NIR (0.61e2.4 m

EOS MODIS (2002) 36 bands in VIS-IR (250e1000 m)

RapidEye (2008) B, G, R, red edge, NIR (6.5 m)

GeoEye-1 (2008) Panchromatic, B, G, R, NIR1, NIR2 (1.6 m

WorldView-2 (2009) P, B, G, Y, R, red edge, NIR (0.5 m)
sensing (Shonk, Gaultney, Schulze, & Van Scoyoc, 1991) based

on reflectance from multiple light emitting diode (LED)

sensors emitting radiation at 660 nm. The sensor was very

accurate if calibrated for individual soil catenas, but was

affected by variations in soil moisture. Sudduth and Hummel

(1993) developed a portable NIR sensor which could simulta-

neously be used to estimate soil organic matter content and

soil moisture content. Other related technology was devel-

oped by Christy (2008), allowing simultaneous measurements

of soil organic matter content, soil moisture, soil pH, soil

carbon and soil phosphorus, potassium, and calcium.

A major breakthrough in precision agriculture occurred

when Carter, Rhoades, and Chesson (1993) introduced

continuous real-time, non-contact proximal sensing of soil

apparent electrical conductivity using non-invasive electro-

magnetic induction with the Geonics EM-38 (Geonics Ltd.,

Mississauga, Ontario, Canada). Soil electrical conductivity

measurements with the EM-38 have been used to map spatial

patterns in soil salinity (Corwin & Lesch, 2003), soil clay

content (Doolittle, Sudduth, Kitchen, & lndorante, 1994) and

soilmoisture content (Sudduth et al., 2005). These patterns are

often used to define management zones.
2.2. Satellite remote sensing

Satellites have been used for remote sensing imagery in

agriculture (Table 1) since the early 1970’s (Bauer & Cipra,

1973; Doraiswamy, Moulin, Cook, & Stern, 2003; Jewel, 1989)

when Landsat 1 (originally known as Earth Resources Tech-

nology Satellite 1) was launched in 1972. Multispectral

Scanner System (MSS) sensors on Landsat 1 collected imagery

in the green, red and two infrared bands at a spatial resolution

of 80 m and a return frequency of 18 days. Landsat 1 was

initially used by Bauer and Cipra (1973) to classify Midwestern

US agricultural landscapes into maize or soybean fields with

an overall accuracy of 83%. Landsat 5 was launched in 1984
l or spatial resolution, return frequency, and suitability for
en, R to red, IR to infrared, NIR to near infrared, MIR to mid
w, M to medium and H to high.

n) Return frequency (d ) Suitability for PA

18 L

1 L

16 M

2e6 M

22 M

35 L

44 L

N/A H

1e6 M

3 H

N/A M

0 m) 16 M

) 16 H

) 1e4 H

1e2 L

5.5 H

) 2e8 H

1.1 H
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and collected Thematic Mapper (TM) imagery at a spatial

resolution of 30 m in the blue, green, red, near infrared, and

three infrared (including thermal) bands. France launched

a comparable satellite (système pour l’observation de la terre

(SPOT) 1) in 1986, which collected 20 m imagery with a return

frequency of up to six days in the green, red and near infrared

frequencies. Jewel (1989) used four images collected between

February and September in East Anglia, UK to distinguish

cereal crops, field crops, grassland and forest land with an

accuracy of 88%. India launched the Indian Remote Sensing

(IRS-1A) satellite in 1988, with coverage in the blue, green, red

and NIR bands at a spatial resolution of 72 m. Panigrahy and

Sharma (1997) used reflectance in the red and NIR bands

collected on four dates between October and March to classify

agricultural landscapes in India into rice or riceepotato

cropping systems with 95% accuracy.

These applications of remote sensing in conventional

agriculture soon led to applications in precision agriculture.

The first application of remote sensing in precision agriculture

occurred when Bhatti et al. (1991) used Landsat imagery of

bare soil to estimate spatial patterns in soil organic matter

content, which were then used as auxiliary data along with

ground based measurements to estimate spatial patterns in

soil phosphorus and wheat grain yield (Mulla, 1997). The

spatial resolution of Landsat, SPOT and IRS satellites is fairly

coarse (20e30 m) for current applications in precision

agriculture.

Efforts were subsequently started to design satellite

imaging systems that had the higher spatial resolution and

quicker revisit cycles required for precision agriculture (Table

1). IKONOS was launched in 1999 by Satellite Imaging Corp,

Magnolia, TX, USA in partnership with Lockheed Martin,

Bethesda, MD, USA. IKONOS collected 4 m resolution imagery

in the blue, green, red and near infrared bands at a return

frequency of up to 5 days. Seelan et al. (2003) used IKONOS

images to identify N deficiencies in sugarbeet, fungicide

performance efficiency in wheat and field sites that had inad-

equate artificial drainage in wheat. In 2001, DigitalGlobe,

Longmont, CO, USA launched a satellite namedQuickBirdwith

capabilities similar to IKONOS. QuickBird had a revisit

frequency of 1e3 days and collected imagery in the blue, green,

red and near infrared at a spatial resolution of 0.6e2.4 m.

Bausch and Khosla (2010) showed that QuickBird estimates of

normalised green normalised difference vegetation index

(NGNDVI) were strongly correlated with spatial patterns in

nitrogen sufficiency in irrigated maize. Garcı́a Torres, Peña-

Barragán, López-Granados, Jurado-Expósito, and Fernández-

Escobar (2008) showed that QuickBird images of olive

orchards in Spain could be used to estimate areas of olive

plantations, numbers of trees, and spatial patterns in projected

areaof tree canopies, and oliveyields. These twosatelliteshave

steadily gained a substantial base of commercial subscribers

interested in precision agriculture applications, in stark

contrast to older satellite technology such as Landsat or SPOT.

The next major breakthrough in satellite remote sensing

for precision agriculture was the five-satellite constellation

developed by the RapidEye, Brandenburg_an_der_Havel,

Germany in 2008 (Table 1). RapidEye satellites provide daily

coverage for any location on the globe, and collect data with

a 6.5 m spatial resolution. RapidEye is the first satellite to
provide imagery in the chlorophyll sensitive red-edge region

of the spectrum (690e730 nm), alongwith themore traditional

blue, green, red and near infrared reflectance. In 2008, GeoEye,

Herndon, VA, USA launched a commercial satellite designed

to provide services similar to RapidEye. The GeoEye 1 satellite

has a return visit frequency of less than three days, and

collects data at from 40 to 60 cm spatial resolution in the blue,

green, red and near infrared bands. One of the main uses for

GeoEye 1 imagery is providing Google Earth maps that are

available through the Internet. This has revolutionised the

ability to visualise land use patterns around the world. Digi-

talGlobe launched the WorldView 2 satellite in 2009, which

collects imagery at 50 cm resolution with a 1 day revisit cycle.

WorldView 2 is significantly more advanced than Digital-

Globe’s QuickBird satellite, asWorldView 2 collects imagery in

the standard blue, green, red, and near infrared bands, as well

as bands in the purple (450e480 nm), yellow, red-edge and

a second near infrared frequency range.

Several trends are apparent in satellite based remote

sensing (Table 1). Firstly, the spatial resolution of imaging

systems has improved from 80 m with Landsat to sub-metre

resolution with GeoEye and WorldView. Secondly, the return

visit frequency has improved from 18 days with Landsat to 1

day with WorldView. Thirdly, the number of spectral bands

available for analysis has improved from four bands (band-

widths greater than 60 nm) with Landsat to eight or more

bands (bandwidths greater than 40 nm) with WorldView.

Hyperspectral imaging systems such as Hyperion on the

National Aeronautics and Space Administration (NASA) earth

observing 1 (EO 1) satellite provided even greater spectral

resolution, with imaging from 400 to 2500 nm in 10 nm

increments.

As the spatial and spectral resolution of satellite imagery

has improved, the suitability of using reflectance data from

these platforms for precision agriculture applications has

increased (Table 1). The most appropriate spatial and spectral

resolution for precision agriculture applications depends on

factors such as crop management objectives, capacity of farm

equipment to vary farm inputs, and farmunit area. Estimation

of spatial patterns in crop biomass or yield requires better

spatial and spectral resolution (1e3 m) than variable rate

application of fertiliser (5e10 m). Accuracy of variable rate

application of fertiliser is often limited by fertiliser spreader

delay times (Chan, Schueller, Miller, Whitney, & Cornell,

2004). Variable rate spraying of herbicides for spot weed

control requires better spatial and spectral resolution

(0.5e1 m) than variable rate irrigation (5e10 m). Larger

commercial farms can often afford to pay for remote sensing

data with higher spatial and spectral resolution than smaller

farms in developing countries.

Satellite and/or aerial imagery is frequently used to esti-

mate spatial patterns in crop biomass (Yang et al., 2000) and

potential crop yield (Doraiswamy et al., 2003) using the Nor-

malised Difference Vegetation Index (NDVI). NDVI is calcu-

lated using reflectance ratios in the NIR and red portion of the

spectrum (Rouse, Hass, Schell, & Deering, 1973):

NDVI ¼ ðNIR� RedÞ=ðNIRþ RedÞ (1)

NDVI has several limitations, however, including potential

interference from soil reflectance at low canopy densities and

http://dx.doi.org/10.1016/j.biosystemseng.2012.08.009
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insensitivity to changes in leaf chlorophyll content in mature

canopies with leaf area index values that exceed 2 or 3

(Thenkabail, Smith, & De Pauw, 2000). The advent of crop

combines equipped with yield monitors was a major advance

in precision agriculture (Schueller & Bae, 1987; Stafford,

Ambler, Lark, & Catt, 1996). Yield monitors provided fine

scale resolution yieldmeasurements across large spatial areas

that could be used to improve the capacity of remote sensing

to predict crop structural characteristics such as LAI, biomass,

and yield.

Many broadband spectral indices (Table 2) other than NDVI

are available for use in precision agriculture (Miao et al., 2009;

Sripada et al., 2006; Sripada, Schmidt, Dellinger, & Beegle,

2008). These indices reflect two historical trends in remote

sensing for crop characteristics; namely, the prediction of

ratios of reflectance in the red (R) and NIR bands versus ratios

in the green (G) and NIR bands. The normalised red (NR) index

focuses on the portion of the spectrum where chlorophyll

strongly absorbs radiation. In contrast, the normalised green

(NG) index focuses on the portion of the spectrum where

pigments other than chlorophyll (carotenoids, anthocyanins,

xanthophylls) absorb radiation. Similarly, there are two forms

of the ratio vegetation index (RVI), one that consists of the ratio

of NIR to R reflectance, the other green red vegetation index

(GRVI) that consists of the ratio of NIR to G reflectance. Two

forms of the NDVI exist, one that involves NIR and R reflec-

tance, the other green normalized difference vegetation index

(GNDVI) involves NIR and G reflectance. The difference vege-

tative index (DVI) was developed using the difference between

reflectance in the NIR and R bands to compensate for effects of

soil reflectance (Tucker, 1979). Sripada et al. (2006) found that

economically optimum N rate in corn was better correlated

with green difference vegetation index (GDVI) (NIR � G) than

DVI (NIR � R), and these indices that compensated for soil

effects performed better than NIR and R ratio indices such

as NDVI and RVI that did not compensate for soil effects.

A wide range of other indices have been developed to

compensate for soil effects, including soil adjusted vege-

tation index (SAVI), green soil adjusted vegetation index

(GSAVI), optimised soil adjusted vegetation index (OSAVI),

green optimised soil adjusted vegetation index (GOSAVI)
Table 2 e Multi-spectral broad-band vegetation indices availab
reflectance, NIR to near infrared, and R to red reflectance.

Index Definition

NG G/(NIR þ R þ G)

NR R/(NIR þ R þ G)

RVI NIR/R

GRVI NIR/G

DVI NIR � R

GDVI NIR � G

NDVI (NIR � R)/(NIR þ R)

GNDVI (NIR � G)/(NIR þ G)

SAVI 1.5*[(NIR � R)/(NIR þ R þ 0.5)]

GSAVI 1.5*[(NIR � G)/(NIR þ G þ 0.5)]

OSAVI (NIR � R)/(NIR þ R þ 0.16)

GOSAVI (NIR � G)/(NIR þ G þ 0.16)

MSAVI2 0.5*[2*(NIR þ 1) � SQRT((2*NIR þ 1)2 � 8*(NIR �
and modified soil adjusted vegetation index (MSAVI). A

comparison of NDVI and simple ratio (SR8) vegetation

indices for an irrigated commercial Minnesota potato

(Solanum tuberosum L.) farm is shown in Fig. 2. Spatial

patterns in N stress are identified more accurately with the

SR8 index than the NDVI index.

Moran et al. (1997) and Yao et al. (2010) summarised the

major challenges for using satellite remote sensing for preci-

sion agriculture. Satellite imagery in the visible and NIR bands

are limited to cloud free days, and are most usable when

irradiance is relatively consistent across time. Only radar

imagery collected using satellites or airplanes is unaffected by

cloud cover. Other challenges include calibrating raw digital

numbers to true surface reflectance, correcting imagery

for atmospheric interferences and/or off-nadir view angles,

and geo-rectifying pixels using GPS-based ground control

locations.

2.3. Proximal remote sensing of crops for precision
agriculture

Given the limitations of satellite remote sensing for precision

agriculture, there has been significant interest in proximal

remote sensing techniques to assess crop growth and crop

stress (Table 3). Proximal remote sensing involves sensors

mounted on tractors, spreaders, sprayers or irrigation booms.

Proximal sensing allows real time site specificmanagement of

fertiliser, pesticides or irrigation. The foundation for a transi-

tion from remote sensing to proximal sensing based assess-

ment of crop status was established by Schepers, Francis,

Vigil, and Below (1992), who used a Minolta soil plant anal-

ysis development (SPAD) meter to measure leaf greenness

(chlorophyll) in maize crops at the silking stage under a range

of applied N fertiliser rates. SPAD meter readings of leaf

reflectance at 650 and 940 nmwere found to be correlatedwith

applied rate of N fertiliser as well as independent measure-

ments of leaf N concentration. Schepers et al. (1992) suggested

that proximal chlorophyll readings could be used to estimate

N stress in maize by referencing the SPAD readings for

stressed crops with the readings in a reference strip that

received adequate rates of N fertiliser. Chlorophyll content of
le for use in precision agriculture. G refers to green

Reference

Sripada et al., 2006

Sripada et al., 2006

Jordan, 1969

Sripada et al., 2006

Tucker, 1979

Tucker, 1979

Rouse et al., 1973

Gitelson et al., 1996

Huete, 1988

Sripada et al., 2006

Rondeaux, Steven, & Baret, 1996

Sripada et al., 2006

R))] Qi, Chehbouni, Huete, Keer, & Sorooshian, 1994
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Fig. 2 e Comparison between a) NDVI and b) SR8 spectral

indices in a commercial Russet Burbank potato field.
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crop leaves is strongly affected by crop N status, but can also

be affected to a lesser degree by other factors, such as crop

variety and growth stage, pest infestations, water stress, and

nutrient deficiencies other than N.

Blackmer and Schepers (1995) introduced the concept of

a nitrogen sufficiency index (NSI) to assess the degree of N

stress in maize. The NSI was defined as the ratio of SPAD
Table 3 e Innovations in remote and proximal leaf sensing in

Year Innovation

1992 SPAD meter (650, 940 nm) used to detect N deficiency

1995 Nitrogen sufficiency indices

1996 Optical sensor (671, 780 nm) used for on-the-go detec

in plant nitrogen stress

2002 Yara N sensor

2002 GreenSeeker (650, 770 nm)

2004 Crop Circle (590, 880 nm or 670, 730, 780 nm)

2002 CASI hyperspectral sensor based index measurement

2002 MSS remote sensing of ag fields with UAV

2003 Fluorescence sensing for N deficiencies
meter greenness readings for crops in a given field location

relative to SPAD readings for the same crop in a well-fertilised

reference strip with no N deficiencies. NSI values less than

0.95 were used to indicate areas with N stress that required

additional N fertiliser. Varvel, Schepers, and Francis (1997)

showed that SPAD meters and NSI values could be used for

in-season correction of N deficiency in maize. Bausch and

Duke (1996) showed that the SPAD meter could be replaced

with a boom-mounted radiometer to estimate spatial patterns

in NIR/G ratio and NSI across an irrigatedmaize field based on

comparisons with a well-fertilised reference strip. They

observed that this approach could detect N deficiencies in the

V6 growth stage (Ritchie, Hanway, & Benson, 1993, p. 21), but

results were confounded by interference with reflectance

patterns from bare soil.

Stone et al. (1996) measured spectral radiance in the red

(671 nm) and NIR (780 nm) bands in wheat with a sensor

mounted on a mobile lawn tractor. They used these data to

estimate a spectral index known as the plant nitrogen spectral

index (PNSI), which was the absolute value of the inverse of

NDVI. Results showed that PNSI was strongly correlated with

crop N uptake. Sensor readings were used to vary N fertiliser

rates using an algorithm that increased exponentially with

PNSI values (Solie, Raun,Whitney, Stone, & Ringer, 1996). This

was the beginning of technology to variably apply N fertiliser

“on-the-go” in response to proximal crop sensing, andwas the

basis for commercial development of the GreenSeeker NDVI

active sensor marketed by NTech Industries, Ukiah, CA, USA

in 2001. Raun et al. (2002) subsequently developed a seven step

response index (RI)-based algorithm to estimate crop N fer-

tiliser needs for maize and wheat based on in-season sensing

of crop reflectance relative to check plots with no added fer-

tiliser and reference plots with sufficient fertiliser. This algo-

rithm accounted for both season-to-season temporal

variability in crop growth using the concept of in-season

estimated yield (INSEY) as well as within-field spatial vari-

ability in N supply. Algorithms for estimating potential crop

yield and N uptake are available for many crops and locations

around the world (Shanahan, Kitchen, Raun, & Schepers,

2008). The RI is estimated as the ratio of NDVI values in the

crop relative to those in a reference strip with sufficient

fertiliser.

Link, Panitzki, and Reusch (2002) and Reusch, Link, and

Lammel (2002) developed a tractor based passive sensor to

determine crop N status based on NDVI. This was originally
precision agriculture.

Citation

in corn Schepers et al., 1992

Blackmer & Schepers, 1995

tion of variability Stone et al., 1996

Link et al., 2002, TopCon industries

Raun et al., 2002, NTech industries

Holland et al., 2004, Holland scientific

s of chlorophyll Haboudane et al., 2002, 2004

Herwitz et al., 2004

Apostol et al., 2003
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Fig. 3 e Hyperspectral data cube for a commercial Russet

Burbank potato field in Minnesota. The face of the cube is

a redegreeneblue image of the same area shown in Fig. 2.
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known as the Hydro-N sensor, but has since become known as

the Yara-N sensor (Yara, Olso, Norway) (Table 3). A version of

the Yara-N sensor is also available that uses active sensors

(Link & Reusch, 2006), which reduces the errors caused by

varying cloud cover, and allows the tractor operator to work at

night.

Holland, Schepers, Shanahan, and Horst (2004) developed

an active crop sensor known as Crop Circle (Table 3). This

sensor initially used reflectance in the green and NIR bands to

estimate crop N deficiencies. The rationale behind using green

rather than red reflectance with Crop Circle was that as crop

LAI increases beyond 2.0, the green NDVI is more sensitive to

changes in chlorophyll concentration and potential crop yield

than NDVI (Gitelson, Kaufmann, & Merzlyak, 1996; Shanahan

et al., 2001; Sripada et al., 2006, 2008). This overcomes the

limitation of using the GreenSeeker sensor at advanced crop

growth stages. Solari, Shanahan, Ferguson, Schepers, and

Gitelson (2008) used the Crop Circle sensor to show that N

deficiencies could be better predicted using a green chloro-

phyll index defined as (NIR880/VIS590) � 1 in comparison with

the green NDVI. Sripada et al. (2008) showed that the perfor-

mance of spectral indices could be improved using ratios with

the corresponding index values in reference strips receiving

sufficient N fertiliser. Kitchen et al. (2010) and Scharf et al.

(2011) showed that producers using the Crop Circle sensor

could reduce N fertiliser applications by making in-season

correction, while increasing crop yield and farm profitability.

One limitation of the chlorophyll meter, GreenSeeker, Yara

N and Crop Circle sensors, however, is that they cannot

directly estimate the amount of N fertiliser needed to over-

come crop N stress (Samborski, Tremblay, & Fallon, 2009). To

overcome this, scientists have conducted comparisons of

sensor readings with readings in reference strips receiving

sufficient N fertiliser (Blackmer & Schepers, 1995; Kitchen

et al., 2010; Raun et al., 2002; Sripada et al., 2008). They have

used these data to develop N fertiliser response functions that

relate sensor readings to the amount of N fertiliser needed to

overcome crop N stress (Scharf et al., 2011). Even with this

approach, reference strips with adequate fertiliser have to be

strategically placed in representative soils and landscapes

because yield response to N fertiliser exhibits significant

spatial variability across production fields (Mamo et al., 2003).

Also, reference strips have limitations for other crops like

wheat (subject to lodging) and potato (subject to excessive

vine growth at the expense of tuber growth).

2.4. Hyperspectral remote sensing in precision
agriculture

Hyperspectral remote sensing collects reflectance data over

a wide spectral range at small spectral increments (typically

10 nm). It provides the ability to investigate spectral response

of soils and vegetated surfaces in narrow spectral bands

(10 nmwide) across a wide spectral range. This is not possible

with multispectral imaging that traditionally collects reflec-

tance data in broadbands (greater than 40 nmwide) centred in

the B, G, R and NIR regions of the spectrum. When collected

across large spatial extents at fine spatial resolution, hyper-

spectral imaging provides powerful insight into the spatial

and spectral variability in reflectance for a bare or vegetated
surface. This information is traditionally visualised using

a three-dimensional hyperspectral data cube, with two spatial

dimensions (x,y) and one spectral dimension (wavelength). An

example of a hyperspectral data cube is shown in Fig. 3 for

a commercial potato field in Minnesota, USA. The field shows

significant spatial and spectral variability in reflectance.

The first hyperspectral sensor was the airborne visible/

infrared imaging spectrometer (AVIRIS), launched in 1987.

This sensor provides continuous imagery from 380 to 2500 nm

in bands that have a spectral resolution of 10 nm and a spatial

resolution of 20 m. The satellite based Hyperion sensor,

launched aboard EO-1 by NASA in 2000, has hyperspectral

imaging capabilities similar to AVIRIS. Hyperspectral imagery

collected by EO-1 Hyperion via the advanced land imager (ALI)

sensor continues to be collected and is available for public use

through the US Geological Survey, Center for Earth Resources

Observation and Science (EROS). Datt, Jupp, McVicar, and Van

Niel (2003) showed that ALI hyperspectral data could be used

to more accurately predict spatial patterns in rice yield grown

in Australia with derivative indices and red edge position in

comparison with predictions based on NDVI. Miglani, Ray,

Pandey, and Parihar (2008) showed that 20 hyperspectral

bands from ALI were necessary for agricultural remote

sensing studies in the Meerut district of India. Wu,Wang, Niu,

Gao, and Wu (2010) showed that vegetative indices based on

red edge reflectance from hyperspectral ALI data could be

used to accurately estimate canopy chlorophyll content and

leaf area index for a broad range of agricultural crops in China.

An aerial hyperspectral imaging system, the compact airborne

spectrographic imager (CASI), has also been widely used

(Haboudane et al., 2002, 2004). There are also hand-held or

boom-mounted hyperspectral and multispectral imaging

systems, including the CropScan (CropScan Inc, Rochester,

MN, USA) sensor.

Hyperspectral imaging differs from multispectral imaging

in the continuity, range and spectral resolution of bands. In

theory, it offers the capability of sensing a wide variety of soil

and crop characteristics simultaneously, including moisture

status, organic matter, nutrients, chlorophyll, carotenoids,

cellulose, leaf area index and crop biomass (Goel et al., 2003;

Haboudane et al., 2002; Zarco-Tejada et al., 2005). Specific
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wavelengths are most sensitive to each type of soil or crop

characteristic. A red band centred at 687 nm is sensitive to

crop leaf area index and biomass, while a near infrared band

centred at 970 nm is sensitive to crop moisture status

(Thenkabail, Lyon, & Huete, 2010). Further examples of linking

specific soil and crop characteristics with reflectance are given

for 33 hyperspectral bands by Thenkabail et al. (2010). In

contrast, multispectral imaging is often limited to analysis of

single broadband combinations such as NDVI, which become

insensitive to chlorophyll and other plant characteristics at

LAI values exceeding 3.0 (Thenkabail et al., 2000), and are

strongly interfered with by bare soil reflectance at low LAI

values.

Thenkabail et al. (2000) showed that hyperspectral data can

be used to construct three general categories of predictive

spectral indices, including 1) optimal multiple narrow band

reflectance indices (OMNBR), 2) narrow band NDVI, and 3)

SAVI. Only two to four narrow bands were needed to describe

plant characteristics with OMNBR. The greatest information

about plant characteristics in OMNBR includes the longer red

wavelengths (650e700 nm), shorter green wavelengths

(500e550 nm), red-edge (720 nm), and two NIR (900e940 nm

and 982 nm) spectral bands. The information in these bands is

only available in narrow increments of 10e20 nm, and is easily

obscured in broad multispectral bands that are available with

older satellite imaging systems. The best combination of two

narrow bands in NDVI-like indices was centred in the red

(682 nm) and NIR (920 nm) wavelengths, but varied depending

on the type of crop (corn, soybean, cotton or potato) as well as

the plant characteristic of interest (LAI, biomass, etc.).

Advanced statistical methods for chemometric analysis of

reflectance spectra have been used to interpret hyperspectral

remote sensing data, including partial least squares (Lindgren,

Geladi, & Wold, 1994; Viscarra Rossel et al., 2006), principal

components analysis (Geladi, 2003), and pattern classification

and recognition techniques (Stuckens, Coppin, & Bauer, 2000),

including object oriented (Frohn, Reif, Lane, & Autrey, 2009)

and decision tree (Wright & Gallant, 2007) classification tech-

niques. Partial least squares (PLS) regression is perhaps more

powerful than principal components analysis (PCA) in that

PLS (like PCA) not only identifies factors that describe spectral

variance, but also eliminates spectral bands that contain

redundant information (Alchanatis & Cohen, 2010).

Jain, Ray, Singh, and Panigrahy (2007) explored hyper-

spectral remote sensing for identification of N stress in pota-

toes grown in India. They used three techniques to identify

bands that were optimal for detection of N stress, namely; 1)

lambdaelambda plots, 2) principal component analysis, and 3)

discriminant analysis. Lambdaelambda plots involve calcu-

lating, for example, the coefficient of determination (r2) for

leaf N content at all hyperspectral reflectance bands. A graph

of r2 for all possible combinations of band 1 on the x-axis and

band 2 on the y-axis results in a lambdaelambda plot. The

lambdaelambda plot is useful for identifying which combi-

nations of two bands contain redundant information about N

stress. Spectral bands or narrow band indices should be

selected with low r2 to eliminate redundancy and maximise

information about crop characteristics (such as N stress).

Principal component analysis was used by Jain et al. (2007)

to identify which combinations of bands account for
a majority of the variance in crop reflectance characteristics.

This technique is used to eliminate hyperspectral bands that

do not contain useful information about the crop character-

istics of interest. Stepwise discriminant analysis uses a ratio

of treatment sums of squares to total sums of squares to find

spectral regions with distinctly different mean values of

reflectance.

A variety of narrow band hyperspectral indices (Table 4)

are available for use in precision agriculture (Haboudane et al.,

2002, 2004; Li et al., 2010; Miao et al., 2007, 2009). Many of these

have the same form as broadband spectral indices (Table 1),

but differ in that the reflectance bands for hyperspectral

indices are narrow (10e20 nm wide) bands centred around

a single specific wavelength. These indices variously respond

to canopy or leaf scale effects of leaf area index, chlorophyll,

specific pigments, or nitrogen stress. Simple ratios (SR) 1

through 7 and normalized difference indices (NDI) 1 through 3

typically respond to leaf level changes in chlorophyll. In

contrast, NDVI responds to canopy scale changes in leaf area

index and chlorophyll. GNDVI, modified chlorophyll absorp-

tion in reflectance index (MCARI), transformed chlorophyll

absorption in reflectance index (TCARI), MCARI2, OSAVI, and

MSAVI respond to canopy scale changes in chlorophyll, with

the latter two indices being designed to compensate for soil

reflectance effects. PSSRa and PSSRb were designed specifi-

cally to respond to changes in chlorophyll a and chlorophyll b,

respectively. New hyperspectral indices are continuously

being tested and developed (Li et al., 2010) using techniques

involving lambdaelambda plots where reflectance signatures

are compared for all possible combinations of two reflectance

bands.

Potential applications of hyperspectral remote sensing in

precision agriculture have recently been reviewed by Yao et al.

(2010). These applications include 1) bare soil imaging for

management zone delineation, 2) weed mapping, 3) crop N

stress detection, 4) crop yieldmapping, and 5) pest and disease

detection. Perhaps of greatest interest for precision agricul-

ture is using hyperspectral remote sensing for variable rate,

in-season management of nitrogen fertiliser based on spatial

patterns in chlorophyll content. Wu, Han, Niu, and Dong

(2010) used hyperspectral data from the Hyperion EO-1 satel-

lite to study chlorophyll content in a variety of agricultural

canopy types in China, including flax, chestnuts, corn,

bamboo, potato, pine, saccharose and tea. Chlorophyll

content of leaves were estimated using a variety of vegetation

indices derived from red edge reflectance bands located at 705

and 750 nm. The MCARI/OSAVI705 index performed better

than all other vegetation indices evaluated, with an r2 value of

0.71. Wu, Wang et al. (2010) estimated chlorophyll content of

maize in China usingHyperion hyperspectral reflectance data.

The Enhanced Vegetation Index (EVI) was more accurate

(r2 ¼ 0.81) at predicting maize chlorophyll contents than

MSAVI or NDVI.
3. Knowledge gaps for remote sensing in
precision agriculture

Rapid advances in remote sensing for precision agriculture

have occurred over the last twenty five years. Satellite imagery
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Table 4 e Hyperspectral narrow-band vegetation indices available for use in precision agriculture. R refers to reflectance at
the wavelength (nm) in subscript. NIR refers to near infrared reflectance.

Index Definition Reference

Greenness index (G) R554/R677 Smith, Adams, Stephens, & Hick, 1995

SR1 NIR/red ¼ R801/R670 Daughtry, Walthall, Kim, de Colstoun, & McMurtrey, 2000

SR2 NIR/green ¼ R800/R550 Buschman & Nagel, 1993

SR3 R700/R670 McMurtrey, Chappelle, Kim, Meisinger, & Corp, 1994

SR4 R740/R720 Vogelmann, Rock, & Moss, 1993

SR5 R675/(R700*R650) Chappelle at al., 1992

SR6 R672/(R550*R708) Datt, 1998

SR7 R860/(R550*R708) Datt, 1998

DI1 R800 � R550 Buschman & Nagel, 1993

NDVI (R800 � R680)/(R800 þ R680) Lichtenthaler, Lang, Sowinska, Heisel, & Mieh, 1996

Green NDVI (GNDVI) (R801 � R550)/(R800 þ R550) Daughtry et al., 2000

PSSRa R800/R680 Blackburn, 1998

PSSRb R800/R635 Blackburn, 1998

NDI1 (R780 � R710)/(R780 � R680) Datt, 1999

NDI2 (R850 � R710)/(R850 � R680) Datt, 1999

NDI3 (R734 � R747)/(R715 þ R726) Vogelmann et al., 1993

MCARI [(R700 � R670) � 0.2(R700 � R550)](R700/R670) Daughtry et al., 2000

TCARI 3*[(R700 � R670) � 0.2*(R700 � R550)(R700/R670)] Haboudane et al., 2002

OSAVI (1 þ 0.16)(R800 � R670)/(R800 þ R670 þ 0.16) Rondeaux et al., 1996

TCARI/OSAVI Haboudane et al., 2002

TVI 0.5*[120*(R750 � R550) � 200*(R670 � R550)] Broge & Leblanc, 2000

MCARI/OSAVI Zarco-Tejada, Miller, Morales, Berjón, & Agüera, 2004

RDVI (R800 � R670)/SQRT(R800 þ R670) Rougean & Breon, 1995

MSR (R800/R670 � 1)/SQRT(R800/R670 þ 1) Chen, 1996

MSAVI 0.5[2R800 þ 1 � SQRT((2R800 þ 1)2 � 8(R800 � R670))] Qi et al., 1994

MTVI 1.2*[1.2*(R800 � R550) � 2.5*(R670 � R550)] Haboudane et al., 2004

MCARI2 1:5½2:5ðR800 � R670Þ � 1:3ðR800 � R550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2R800 þ 1Þ2 � ð6R800 � 5

ffiffiffiffiffiffiffiffiffiffi
R670

p Þ � 0:5
q Haboudane et al., 2004
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has improved in spatial resolution, return visit frequency and

spectral resolution. Aerial hyperspectral imagery has revolu-

tionised the ability to distinguish multiple crop characteris-

tics, including nutrients, water, pests, diseases, weeds,

biomass and canopy structure. Ground-based sensors have

been developed for on-the-go monitoring of crop and soil

characteristics such as N stress, water stress, soil organic

matter and moisture content.

Precision farming has progressed through many stages. It

beganwith farming by soil and progressed to site-specific crop

management based on grid sampling andmanagement zones.

More recently there has been increasing emphasis on real-

time on-the-go monitoring with ground based sensors. The

challenge for the future is to develop precision farming

approaches that can provide customizedmanagement of farm

inputs for individual plants.

There is a significant potential in precision agriculture for

combining archived remote sensing data with real-time data

for improved agricultural management (Thenkabail, 2003).

Historical archives of satellite remote sensing data are avail-

able at many locations for Landsat, SPOT, IRS, IKONOS, and

QuickBird. These data typically include reflectance in the B, G,

R and NIR bands, at spatial resolutions of from 0.6 to 30 m

spatial resolution. Images at a fixed location could be analysed

acrossmultiple crop growth stages, seasons and years in order

to identify relatively homogeneous sub-regions of fields that

differ from one another in leaf area index, NDVI, and potential

yield. Auxiliary data at these same sites, including crop yield

maps, digital elevation models and soil series maps could be
combined with historical remote sensing data to identify

potential management zones where precision agricultural

input operations can be implemented. Real time remote

sensing with high spatial and spectral resolution satellites

such as EO-1 Hyperion or the upcoming (2016) NASA Hyper-

spectral Infrared Imager (HyspIRI) satellite (or comparable

data collected with aerial platforms) could then be used for

real time precision agricultural decision making and to refine

the location of management zones identified using historical

imaging and auxiliary data.

With this in mind, there are several needs for future

research in precision farming. These include the following:

� More emphasis is needed on chemometric or spectral

decomposition/derivative methods of analysis since spatial

and spectral resolution of hyperspectral sensing systems

are now adequate for most precision agriculture

applications

� Sensors are needed for direct estimation of nutrient defi-

ciencies without the use of reference strips

� Spectral indices should continue to be developed that

simultaneously allow assessment of multiple crop charac-

teristics (e.g. LAI, biomass, etc.) and stresses (e.g. water and

N; weeds and insects, etc.)

� Historical archives of satellite remote sensing data at

moderate to high spatial resolution and traditional spectral

resolution should be integrated with real-time remote

sensing data at high spatial and spectral resolution for

improved decision making in precision agriculture.
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