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a b s t r a c t

Variational autoencoders (VAEs) are influential generative models with rich representation capabilities
from the deep neural network architecture and Bayesian method. However, VAE models have a
weakness that assign a higher likelihood to out-of-distribution (OOD) inputs than in-distribution (ID)
inputs. To address this problem, a reliable uncertainty estimation is considered to be critical for in-
depth understanding of OOD inputs. In this study, we propose an improved noise contrastive prior
(INCP) to be able to integrate into the encoder of VAEs, called INCPVAE. INCP is scalable, trainable
and compatible with VAEs, and it also adopts the merits from the INCP for uncertainty estimation.
Experiments on various datasets demonstrate that compared to the standard VAEs, our model is
superior in uncertainty estimation for the OOD data and is robust in anomaly detection tasks. The
INCPVAE model obtains reliable uncertainty estimation for OOD inputs and solves the OOD problem
in VAE models.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

The out-of-distribution (OOD) data has a significantly dif-
erent distribution from the training in-distribution (ID) data.
o make reliable and safe decisions, the deep learning mod-
ls in real-world applications require to identify whether the
esting data is the OOD data. Likelihood models are considered
o naturally own the ideal capability of detecting OOD inputs,
ue to the intuitive assumption that these models assign lower
ikelihoods to the OOD inputs than the in-distribution (ID) in-
uts (Bishop, 1994). However, previous works have reported that
ome deep generative models, such as variational auto-encoders
VAEs) (Kingma & Welling, 2014; Rezende, Mohamed, & Wierstra,
014), Pixel CNN (Van den Oord, Kalchbrenner, Espeholt, Vinyals,
raves, et al., 2016) and Glow (Kingma & Dhariwal, 2018), all
ased on likelihood models, are not able to correctly detect OOD
nputs (Choi, Jang, & Alemi, 2018; Hendrycks, Mazeika, & Di-
tterich, 2019; Lee, Lee, Lee, & Shin, 2018b; Maaløe, Fraccaro,
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Liévin, & Winther, 2019; Nalisnick, Matsukawa, Teh, Gorur, &
Lakshminarayanan, 2019a; Nalisnick, Matsukawa, Teh, & Laksh-
minarayanan, 2019b). Counter-intuitively, the OOD inputs are
assigned higher likelihoods than the ID inputs, which is not in
line with the assumption. Hence, when we employ the likelihood
model as a detector on OOD detection tasks or general generation
tasks, it is necessary to ensure that the adopted model possesses
a good understanding and performance for OOD inputs.

The phenomenon that VAE models assign higher likelihoods
to OOD inputs than ID inputs is called the OOD problem, and it
was first reported by Nalisnick et al. (2019a) in 2018. Since then,
it has been an increasingly popular topic in the field of generative
models. Some studies have made great efforts to explain the
reasons for this empirical phenomenon (Bütepage, Poklukar, &
Kragic, 2019; Nalisnick et al., 2019b; Serrà et al., 2020). For
instance, Bütepage et al. demonstrate that it is caused by model
assumptions and evaluation schemes, where the oversimplified
likelihood function (e.g., iid Bernoulli or iid Gaussian) assumed
in the VAE model affects the judgment of the data distribution of
the ID inputs (Bütepage et al., 2019). However, the true likelihood
function is often unknown and more complicated, which has
certain deviations from the assumed one. In some datasets, local
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valuations with the approximated posterior can lead to overcon-
idence. Nalisnick et al. conjecture that the high-likelihood region
onflicts with the typical set of the model (Nalisnick et al., 2019b).
errà et al. posit that the complexity of the input data will have
strong impact on likelihood-based models (Serrà et al., 2020).
Many approaches have been studied to solve the OOD detec-

ion problem in generative models. Some studies have suggested
hat likelihood models with reliable uncertainty estimates may
elp improve OOD detection (Choi et al., 2018; Nalisnick et al.,
019a). In addition, noise contrastive priors (NCPs) are a specific
rior in the data space for neural networks, encouraging network
eights to not only explain the ID inputs, but also capture the
igh uncertainty of OOD samples (Hafner, Tran, Irpan, Lillicrap, &
avidson, 2018). Thus, NCPs might help the uncertainty estimates
f the OOD data. Inspired by these two viewpoints, we propose
novel method, named Improved Noise Contrastive Priors Vari-
tional Auto-encoder (INCPVAE), to allow VAE models to obtain
eliable uncertainty estimates thereby solving the OOD detection
roblem. Although the original NCPs are often applied to classifier
odels, they cannot be directly applied to the VAE framework.
herefore, we have to improve the loss function of NCP (called the
mproved NCP, INCP) to make it suitable for the VAE framework.
he INCP is integrated into the encoder of VAE, so that OOD
amples can be generated by adding Gaussian noise to the origin
D inputs. Since using the simple likelihood function of VAE often
eads to poor performance on OOD detection tasks, we exploit the
NCP-KL divergence of INCPVAE, rather than the likelihood, for
etecting OOD inputs. Our experiments show that compared to
he traditional VAEs, our INCPVAE can reduce the overconfidence
hen facing OOD data and obtain better performances of OOD
etection. The main contributions of this paper are as follows:

• We propose an improved noise contrastive prior to fit the
VAE framework (Section 3.3). To the best of our knowledge,
this is the first work to use the noise contrastive prior to
obtain reliable uncertainty estimates in unsupervised gen-
erative models.

• We present a tailored metric (the ELBO Ratio) in the INCP-
VAE framework to estimate the uncertainty (Section 3.4),
which can achieve reliable uncertainty estimation and en-
hanced robustness (Section 4.2).

• We propose a novel OOD detection method by using the
INCP-KL ratio of INCPVAE (Section 3.5). Through a number of
experiments on the challenging OOD cases, we demonstrate
that INCPVAE can learn the true characterization of OOD
inputs, and achieves state-of-the-art (SOTA) performance in
OOD detection (Section 4.3).

. Related work

OOD detection: There are many neural network tools that can
e used to perform pattern recognition, image classification, and
OD detection tasks, such as spike neural networks (Liu, Pan,
uan, Xing, Xu, & Tang, 2020; Maciag, Kryszkiewicz, Bembenik,
obo, & Ser, 2021; Xu, Qi, Yu, Shen, Tang, & Pan, 2018) and
onvolutional neural networks (Lee, Lee, Lee, & Shin, 2018a; Xu,
hang, Gu, & Pan, 2019). The OOD detection permits a system
o reject a novel input rather than assigning it an incorrect la-
el; therefore the ability to detect OOD data is essential for
achine learning models. From the algorithm perspective, there
re two categories of mainstream approaches for OOD detec-
ion, (i) the supervised/discriminative approaches and (ii) the
nsupervised/generative approaches (Daxberger & Hernández-
obato, 2019). Most existing methods belong to the supervised
odel. For example, the classifiers are trained by both the OOD
ata and ID data to learn a decision boundary between ID and
OD inputs, which can be used for OOD detection. Liang et al.
200
present an OOD detector with neural networks (called ODIN)
which uses softmax function to maximize the difference be-
tween likelihoods of ID data and OOD data, while the model
parameters are tailored to each OOD source (Liang, Li, & Srikant,
2018). Lakshminarayanan et al. propose an ensemble method
for OOD detection, which independently trains multiple models
with random initializations of network parameters and randomly
shuffled training inputs (Lakshminarayanan, Pritzel, & Blundell,
2017). Some previous studies show that these supervised meth-
ods can to some extent prevent the poorly-calibrated neural
networks from incorrectly high-confidence on OOD inputs (De-
Vries & Taylor, 2018; Lakshminarayanan et al., 2017; Liang et al.,
2018). This capability can be used in various applications, includ-
ing anomaly detection (Hendrycks & Gimpel, 2017; Pidhorskyi,
Almohsen, Adjeroh, & Doretto, 2018; Vyas et al., 2018) and ad-
versarial defense (Song, Shu, Kushman, & Ermon, 2018). However,
these methods can only be applied to task-dependent scenarios.
This is a severe limitation, for the anomalous data in real-world
applications rarely knows in advance.

In contrast, the unsupervised approaches aim to solve the
OOD detection problem by training deep generative models in
a more general manner, among which density estimation is
widely applied (Kingma & Dhariwal, 2018; Oord, Kalchbrenner,
& Kavukcuoglu, 2016). For example, Choi et al. use generative
model with Watanabe–Akaike information criterion (WAIC) for
detecting OOD (Choi et al., 2018). Although this work performs
well in practice, it does not explicitly solve the problem of typi-
cality (Choi et al., 2018; Nalisnick et al., 2019b). Denouden et al.
propose a method that incorporates both reconstruction loss and
the Mahalanobis distance (Lee et al., 2018a) in the latent space
as an OOD detection score (Denouden et al., 2018). Ren et al.
propose a likelihood ratio method for deep generative models
to detect the OOD data (Ren et al., 2019). Zhang et al. studied
the intrinsic robustness of typical image distributions by using
conditional generative models (Zhang, Chen, Gu, & Evans, 2020).
They proved a fundamental bound on the intrinsic robustness,
that is, the underlying data distribution can be captured by a
conditional generative adversarial network. However, as men-
tioned, the likelihood estimation in deep generative models are
not reliable for OOD detection. Many studies have attempted to
explain the reasons and seek the solutions (Bütepage et al., 2019;
Nalisnick et al., 2019b; Serrà et al., 2020). So far, an efficient and
robust solution for OOD detection is still missing and urgently
needed.

Uncertainty estimation: Uncertainty estimation is highly as-
sociated with OOD detection. The goal of uncertainty estimation
is to generate a calibrated confidence measure for the predicted
distribution which can be used in the OOD detection. The un-
certainty estimation in MC Dropout (Gal & Ghahramani, 2016),
Deep-Ensemble (Lakshminarayanan et al., 2017) and ODIN (Liang
et al., 2018) involves presenting a calibrated predictive distri-
bution by classifiers. Alternatively, variational information bot-
tleneck (VIB) conducts OOD detection via divergence estimation
in latent space (Alemi, Fischer, & Dillon, 2018). However, these
existing methods are model-dependent and rely heavily on task-
specific information to obtain a comprehensive estimate of uncer-
tainty. Therefore, a more general and task-independent method is
of high needs.

Recent studies have suggested that likelihood models with
reliable uncertainty estimation can help to mitigate the high OOD
likelihood problem for generative models in a task-independent
manner (Choi et al., 2018; Nalisnick et al., 2019a). For example,
Meronen et al. studied the influence of neural network activation
functions and the Matérn family of kernels on the uncertainty
estimation (Meronen, Irwanto, & Solin, 2020). Moreover, as an
influential and generally-used class of likelihood-based genera-
tive models in unsupervised learning, VAEs may be a good OOD
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Fig. 1. Generating OOD samples by adding Gaussian Noise to the baseline data.
The baseline data is sample from the original image dataset (e.g., FashionMNIST,
MNIST, CIFAR10, SVHN). We add the Gaussian Noise at three levels to generate
the OOD sample with different complexity. The Baseline + Noise is the
enerated OOD sample.

etector. It assumes that the model assigns higher likelihoods to
he samples from the ID data than the OOD data. NCPs can inject
ariability or insensitivity into the model especially into regions
hat do not exhibit that otherwise after training. In this sense,
CPs can be considered as a part of model specification to get bet-
er estimation of uncertainty and therefore help model inference.
n this study, we provide a novel hybrid framework that bridges
CPs with VAEs and generates OOD data by adding Gaussian
oise, to help both the reliability of uncertainty estimation and
odel independence in OOD detection.

. Method

.1. Improved noise contrastive priors

NCPs has been proposed to obtain reliable uncertainty esti-
ates by employing an input prior to the ID inputs x and OOD

nputs x̃ and an output prior which is a wide distribution given
hese inputs (Hafner et al., 2018). However, NCPs are not suitable
or VAE framework. In this work, we modify the loss function
o make the original NCPs fit the VAE framework, to obtain
ncertainty through the VAE model. We add Gaussian noise to
D images to generate OOD data.

Generating OOD Inputs: OOD samples can be generated by
ampling from the distribution boundary of the ID data with
igh uncertainty (Lee et al., 2018b). Inspired by noise contrastive
stimation (Gutmann & Hyvärinen, 2010; Mnih & Kavukcuoglu,
013), Hafner et al. (2018) proposed a NCP-based algorithm,
here a complement distribution is approximated by random
oise. To obtain OOD inputs x̃, we add Gaussian noise ϵ into the
ontinuous ID inputs x, formulated as x̃ = x + ϵ (See Fig. 1). The
arginal distribution of OOD inputs po(x̃) is derived in Eq. (1) as

ollows:

po(x̃) =

∫
x
pi(x)N

(
x̃ − x | µ, σ 2I

)
dx, (1)

here pi(x) denotes the distribution density of ID inputs; µ and
2 are the mean and variance of Gaussian noise, respectively.
n order to make the noise contrastive prior homogeneous in all
irections of the data manifold, we set µ = 0. The variance σ 2 is a
yperparameter to tune the sampling distance from the boundary
f the training ID distribution. The higher the variance σ 2, the
igher the complexity of OOD inputs.
Data Priors: The data priors consist of an input prior p(x) and

n output prior p(z|x). To obtain a reliable uncertainty estimation
y the VAE model, appropriate input priors (including a prior on
OD inputs) should be set. A good output prior should be a high-
ntropy distribution, which serves as the high uncertainty of the
AE’s target output for a given OOD input. The data priors in our
odel are listed as follows:
OOD input prior: p̃(x̃) = po(x̃) ( 2 ) (2)
OOD output prior: p̃(z̃ | x̃) = N z̃ | µx̃, σx̃ I ,

201
here po(x̃) is the prior distribution of OOD inputs; µx̃ and σ 2
x̃ are

he hyperparameters of OOD output priors to tune the mean and
he uncertainty in the target outputs.

Loss Function: KL divergence is not symmetric, and it has a
orward version and a reverse version (Zhang, Bird, Habib, Xu,
Barber, 2019). In the original NCPs (Hafner et al., 2018), both

he difference metrics between the distribution p(z | x) and
θ (z | x) and between p̃(z̃ | x̃) and qθ (z̃ | x̃) adopt the forward
L divergence. However, the VAE uses the reverse KL divergence
s its basic metric in loss function, which leads to the inconsis-
ency in optimization strategy and direction. Therefore, this poses
n intractable challenge for constructing a unified optimization
ramework by incorporating NCP organically, where the forward
L divergence is not compatible for VAE. To better tackle the
hallenge and incorporate the NCP into the VAE framework, we
roposed the improved NCP (INCP) method by integrating the
everse KL divergence into the NCP. To train INCPs, we modify
he loss function as follows:

L(θ ) = Eqθ (z|x)
[
DKL [qθ (z | x) || p(z | x)]

]
+ γ Eqθ (z̃|x̃)

[
DKL

[
qθ (z̃ | x̃) || p̃(z̃ | x̃)

]]
,

(3)

where p̃(z̃ | x̃) denotes OOD data priors, θ is the parameter
of neural network. A hyper-parameter γ denotes the trade-off
between the ID and OOD output priors. INCPs can be trained
by minimizing this loss. Notice that in Eq. (3), by minimizing
the reverse KL divergence in the first term, the neural network
is trained to suit for the true ID data outputs prior. And an
analogous term on the OOD data outputs prior is added in the
second term. This loss function simultaneously optimizes the ID
and OOD outputs prior for two distinct targets (i.e., the true ID
data outputs prior & the assumed OOD data outputs prior). In
contrast, the origin NCP loss (Hafner et al., 2018) hardly integrates
the ID and OOD conditional distribution into one target in the VAE
framework.

3.2. Variational autoencoder

VAEs (Kingma & Welling, 2014; Rezende et al., 2014) are
a class of latent variable models optimized by the maximum
marginal likelihood of an observation variable. The marginal like-
lihood p(x) can be written as follows:

log p(x) =Ez∼qθ (z|x)[log pφ(x | z)] − DKL[qθ (z | x) ∥ p(z)]
+ DKL[qθ (z | x) ∥ p(z | x)],

(4)

where p(z) and p(z | x) are the ID input/output priors (e.g., Vamp
Prior Tomczak & Welling, 2018, Resampled Prior Bauer & Mnih,
2019). In this study, p(z) is instantiated by a standard normal
distribution, and p(z | x) is the true posterior distribution cor-
responding to p(z). The encoder qθ (z | x) and the decoder pφ(x |

z) are modeled by two neural networks parameterized with θ ,
φ, respectively. Specifically, qθ (z | x) represents the variational
posterior (the encoder) which is implemented by a Gaussian
distribution, and pφ(x | z) is the generative model (the decoder)
which is implemented by a Bernoulli distribution.

However, the true posterior p(z | x) cannot be computed
analytically. Assuming that the variational posterior qθ (z | x)
has a arbitrarily high-capacity for modeling, qθ (z | x) can learn
to approximate the intractable p(z | x) and the reverse KL
divergence between qθ (z | x) and p(z | x) goes to zero. Thus,
we train the VAE with ID samples, or OOD samples, to maximize
the following objective variational evidence lower bound, which
are called ELBOI for ID samples, and ELBOO for OOD samples.

ELBOI (φ, θ ) = Ez∼qθ (z|x)[log pφ(x | z)] − DKL[qθ (z | x) ∥ p(z)]
(5)
ELBOO(φ, θ ) = E z̃∼qθ (z̃|x̃)[log pφ(x̃ | z̃)] − DKL[qθ (z̃ | x̃) ∥ p̃(z̃)]
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here qθ (z | x) and qθ (z̃ | x̃) are the variational posteriors which
pproximate the true posteriors (i.e., p(z | x) and p̃(z̃ | x̃)), given
he ID input x̃ and the OOD input x, respectively. For a given
ataset, the marginal likelihood p(x) is a constant. Substituting
q. (5) to Eq. (4), we obtain

log p(x) = ELBOI (φ, θ ) + DKL[qθ (z | x) ∥ p(z | x)] = const. (6)

From Eq. (6), it is obvious that maximizing ELBOI is equivalent
o minimizing the KL-divergence between qθ (z | x) and p(z |

). Likewise, maximizing ELBOO is equivalent to minimizing the
everse KL divergence between qθ (z̃ | x̃) and p̃θ (z̃ | x̃).

.3. INCP variational autoencoder

INCPVAE consists of an encoder and a decoder, and the INCPs
re imposed on the encoder network of VAE. The INCPVAE is
rained on both ID and OOD inputs by minimizing ELBOI and
LBOO as shown in Eq. (5). We define the total ELBO of INCPVAE,
LBOINCP (φ, θ ), as follows,

LBOINCP (φ, θ ) = ELBOI (φ, θ ) + γ ELBOO(φ, θ ), (7)

here the hyper-parameter γ is a setting as a trade-off between
LBOI and ELBOO.
We assume the variational posterior qθ (z | x) for ID inputs

as high-capacity for modeling, then true posterior p(z | x) can
e approximated by qθ (z | x). Since the OOD outputs prior p̃(z̃ | x̃)
s defined in Eq. (2), the true OOD data posterior p̃(z̃ | x̃) is:

p̃(z̃ | x̃) = N
(
z̃ | µx̃, σ

2
x̃ I

)
, (8)

where µx̃ = µx and (µx ∼ qθ (z | x)); σ 2
x̃ is a hyper-parameter

to tune the uncertainty in the outputs. The higher σ 2
x̃ , the higher

the output uncertainty. The reverse KL divergence between qθ (z̃ |

x̃) and p̃(z̃ | x̃) (called INCP-KL) becomes tractable and can
be analytically computed. From Eq. (7) , maximizing the ELBO
of INCPVAE can be replaced by minimizing the following loss
function:

LINCPVAE(φ, θ ) = −ELBOI (φ, θ ) + γ DKL[qθ (z̃|x̃) ∥ p̃(z̃|x̃)]  
INCP−KL Loss

(9)

Notably, the first term in Eq. (9) minimizes the negative ELBOI ,
hich is equivalent to maximizing ELBOI . The second term in
q. (9) minimizes INCP-KL for OOD data, which is equivalent to
aximizing ELBOO, according to Eq. (6). In this study, we set the
yperparameter γ = 1.

.4. Metrics for uncertainty estimation: ELBO ratio

We proposed the objective variational evidence lower bound
atio (ELBO Ratio) for an uncertainty estimation metric of VAE.
ccording to Eq. (5), we compute the ELBO of each ID sample and
ind the maximum one (called ELBOI (xmax)). The ELBO Ratio for
nput data x0, U(x0), is defined as

U(x0) =
ELBO(x0)

ELBOI (xmax)
, (10)

The ELBO ratio U(x0) measures the degree of uncertainty on data
x0. The greater U(x0), the higher uncertainty x0.

3.5. OOD detection based on INCP-KL ratio

INCP-KL ratio: The likelihood of VAE has been used for OOD
detection. However, it is reported that the OOD inputs have a
higher likelihood than ID inputs that occur in some datasets
(e.g., FashionMNIST vs MNIST, CIFAR10 vs SVHN). To solve this
problem, Likelihood Ratios for OOD detection has been pro-
posed (Ren et al., 2019). In Eq. (9), the second term of the
202
INCPVAE loss is the reverse KL divergence between the OOD
variational posterior (qθ (z̃|x̃)) and the true OOD posterior (p̃(z̃|x̃)),
which is called INCP-KL. We find that INCP-KL of the OOD test
samples (e.g., Baseline + Noise, in Fig. 1) is smaller than the ID
samples from other distribution. Inspired by it, we use the INCP-
KL Ratio for OOD detection. We calculate the INCP-KL divergence
for all OOD training samples x̃ in the OOD dataset, and then find
the OOD sample with maximum INCP-KL (called OODmax). The
INCP-KL Ratio for input data x0, KLR(x0), is defined as

OODmax = argmax
x̃

DKL[qθ (z̃|x̃) ∥ p̃(z̃|x̃)]

KLR(x0) =
DKL[qθ (z0|x0) ∥ p̃(z̃|x̃)]

DKL(OODmax)

(11)

here DKL(OODmax) is INCP-KL divergence of the OOD sample,
OODmax.

OOD detection criterion: The OOD detection based on INCP-
L Ratio is as follows:

Label(x0) =

{
0, if KLR(x0) > α

1, if KLR(x0) ≤ α
(12)

here α is the decision threshold. In our study, we set α = 1.
abel(x0) = 1 represents that the test sample x0 is detected as
OD data; Label(x0) = 0 represents that x0 is detected as ID data.

. Experiments and results

.1. Experimental settings

To evaluate our method and compare with other existing
ethods, we conduct experiments on multiple datasets. There are

wo tasks involved in the experiments: the uncertainty estima-
ion task and the OOD detection task.

To obtain the ground-truth OOD data, we synthesize OOD
ata by adding Gaussian noise to the baseline data (ID data), as
ection 3.1 described. The baseline data are from FashionMNIST,
NIS, CIFAR10 and SVHN. Three levels of Gaussian noise (µ =

, σ = σ0, σ1, σ2) are generated to represent three levels of
ncertainty in OOD data. The detailed settings of the baseline ID
ata and the synthesized OOD data are in Appendix A.
To replicate the OOD phenomenon in VAE models, we conduct

he likelihood tests of ID and OOD data, following the exper-
mental settings in Nalisnick et al. (2019a) (Details are shown
n Appendix B). Specifically, we train the traditional VAE on the
raining set (ID samples) and compute the likelihoods of 1000
andom samples from the test set (including both ID samples and
heir corresponding OOD samples). We exhibit the histogram of
he marginal likelihoods of the 1000 tests on VAE (Fig. B.6).

In the uncertainty estimation task 1, we set the standard
eviation as the noise level to control the deviation of OOD
ata from the original data distribution. We run experiments on
ashionMNIST, MNIST, CIFAR10, SVHN datasets, respectively. VAE
nd INCPVAE are trained with the data from the training sets,
nd then run the inference process with the test samples (OOD
ata with four levels of noise). The test samples are unseen by
odels during training process. We calculate the ELBO ratio of

he traditional VAE and INCPVAE to estimate the uncertainty on
hese four datasets. The ELBO ratio is introduced in Section 3.5.
oth the ELBO ratio of traditional VAE and INCPVAE are calculated
or 1000 random samples from the testing sets. We then compare
he ELBO ratio from INCPVAE and VAE (Fig. 2).

In the uncertainty estimation task 2, we train the model on
ashionMNIST dataset, and compare the uncertainty estimation
f INCPVAE and standard VAE on FashionMNIST (as ID data) and
NIST (as OOD data). This procedure tests whether the capa-
ility of uncertainty estimation in one specific data set can be
ransferred to another dataset. The results are shown in Fig. 3.
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Fig. 2. Results of the uncertainty estimation task 1. The estimated uncertainty (ELBO ratio, U(x)) from the INCPVAE and traditional VAE model on (a) FashionMNIST,
(b) MNIST, (c) CIFAR10, (d) SVHN dataset are presented. Four levels of noise are tested.
Fig. 3. Results of the uncertainty estimation task 2. The INCPVAE and VAE models are trained on FashionMNIST data, and tested on both FashionMNIST and MNIST.
a) The boxplot of the estimated uncertainty (ELBO ratio, U(x)) from the INCPVAE and traditional VAE model on FashionMNIST and MNIST data. (b) The histogram
f the estimated uncertainty from the INCPVAE and traditional VAE model on FashionMNIST and MNIST.
In the OOD detection task, we apply the INCP-KL Ratios (de-
ined in Section 4.3) as a criterion for OOD detection using IN-
PVAE model. The tasks are conducted on four pairs of datasets
the training set and the test set). Specifically, we train INCPVAE
nd VAE with the samples only from the training set and then
ompute INCP-KL Ratios of 1000 random samples from the OOD
est set. More details about the settings for OOD detection task are
n Appendix B. We quantify the performance of OOD detection
ask with INCP-KL Ratios (See results in Fig. 4). Moreover, we
ompare INCPVAE method with 7 existing OOD detection meth-
ds, including two likelihood ratio methods, ONID, Mahalanobis
istance method, Ensemble method, and WAIC method. We com-
are INCP-KL of INCPVAE and likelihood of VAE, as well as other
aseline methods. The area under the ROC curve (AUROC) and the
rea under the precision–recall curve (AUPRC) are used as metrics
or performance evaluation (See results in Tables 1 and 2).
203
More details related to the network architecture and imple-
mentation are shown in Appendix C. The code will be available
at GitHub.

4.2. Results of uncertainty estimation

From Fig. 2, we obtained reliable patterns from these four
datasets. When the testing data is drawn without additional
perturbations (the noise level is 0), INCPVAE and VAE model
present similar uncertainty, suggesting that our model is con-
sistent with standard VAE when it is applied to the ID data. As
the noise level increases from 0.01 to 0.1, the INCPVAE-estimated
uncertainty of the OOD samples gradually increases in all four
datasets, whereas the VAE-estimated uncertainty only shows a
slight increase in FashionMNIST dataset and maintains unchanged
in the other 3 datasets (MNIST, CIFAR10 and SVHN). These results
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Fig. 4. The INCP-KL ratio of the INCPVAE in the OOD Detection task. The INCPVAE model is (a) trained on FashionMNIST (ID training set) and FashionMNIST + Noise
OOD training set), and tested on FashionMNIST (ID test set) and MNIST (OOD test set); (b) trained on FashionMNIST + Noise (ID) and FashionMNIST (OOD), and
ested on FashionMNIST + Noise (ID) and MNIST (OOD); (c) trained on CIFAR10 (ID) and CIFAR10 + Noise (OOD), and tested on CIFAR10 (ID) and SVHN (OOD); (d)
rained on CIFAR10 + Noise (ID) and CIFAR10 (OOD), and tested on CIFAR10 + Noise (ID) and SVHN (OOD). The orange lines are the INCP-KL ratios for ID test data,
nd the blue lines are for OOD test data. Our results show that the INCP-KL ratios of INCPVAE can largely separate ID and OOD inputs.
T
A
l
d

emonstrate that our INCPVAE model has a strong capability
f capturing substantial peculiarity of ID and OOD data with
utstanding robustness. Furthermore, we illustrate the ELBOI (x)
rom VAE and INCPVAE in Fig. A.5, where the standard VAE and
ur INCPVAE were trained and no noise were imposed during
esting. Interestingly, we found that INCPVAE and VAE present
lmost coincident likelihood distributions in these four datasets,
mplying that INCPVAE model can reserve the generative ability
f VAE model.
Moreover, Fig. 3 showed the estimated uncertainty of the test

amples from FashionMNIST and MNIST dataset. The INCPVAE
btains higher uncertainty for the OOD data (MNIST) than the
D data (FashionMNIST) during the test step, suggesting that
ncertainty estimation of INCPVAE trained in FashionMNIST can
e successfully transferred to MNIST dataset. In contrast, VAE
howed an opposite trend, which is contradictory to the reality.

.3. Results of OOD detection

We firstly conduct the OOD detection experiments on Fash-
onMNIST and CIFAR10 datasets using a standard VAE model.
ig. B.6 depicts that the VAE model assigns the OOD data higher
ikelihoods than training ID data, replicating the nerve-wracking
nd tricky OOD problem in the likelihood models.
Fig. 4 shows the INCP-KL ratio in 4 OOD detection tests using

NCPVAE model. Specifically, in OOD test 1 Fig. 4(a), INCPVAE is
rained on FashionMNIST (as ID training set) and FashionMNIST
lus noise (as OOD training set), and then test on FashionMNIST
ID test set) and MNIST (OOD test set). In OOD test 2 (Fig. 4(b)),
NCPVAE is trained on FashionMNIST plus noise (as ID training
et) and FashionMNIST (as OOD training set), and then test on
204
able 1
UROC and AUPRC for detecting OOD inputs using our INCP-KL Ratio method,
ikelihood method and other baseline methods on FashionMNIST vs. MNIST
atasets.
Model AUROC AUPRC

INCP-KL Ratio(Baseline + Noise) 1.000 1.000
INCP-KL Ratio(Baseline) 1.000 1.000
Likelihood (Traditional VAE) 0.035 0.313
Likelihood Ratio(µ) (Ren et al., 2019) 0.973 0.951
Likelihood Ratio(µ, λ) (Ren et al., 2019) 0.994 0.993
ODIN (Liang et al., 2018) 0.752 0.763
Mahalanobis distance (Lee et al., 2018a) 0.942 0.928
Ensemble, 20 classifiers (Lakshminarayanan et al., 2017) 0.857 0.849
WAIC, 5 models (Choi et al., 2018) 0.221 0.401

Table 2
AUROC and AUPRC for detecting OOD inputs using INCP-KL Ratio method,
likelihood method, and other baselines on CIFAR10 vs. SVHN datasets.
Model AUROC AUPRC

INCP-KL Ratio(Baseline + Noise) 1.000 1.000
INCP-KL Ratio(Baseline) 1.000 1.000
Likelihood (Traditional VAE) 0.057 0.314
Likelihood Ratio(µ) (Ren et al., 2019) 0.931 0.888
Likelihood Ratio(µ, λ) (Ren et al., 2019) 0.930 0.881

FashionMNIST (ID test set) and MNIST (OOD test set). In OOD
test 3 (Fig. 4(c)), INCPVAE is trained on CIFAR10 (as ID training
set) and CIFAR10 plus noise (as OOD training set), and then test
on CIFAR10 (ID test set) and SVHN (OOD test set). In OOD test
4 (Fig. 4(d)), INCPVAE is trained on CIFAR10 plus noise (as ID
training set) and CIFAR10 (as OOD training set), and then test
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n CIFAR10 plus noise (ID test set) and SVHN (OOD test set). It
s consistent that the OOD data have higher INCP-KL ratios than
he ID data. Together, these results indicate that INCP-KL ratios
or the ID test set and the OOD test set have no overlaps, thus a
imple threshold on INCP-KL ratios can detect the OOD data.
To comprehensively compare the OOD detection performance

f different methods, we perform the OOD detection task using
NCPVAE and a variety of baseline models. Tables 1 and 2 list the
UROC and AUPRC metrics on the OOD detect tasks (FashionM-
IST vs. MNIST, and CIFAR10 vs. SVHN, respectively). Evidently,
ur model achieves the highest AUROC and AUPRC scores on both
ests, compared with other baseline methods.

. Discussion and conclusion

In this study, we have proposed a novel VAE model, called
NCPVAE, for reliable uncertainty estimation and OOD detection.
pecifically, we firstly improve the noise contrastive prior, called
NCP, to be suitable for VAE models, and then present a hybrid
ethod combining INCP with the encoder of VAE framework.
sing INCPVAE model, OOD samples can be generated by adding
aussian noise into the ID samples; therefore, INCPVAE model
an be jointly trained with ID data and OOD data. We define a
ew metric (ELBO Ratio) for uncertainty estimation and a new
OD detection criterion which is based on INCP-KL Ratio.
We reproduced the results that traditional VAE easily assigns

igher likelihoods for OOD samples than ID samples (Fig. B.6).
hese results suggest that the likelihood in traditional VAEs is not
good metric to detect the OOD data, which is consistent with
revious studies (Choi et al., 2018; Hendrycks et al., 2019; Lee
t al., 2018b; Nalisnick et al., 2019a, 2019b) and the model with
eliable uncertainty estimation can improve the performance of
OD detection. Firstly, we proposed a new metric, ELBO Ra-
io. The result of the uncertainty estimation task 1 across four
atasets (Fig. 2) demonstrates that ELBO Ratio increases as the
oise increases. The uncertainty estimation task 2 shows that
NCPVAE trained with FashionMNIST data can accurately estimate
he uncertainty in MNIST data, whereas the VAE model failed
o transfer the uncertainty information (Fig. 3). Together, these
esults indicate that ELBO Ratio can reliably index the uncertainty
n the input data.

Secondly, we proposed a metric called INCP-KL ratio to detect
OD data. A simple threshold on INCP-KL ratios (e.g. α = 1 in

Eq. (12)) can be used to detect OOD data in INCPVAE model.
The results of OOD detection task demonstrate that our model
achieves SOTA performance to differentiate OOD and ID data,
compared with baseline methods (Tables 1 and 2). INCPVAE
model, as a model-independent method to OOD detection, paves
a way for future VAE applications on OOD detection. Also, INCP-
VAE can be easily extended to anomaly detection and adversarial
example detection.

Despite the advantages of our work, there are still some lim-
itations and future work worth mentioning. We only focused on
the uncertainty estimation and OOD detection using VAE model
in this study. It is interesting to extend INCP to other generative
models, such as GAN. Moreover, we generate OOD data by adding
Gaussian noise to ID data, which cannot capture the characteris-
tics of the OOD data in the real applications. Other methods to
generate appropriate OOD inputs are worthy of investigation; for
example, using GAN to generate OOD data (Lee et al., 2018b). The
realistic OOD data can help to train INCPVAE models, as it can
be potentially used to generate priors of INCPVAE. Alternatively,
adversarial examples (Goodfellow, Shlens, & Szegedy, 2015) may
also be used to train INCPVAE, in order to enhance robustness of
VAE.

In summary, we integrate INCP into VAE framework to solve
the problem that the OOD detection techniques for deep gener-
ative models are hardly transferred to VAEs (Xiao, Yan, & Amit,
2020).
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Table A.3
Baselines are FashionMNIST, MNIST, CIFAR10,SVHN. Noise is generated by
Gaussian Noise(µ, σ 2), where µ = 0, σ = σ0, σ1, σ2 .
Dataset VAE INCPVAE

ID training set Baseline Baseline
OOD training set – Baseline + Noise(σ1)

ID testing set Baseline Baseline
OOD testing set0 Baseline + Noise(σ0) Baseline + Noise(σ0)
OOD testing set1 Baseline + Noise(σ1) Baseline + Noise(σ1)
OOD testing set2 Baseline + Noise(σ2) Baseline + Noise(σ2)

Table A.4
The levels of noises added to four baseline datasets. Noise is generated by
Gaussian Noise(µ, σ 2), where µ = 0, σ = σ0, σ1, σ2 .
Noise level FashionMNIST MNIST CIFAR10 SVHN

σ0 0.0001 0.001 0.01 0.001
σ1 0.00028 0.008 0.05 0.009
σ2 0.1000 0.010 0.10 0.010

Table A.5
True OOD posterior of INCPVAE p̃(z̃ | x̃) is employed by Gaussian distribution
N (µx̃, σ

2
x̃ ).

Dataset Uncertainty level (σx̃)

FashionMNIST e0.65

MNIST e0.65

CIFAR10 e1.00

SVHN e1.00
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Appendix A. Settings for uncertainty estimation

In this section, we introduce detailed settings for uncertainty
estimation. To evaluate uncertainty estimation from the tradi-
tional Variational Auto-encoder (VAE) and from the Improved
Noise Contrastive Priors VAE (INCPVAE), we train VAE on in-
distribution (ID) training set and INCPVAE on the ID and out-
of-distribution (OOD) training set. Then we test both of VAE
and INCPVAE on ID testing set and OOD testing set0/set1/set2,
respectively. See full lists in Table A.3. The OOD training set and
testing set0/set1/set2 are generated by adding three levels of
Gaussian noise to the baseline (See Table A.4).

For each image dataset, the true OOD posterior of INCPVAE (or
OOD data output prior) is assumed by Gaussian distribution with
a specific variance (See Table A.5), which represents that these
four datasets have various uncertainties.
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Fig. A.5. The histogram of the ELBO of the ID data, ELBOI (x), for VAE and INCPVAE. (a) FashionMNIST, (b) MNIST, (c) CIFAR10, (d) SVHN dataset. These results
demonstrate that INCPVAE has similar ELBOI (x) with VAE.
able A.6
atasets: VAE for OOD detection.
Exp ID training set ID test set OOD test set

Exp1 FashionMNIST FashionMNIST MNIST
Exp2 CIFAR10 CIFAR10 SVHN

Appendix B. Settings for OOD detection

In this section, we introduce detailed settings of OOD detec-
ion experiments. Firstly, following the most challenging exper-
ment reported by Nalisnick et al., we train VAE on ID training
et and test on ID and OOD testing set (See Table A.6). Secondly,
o evaluate the OOD detection of INCPVAE, we train INCPVAE on
he ID and OOD training set, and test INCPVAE on OOD testing set
nd OOD testing set1 (See Table A.7). The ID and OOD training set,
s well as the OOD testing set, are generated by adding Gaussian
oise with three levels to baseline (See Table B.8).
For different datasets, the true OOD posterior of INCPVAE (or

OD data output prior) is Gaussian distribution with different
ariance (See Table B.9), which represents that different datasets
ave different uncertainties.
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Table B.8
Datasets for INCP-KL Ratios of INCPVAE. Noise is generated by Gaussian
Noise(µ, σ 2), where set µ = 0, σ = σ3, σ4 .
Dataset Noise level (σ3) Noise level (σ4)

FashionMNIST 0.00028 0.00050
CIFAR10 0.05000 0.09000

Table B.9
True OOD posterior of INCPVAE p̃(z̃ | x̃) is employed by Gaussian distribution
N (µx̃, σ

2
x̃ ).

Dataset Uncertainty level (σx̃)

FashionMNIST e0.65

CIFAR10 e1.00

Appendix C. Settings for implementation detail

In the experiments, VAE and INCPVAE are trained on Fash-
ionMNIST and CIFAR10. All models are trained with images nor-
malized to [0, 1] on 1 × NVIDIA TITAN RTX GPU. In all experi-
ments, VAE and INCPVAE consist of an encoder with the archi-
tecture given in Table B.10 and a decoder shown in Table C.11.
Table A.7
Datasets for INCP-KL Ratios of INCPVAE. Fashion is short for FashionMNIST.
Exp ID training set OOD training set OOD test set1 OOD test set2

Exp1 Fashion Fashion + Noise(σ3) Fashion + Noise(σ3) MNIST
Exp2 Fashion + Noise(σ4) Fashion Fashion MNIST
Exp3 CIFAR10 CIFAR10 + Noise(σ3) CIFAR10 + Noise(σ3) SVHN
Exp4 CIFAR10 + Noise(σ4) CIFAR10 CIFAR10 SVHN
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Fig. B.6. The histogram of the marginal likelihood of the VAE. (a) VAE trained on FashionMNIST (ID), and tested on FashionMNIST and MNIST (OOD); (b) VAE trained
on CIFAR10 (ID), and tested on CIFRAR10 (ID) and SVHN (OOD). The orange lines are for ID data, and the blue lines are for OOD data.
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Table B.10
Encoder architecture. This architecture was used for VAE and INCPVAE trained
on FashionMNIST with linear layer units 3136 and CIFAR10 with 4096.
Operation Kernel Stride Features Padding

Input – – – –
Convolution 5 × 5 2 × 2 256 0
Convolution 5 × 5 2 × 2 32 0
Convolution 5 × 5 1 × 1 32 0
Dense – – 3136/4096 –

Table C.11
Decoder architecture. This architecture was used for VAE and INCPVAE trained
on FashionMNIST with linear layer units 3136 and CIFAR10 with 4096.
Operation Kernel Stride Features Padding

Input z – – – –
Dense – – 3136/4096 –
Dense – – 1568/2048 –
Transposed Convolution 5 × 5 1 × 1 32 0
Transposed Convolution 5 × 5 2 × 2 256 0
Transposed Convolution 5 × 5 2 × 2 3 0

Both VAE and INCPVAE use Leaky Relu activation function. We
train the VAE for 200 epochs with a constant learning rate 1e−4,
meanwhile using Adam optimizer and batch size 64 in each
experiment.
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