An Exploration and Navigation Approach For Indoor
Mobile Robots Considering Sensors’ Perceptual

Limitations

Leonardo Romero!, Eduardo F. Morales? and Enrique Sucar?
1 UMSNH, Morelia, Mich., 52000, Mexico
2 ITESM Campus Cuernavaca, Mor., 62589, Mexico
Iromero@umich.mx, {eduardo.morales,esucar }@itesm.mx

Abstract

To learn a map of an environment a mobile robot has
to explore its workspace using its sensors. Sensors are
noisy and have perceptual limitations that must be
considered while learning a map. This paper con-
siders a mobile robot with sensor perceptual limita-
tions and introduces a new method for exploring and
navigating autonomously in indoor environments. To
minimize the risk of collisions as well as to not exceed
the range of sensors, we introduce the concept of a
travel space as a way to associate costs to grid cells of
the map, based on distances to obstacles. During ex-
ploration the mobile robot minimizes its movements
(including rotations) to reach the nearest unexplored
region of the environment, using a dynamic program-
ming algorithm. This method merges robustness of a
local method (like wall following) with an optimality
criteria of a global search. Once the exploration ends,
the travel space is used to form a roadmap, a net of
safe roads that the mobile robot can use for naviga-
tion. These exploration and navigation method are
tested using a simulated and a real mobile robot with
promising results.

Keywords: Mobile Robots, Map Building, Mobile
Robot Navigation, Probabilistic Grid-based Maps.

1 Introduction

This paper introduces an exploration approach for
an indoor mobile robot using its sensors, to learn
a Probabilistic Grid-based Map (PGM) [Elfes, 1989,
Moravec, 1988, Thrun et al., 1998] of an environ-
ment. A PGM is a two dimensional map where the
environment is divided in square regions or cells of
the same size that have occupancy probabilities asso-
ciated to them. The map learned is commonly used
by a mobile robot for navigation while it does a high
level task.

Research on exploration strategies has developed
two general approaches: reactive and model based
[Lee, 1996]. By far the most widely—used exploration
strategy in reactive robotics is wall following. Model
based strategies vary with the type of model being
used, but they are based on the same underlying idea:
go to the least—explored region [Lee, 1996).

During the exploration, the robot movements are
typically measured by an odometer and other sen-
sors can be used to reduce odometric errors. The
reduction of odometric errors in this case is known as
the position tracking problem or the local localization
problem.

In order to build useful maps, odometric errors
have to be reduced or corrected. However, given the
perceptual limitations and accuracy of sensors, odo-
metric errors can not always be reduced. Typically
sensors like sonars and cameras can detect obstacles

within a range of a few meters and their accuracy
decreases with the distance to obstacles.

There are also several successful lo-
calization methods that can estimate
the robot’s position using its sensors

[Gutmann et al., 1998, Borenstein et al., 1996].
However, most localization methods fail when the
sensors of the robot are beyond its perceptual
capability [Roy et al., 1999] (i.e., the robot is too far
from obstacles).

This paper introduces a novel approach to ex-
plore a static indoor environment. The idea is
to reach the nearest unexplored grid cell minimiz-
ing a travel cost. The travel cost takes into ac-
count the movements of the robot (including rota-
tions) and the perceptual limitations of the sensors,
and tries to maintain a fixed distance to obstacles
while the robot is moving (like a wall following strat-
egy [Lumelsky and Stepanov, 1987]). In contrast to
other methods, this approach considers rotations of
the robot besides translations.

The concept of a travel space is introduced to assign
costs to grid cells, based on distance to obstacles. An
optimal motion policy for the robot is computed us-
ing a dynamic programing algorithm, a modified ver-
sion of value iteration [McKerrow, 1991] that includes
the orientation of the robot in the representation of
the states. The optimal motion policy considers: cost
of grid cells, movements of the robot (translations
and rotations) and the nearest unexplored cells.

Once the map is complete, the travel space is also
used to obtain an efficient navigation algorithm based
on the same dynamic programming algorithm. The
idea is to reduce the number of free cells to be pro-
cessed, significantly reducing the computational cost.
A roadmap [Latombe, 1991] is built upon the travel
space, where only the cells of the roadmap are in-
cluded in the dynamic programming algorithm for
navigation.

These ideas are tested using a mobile robot simu-
lator and a real mobile robot in indoor environments.
Experiments show that the robot tries to keep a safe
distance to obstacles, minimizing the risk of collisions
with obstacles and of getting lost, and it also reduces
the number of movements (including rotations) while
it is exploring an environment and consequently re-

duces its odometric errors. This results in more ac-
curate maps.

In [Roy et al., 1999], a coastal navigation method
similar to our navigation approach is described, once
a PGM has been built. Each cell in the map contains
a notion of information content available at this point
in the map, which corresponds to the ability of the
robot to localize itself. The information content is
based on the concept of entropy and some assump-
tions are considered to reduce the complexity of the
method. Our approach generates a similar form of
coastal navigation with a simpler and more efficient
method. The incremental algorithm developed in this
paper also fits the time requirements for the explo-
ration task.

In another related work [Thrun, 1998], the proba-
bility of occupancy of a grid cell is used as a cost asso-
ciated to the cell. The motion policy, given by wvalue
iteration, does not consider rotations of the robot and
needs to be postprocessed in order to keep the robot
near to the center of narrow passages (but they do
not describe how to do that). In our approach there
is no need to modify the policy given by the value
iteration algorithm. The local guides, in the form of
costs, are inside the value iteration algorithm, so the
policy is optimal given the costs associated to cells
and the cost to move (translation and rotation) to an
adjacent cell.

The remainder of the paper is organized as fol-
lows. Section 2 describes the proposed exploration
approach. Section 3 describes the navigation method,
once the map has been built. Section 4 presents
experimental results using a mobile robot simulator
and a real mobile robot. The experiments are per-
formed using a system build upon the ideas for sen-
sor data fusion and position tracking described in
[Romero et al., 2000]. Finally, section 5 is devoted
to conclusions and future work.

2 Exploration

Sensors of the robot cover a small area around it and
they can not see through walls. If the robot is go-
ing to build a complete map it has to explore the
environment, using its sensors and moving to differ-

ent locations, until all areas are covered. Our PGM
building process does the following general steps:

1. Process the readings taken by all the sensors and
update the probability of occupancy of the cells
in the PGM (Sensor Data Fusion Step).

2. Update the travel space accordingly considering
the changes in the PGM (see Section 2.2.2).

3. Choose the next movement using value iteration
(see Section 2.3.2). If all the grid cells accessible
to the robot are explored then the map is com-
plete. Otherwise all free cells have the optimal
movement to reach the nearest unexplored cell.

4. Execute the movement of the cell associated with
the robot current position.

5. Get readings from the sensors and correct odo-
metric error (Position Tracking Step).

6. Go to the first step.

Next we briefly review steps 1 and 5, while steps 2
and 3 (the key steps of our approach) are covered in
detail.

The general idea for exploration is to move the
robot on a minimum—cost path to the nearest un-
explored grid cell [Thrun, 1998]. The minimum—cost
path is computed using value iteration, a popular dy-
namic programming algorithm. In [Thrun, 1998] the
cost for traversing a grid cell is determined by its oc-
cupancy probability, while in [McKerrow, 1991] the
cost is determined by the distance between cells (see
Chapter 8 in [Lee, 1996]).

This paper proposes a new approach that combines
local search strategies within a modified version of
value iteration described in [McKerrow, 1991]. When
the robot starts to build a map, all the cells have the
same probability of occupancy, P(O) = 0.5. A cell
is considered unexplored, when its occupancy proba-
bility is in an interval (close to 0.5) defined by two
constants [Penmin, Pemaz] (Pemin < 0.5 < Pengaz)
and ezplored otherwise. In an alternative approach
[Thrun, 1998], a cell is considered explored when it

has been updated at least once. That approach, how-
ever, does not work well when there are specular sur-
faces (i.e., using ultrasonic range sensors) in the envi-
ronment, since multiple measurements are normally
required to get reliable estimates for the probability
of occupancy of a cell.

Cells are defined as free or occupied. A cell is con-
sidered occupied when its P(O) reaches a threshold
value Po,,., and continues to be occupied while its
P(0O) does not fall below a threshold value Poyn
(where Popin < PoOmaz). It is considered free in
other case. This mechanism prevents changes in
the state of occupancy of a cell by small probabil-
ity changes. We assume that Pe,,.. < Pomin, SO an
unexplored cell is also a free cell. In this way, the
PGM becomes a binary map when cells are classified
as occupied or free. This binary map will be called
occupied—free map.

In this work, a cylindrical (circular base) robot
was used, so the configuration space (c—space)
[Latombe, 1991] can be computed by growing the oc-
cupied cells by the radius of the robot. In fact, the
c-space is extended to form a travel space. The idea
behind the travel space is to define a way to control
the exploration by a kind of wall following strategy.
Wall following is a local method that has been used to
navigate robots in indoor environments, but unfortu-
nately it can easily get trapped in loops [Lee, 1996].
The travel space together with a dynamic program-
ming technique has the advantages of both, local and
global strategies: robustness and completeness.

2.1

In this work it is considered that the robot has three
types of sensors:

Step 1: Sensor Data Fusion

Ultrasonic range sensors. In this case, let P(O;)
be the occupancy probability of the cell (x,y)
detected only by sonars.

Laser range sensors. In the same way, let P(O;)
be the occupancy probability detected only by
this type of sensors.

Maneuverability. The mere fact that a robot
moves to a location (x,y) makes it unlikely that

this location is occupied. Let P(O,,) be the oc-
cupancy probability detected by this type of sen-
SOT.

We extend the idea of sonar data fusion given in
[Howard and Kitchen, 1996] to fuse data from sen-
sors of different types. We consider a cell as occupied
if it is detected occupied by at least one sensor. In
this way, the probability that a given cell is occupied
can be estimated using a logical OR operation among
the occupancy states detected by each type of sensor:

P(0) = P(O, OR O; OR Ou) (1)

To expand the right hand side of (1), it is assumed
that the events O, O; and O,,, are statistically inde-
pendent. This assumption make sense if we consider
that the environment has obstacles like transparent
walls (detected by sonars but not by laser range sen-
sors) or thin sticks (detected by laser range sensors
but not by sonars). With this assumption, and after
some algebra, equation (1) becomes:

PO)=1~- J] a-P0:)

i=s,l,m

(2)

This expression can be used to compute the proba-
bility that a cell is occupied once we have determined
the probability that a cell is occupied by each type
of sensor. The prior probabilities P(O), are initially
set to 0.5 to indicate ignorance. This implies that
the prior probabilities for the variables associated to
each type of sensor i (i = s,l,m) for every cell are

given by:
(0.5)1/3 (3)

step are given in

PpriOT(Oi) =1-

Further details of this
[Romero et al., 2000].

2.2 Step 2: Update the travel space

First we consider the travel space due to a single oc-
cupied cell and then the general case of how to update
the travel space.

2.2.1 Travel Space: one occupied cell

Consider the travel space due to a single real occupied
cell in the occupied—free map (see Figure 1). The

Occupied cells
Warning cells
Travel cells

Far cells

Real
occupied cell

Figure 1: Travel space due to a single occupied cell.

travel space splits the cells of the occupied—free map
in four categories:

1. Occupied cells. These cells are inside the circle
given by the radius of the robot (as in the c—
space) with center in the real occupied cell. After
this expansion, the robot is considered as a single
cell.

2. Warning cells. Cells close to an occupied cell.
Let D,, be the maximum distance between a cell
of this type and its closest real occupied cell.
These cells are called warning cells because their
purpose is to warn the robot about its closeness
to an obstacle. The value of D,, takes into ac-
count the perceptual limitations of the sensors.
This value can be adjusted for more or less re-
liable sensors or for different environments (e.g.,
with many windows), changing the travel space.

3. Travel cells. Cells close to a warning cell. Let
D; be the maximum distance between a cell of
this type and its closest real occupied cell. These
cells are called travel cells because their purpose
is to suggest to the robot a path to follow.

4. Far cells. Any free cell (in the occupied—free
map) that is not a warning or a travel cell.

The idea to suggest safe paths to the robot is to
assign a high cost to far cells, a low cost to travel cells
and higher costs to warning cells.

In order to assign higher costs to warning cells
closer to obstacles, each warning cell must record,
besides its type, the distance to the nearest occupied
cell, denoted by d,in- Section 2.3.3 discusses differ-
ent types of functions to assign costs to warning cells.
For travel and far cells it is enough to record the cell’s

type.

2.2.2 Travel Space: multiple occupied cells

The travel space can be computed incrementally after
each change of state of a cell in the occupied—free
map, while the robot is exploring the environment.
The algorithm is as follows:

1. Initialization. Let all free cells in the travel space
be of type far.

2. If there is a change from free to occupied cell,
do:

e Grow the occupied cell by a radius of the
robot. Assign the type occupied to the cells
in the circle.

e Using a larger circle, compute the warn-
ing cells (see Figure 1). For each of these
cells, let d be the distance from the cell
to the center of the circle, and ¢4 be
the type of cell previously assigned to the
cell. If (toq € {travel, far}) or ((toq =
warning) and (d < dpyipn)) then assign the
type warning to the cell and set dy,i, = d.
The size of the circle depends on the per-
ceptual limitations of the sensors.

e Using a larger circle, compute the travel
cells (see Figure 1). For each of these cells,
let t,;q be the type of cell previously as-
signed to the cell. If t,;4 = far then assign
the type travel to the cell.

3. If there is a change from occupied to free cell,
do:

e Using a circle of radius Dy, equal to the
outer circle used to compute the travel cells,
assign the type far to all the cells under the
circle. In other words, it cleans the effect of
the previous occupied cell.

Figure 2: A travel space due to multiple occupied
cells. From darker to lighter: occupied cells (black),
warning cells (dark gray), travel cells (light gray), and
far cells (white).

e Consider a circle of radius 2D;. For
each occupied cell inside this circle in the
occupied—free map, repeat step 2. This step
redoes the effect of the occupied cells in its
neighborhood.

4. Repeat steps 2 or 3 until the map building pro-
cess ends.

Notice that the process to update a transition from
an occupied to a free cell is much more expensive than
the change from free to occupied. Fortunately, most
changes are from free to occupied during map build-
ing. An example of a travel space due to multiple
occupied cells is shown in Figure 2.

The travel space have the advantage of taking into
account the perceptual limitations of sensors, setting
D; and D,,. For instance, a robot with ultrasonic
sensors can set D,, = 1m and D; = 1.2m, and most
of the times the robot is going to keep close to ob-
stacles, making good measurements. Otherwise the
robot could be not able to detect all the obstacles.
Better maps are built keeping the robot close to ob-
stacles, specially with short range sensors.

Another advantage of this discrete approach, from
using a continuous function for the cost of cells, is a
more efficient and intuitive method. In our approach
only warning cells and travel cells are updated, and
not far cells. However, warning cells apply a func-
tion to compute the cost of the cell given its distance
to the nearest occupied cells (see Section 2.3.3 for a

my (O

my

m6 mz E

86 8,

m
mo 1

7 © | Q

8, 8, Y

Figure 3: If the robot executes movement m;, it turns
to orientation 6; and then it moves forward.

further discussion).

2.3 Step 3: Choose next movement

First we review the type of movements allowed for the
robot and then the approach to compute an optimal
motion policy for the robot.

2.3.1 Movements of the robot

In this work we consider that the robot can per-
form only 8 possible movements, one per cell in
its vicinity, as shown in Figure 3. If the robot
executes movement m; (1 = 0,...,7), it rotates first
(if needed) to orientation 6;, and then it moves
forward, leaving the robot with orientation 6;. A
movement m; can also be denoted by (d,d,), where
dz is the change in z (pointing to the bottom) and
dy is the change in y (pointing to the right), so the
set of valid movements can be described by M, =
{(17 0)7(17 1)7(07 1)7(_17 1)7(_17 0)7(_17 _1)7(07 _]-)7
(17 _1)}

2.3.2 Global Search

A policy to move to the unexplored cells following
minimum—cost paths is computed using the travel
space and a modified version of value iteration. Previ-
ous approaches [McKerrow, 1991, Thrun, 1998] use a
variable V associated to each cell of the map. V(z,y)

denotes the accumulated cost to travel from cell (z,y)
to the nearest unexplored cell. Because these meth-
ods does not take into account the orientation of the
robot in a given position, there is no way to prefer
movements with fewer rotations. Fewer rotations are
desirable because the path followed by the robot is
smother, requires less energy, and also the odometric
error is reduced (as shown in the experiments).

To consider explicitly rotations of the robot as
well as translations, our approach introduces a vari-
able V' for each possible orientation 0; of the robot.
Let Vi(z,y) (i =0,...,7) be the accumulated cost to
travel from cell (x,y), when the robot has orientation
0;, to the nearest unexplored cell. The new algorithm
takes into account V;(z,y) and it has two steps:

1. Initialization.

(a) Unexplored cells (z,y) are initialized with
Vi(z,y) = 0,4 = 0,...,7 (in other words,
unexplored cells are the goals for the robot
and they have null costs).

Explored cells that are free in the travel
space are initialized with Vi(z,y) = oo,
i = 0,...,7. Only these cells can change
their value in the next step.

2. Update. For all orientations of the explored free
cells do:

Vi(@,y) < mMin(m;=(de.dy))em {Vi(® +do,y +dy)

Ca((2,9), (dz, dy)) + Cy (4, 7)} (4)

where C, is a cost associated when the robot
rotates from 68; to 8;. In the experiments, C, is
proportional to the associated rotation, g, to get
6; form 6; (in units of 45°): Cy = K,g, where K,
is a constant. Term Cy((z,y), (dz,dy)) measures
the cost of moving from the cell (z,y) to the cell
(z + dz,y + dy) and is given by:

Cd((wa y): (dmady)) =
(1+C(x+ds,y +dy)) D((,), (2 + da, y + dy)) (5)

D(p1,p2) is the distance between cells p; and
p2 (e.g. 1 or v/2). C(z,y) represents the cost
associated to cell (x,y) in the travel space, based
on its type.

This update rule is iterated until the values
Vi(z,y),i=0,...,7 converge.

When the values of V;(z,y) converge, the robot
should execute the best movement, given its position
(zr,yr) and its orientation #,. The best movement
M(z.,y.,0,) is given by:

M(zr,yr,0r) ‘”‘gmm(mj:(dz,dy))eMv {Vi(zr + de,
yr +dy) + Ca((zr,yr), (da, dy)) + Cg(r,5)} (6)

Exploration ends when V;(z,y) = oo for the cell
where the robot is placed, which means that there is
no way to reach an unexplored cell.

Figure 4 illustrates this approach. The robot has
orientation 6, = 63 and movements mo and ms3 are
considered. Movement ms takes into account the
value V5 of the right cell and that the robot has to
rotate 45°. In a similar way, movement mg consid-
ers value V3 of the other cell and that the robot does
not have to rotate. If we do not punish rotations
(Cy(i,j) = 0), we only need one orientation (e.g.
V(z,y)), since all V;(z,y) have the same values. In
general, minimizing the number of rotations signifi-
cantly reduces odometric errors as it will be shown
in Section 4.

Figure 5 helps to understand the purpose of equa-
tion (5) that computes the cost to move to adja-
cent cell, instead of a simple rule like C(z + dy,y +
dy) + D((z,y), (x + dz,y + dy)) . If far cells have a cost
greater than the distance between adjacent cells and
the robot must go from cell R to goal cell G, path T}
would be the path computed using this simple rule.
Equation (5) however, gives a path like T5. When the
robot is far away from obstacles (in far cells), other
sensors are not able to reduce the odometric error
and the robot can get lost. Path T3 is better than
T because the risky part (in far cells) of path T5 is
shorter than in path 77. In other words, even when
T is longer than T7, if the robot follows T instead of

@V
QVi
(CAF
OV
@V
@V
ov
@V

N o v s

3 ® Vo
OV

.o

m Vs

O V4

ORE

© Vs

C OAL C

<< << < =<<x
OOO0OO0ELLO

B e

Figure 4: Strategy to punish orientation changes.
The robot is at the left cell with orientation V3 and
could move to the upper right cell (same orientation)
or to the lower right cell (different orientation).

T; then it is able to use sooner its sensors to correct
odometric errors.

The cost, C, of far and travel cells have fixed values
and in the next section we discuss the cost of warning
cells.

2.3.3 Costs of warning cells

At first glance, any monotonic decreasing function
to assign cost to warning cells based on its distance
dmin to the closest occupied cell, would seem to work.
However this is not the case. Figure 6 shows a path
from robot location R to goal cell G, assuming that
a linear function is used to assign costs to warning
cells. This path, however, has a high risk of collision.

Figure 7 shows two alternative paths 77 and T3
that are safer than path T3. Let Vp; be the cost
associated to path T;. The robot will prefer path
T: to path T3 if Vg > V. If the distance between
adjacent cells are 1 and v/2 (for the diagonal), Cy and
C> denote costs of warning cells, and we use equation

A

Figure 5: Paths through far cells. The robot is at
location R and two paths to reach goal location G
are shown, 77 and T5. T3 is longer but safer, because
sensors are not reliable when the robot is in far cells.

Figure 6: Using a linear function to assign costs. The
path from R to G has a high risk of collision, at the
corner. Safer paths are shown in Fig. 7.

(4) with Cy(i,j) = 0, then
(CL+1)V2+(C1+1) > (Co+1)+(C2+1)V2+(C1+1)V2

and hence

Cp > 2.41C5 +1.141 (7)
In the case of path 75, the condition is

C1 > 6.24Cy + 2.84 (8)

To minimize the risk of collisions, restrictions given
by equations 7 or 8 (for a more conservative and
safer path) should be considered in the function C
for warning cells, at least for the cells near to obsta-
cles.

Figure 7: Possible paths to go from R to G. T; and
T, are safer than T3.

2.3.4 Efficiency considerations

To reduce the time to compute a policy of move-
ments, two strategies are considered:

1. In the initialization of the wvalue iteration algo-
rithm it does not make sense to include free cells
and unexplored cells that are far away from the
robot position because they are not going to be
useful for the robot. Instead of including all un-
explored cells as goals, we only include the un-
explored cell (or cells) nearest to the robot. Fig-
ure 8 illustrates the idea to reduce the number
of cells to be included in the algorithm. Fig-
ure 8 (a) shows a situation where the robot is
in a cell R, gray cells means explored cells, and
white cells means unexplored cells. In this case
only the nearest cell m is considered. We use a
breadth first search, starting from the position of
the robot, to define the free cells to be included
in the algorithm. If the nearest unexplored cells
are in level n, in the search tree starting form
R, only free cells in levels 1,2, ...,n are included
in the value iteration algorithm (an example is
shown in Figure 8 (b)).

2. During the updating process of the value
iteration algorithm we use a bounding box
[Thrun, 1998]. The idea is to update only cells
inside a rectangle or box. In each iteration, the
box is adjusted according to the position of the

Figure 8: Reducing the number of cells to be up-
dated. (a) Only cell m is considered (top) and (b)
Only gray cells are included in the value iteration al-
gorithm (bottom).

cells that were updated in the previous iteration.
Figure 9 shows an example.

This greedy strategy of going to the nearest un-
explored cells is easy to compute and its results are
good enough (see [Koenig et al., 2001] for a compar-
ison of strategies). The new features of our approach
are to take explicit account of the actual direction of
the robot (reducing odometric errors) and an efficient
computation of safe paths (based on the cost of cells).

2.4 Step 5: Position Tracking

We apply a Markov localization framework
[Fox and Burgard, 1998] to estimate the most
probable location for the robot. The key idea of

Figure 9: Using a bounding box to update cells. If
cells U were updated in a previous iteration, next
time only gray cells inside the box are going to be
considered.

Markov localization is to compute a probability
distribution over all possible locations in the en-
vironment. Let p(L; = I) denote the probability
of finding the robot at location ! at time t. Here,
l is a location in x — y — 6; space where z and y
are Cartesian coordinates of cells and 6; is a valid
orientation. p(L;) is updated whenever:

1. The robot moves. Robot motion is modeled by
a conditional probability, denoted by pe(l|l').
Do (l|l") denotes the probability that motion ac-
tion a, when executed at I’, carries the robot to
1. po(1|l") is used to update the belief upon robot
motion:

> op Pal[)p(Ly = 1)
p(s)

p(Lit1 =1) 9)

Here p(s) is a normalizer that ensures that
p(Liy1) sums up to 1 over all [. Figure 10 shows
an example of p,(I|l"), considering that the ori-
entation of the robot is aligned to one of the 8
possible directions 8;, as it was described in a
previous section. High probability values are as-
signed to the transitions from one cell to adjacent
cells and low values to the other two cases.

2. The robot senses. When sensing s,

p(s|l)p(Ly = 1)

p(s) (10)

P(Lip1 =1) +

Here p(s|l) is the probability of perceiving s at
location I. To compute p(s|l) we apply polar

1/10
S 2/10 .
[L

L (G
Sl

v

1/10
\<::::>

Figure 10: Robot motion for one direction.

2/10'

correlations between a sensor view (a view built
using data from actual sensors) and map views
(views computed from the map and all possible
locations I). The outcome of the correlation as-
sociated to the most probable location is used to
align the robot to a valid orientation 6;.

In order to get an efficient procedure to update the
probability distribution, cells with probability below
some threshold are set to zero.

Once we know the most probable location [of the
robot, we use it in step 2 to fuse sensor data with the
map in construction. In our experiments, the robot
usually moves through five cells before it gets data
from its sensors.

We have described our method to explore and learn
a map of an environment, considering a mobile robot
with sensors’ perceptual limitations. There are sev-
eral features of the approach that make it a robust
exploration method and a better position tracker. In
particular: it (i) avoids the risk of collisions with
obstacles, (ii) avoids unnecessary rotations (reducing
odometric errors), and (iii) minimizes the risk of get-
ting lost when it is far away from obstacles (and hence
its sensors are beyond its perceptual limitations).

3 Navigation

Once the map is complete, the same algorithm used
for exploration can be used for navigation. In this
case, the goal cell takes the place of the unique unex-
plored cell (a zero value for variable V). In contrast

to the exploration phase, during navigation there is
no update of the PGM or the travel space.

A significant reduction in the number of free cells
to be updated in the value iteration algorithm can be
achieved using the travel space associated with the
built map. The key idea is to consider travel cells as
a kind of roadmap (as defined in [Latombe, 1991]),
a net of roads that the robot will use most of the
time to go from one place to another. Some issues
must be solved in order to build the roadmap and
use it for navigation. First, how to find the cells
of the roadmap when there are no travel cells in the
travel space. In narrow passages there are only warn-
ing cells and the environment can have isolated sets
of connected travel cells (see Fig. 11(a)). Second,
how to consider the uncertainty in the position of the
robot during navigation. Finally, how to handle cases
where the initial and goal position are not within the
roadmap.

The following method solves the first problem.
Given the distance D; (the distance between a travel
cell and its closest occupied cell) and a cell G of the
roadmap (i.e., a travel cell), we can apply the value
iteration algorithm to get a policy of movements to
reach cell G. Using this policy, from each warning
and travel cell there is a path of cells to the cell G.
All the cells of these paths except the first cells (con-
sidering the length D;) form the roadmap. Figure 11
(b) shows the roadmap for the travel space of Fig.
11 (a) using this method. This is a partial roadmap
because there are cells missing for each loop of the
full roadmap. Considering as the goal cell G each of
the end cells of the partial roadmap, a full roadmap
can be built adding the partial roadmaps (see Fig.
11 (c)). A cell is in the full roadmap if it is in one or
more partial roadmaps.

The second problem can be solved if the cells in the
roadmap grow in a similar form to the occupied cells
in the travel space. In this case, the robot radius is
the maximum uncertainty of the robot position.

The last problem can be handled if for each free cell
that is not in the roadmap, it is computed the dis-
tance dp,;, to the nearest cell in the roadmap (this
can be estimated using again the value iteration al-
gorithm without costs for direction changes and type
of cells, considering the cells in the roadmap as the

Figure 11: Building a roadmap. From left to right:
(a) Travel space. (b) Partial roadmap. (¢) Full
roadmap.

unexplored cells). For a given cell, the cells in a circle
of radius d,,,;;, connect the given cell to the roadmap.
This approach also solves efficiently the case of very
close initial and final positions.

The key idea of this navigation approach is to built
a roadmap from the built map. The roadmap is a net
of safe roads for the robot, like a highway for a car.
Because the roadmap is based on the travel space,
and the travel space is built considering the percep-
tual limitations of sensors, the roads in the roadmap
are easy and safe to follow. The exploration and nav-
igation are based in the same value iteration algo-
rithm, however when the robot navigates the travel
space is fixed.

Considering that the number of cells in the
roadmap is a small subset of the free cells, in the
future we plan to use the roadmap idea to solve effi-
ciently the global localization problem.

4 Experimental results

This section presents some results obtained using a
mobile robot simulator and a real mobile robot.

We consider a differential drive mobile robot. The
differential scheme consists of two wheels on a com-
mon axis, each wheel driven independently, and two
caster wheels to ensure balance. The robot has the
ability to drive straight and to turn in place.

Our mobile robot, shown in Figure 12, has an
odometer, ultrasonic sensors and a laser range sen-
sor (implemented with a laser line generator and two
cameras). The mobile robot base has a microcon-
troller MC68HC12 to control 2 sonars and 3 DC mo-

Figure 12: Mobile Robot.

tors, two for the traction wheels and one to rotate the
turret (the top part of the robot); It has a notebook
computer (pentium III 1Ghz running Linux Redhat
7.3) with a wireless network card and a serial connec-
tion with the microcontroller.

The mobile robot simulator introduces an uniform
random error of £3% on rotations and £10% on dis-
placements. When the robot moves forward, the path
followed by the robot is not necessarily in the desired
direction. The simulator introduces a uniform ran-
dom variation of +5°.

We consider a PGM with grid cells of 10x10cm?
and cells in the travel space with a cost that depends
on their type. Far cells have a cost of 600 and travel
cells have a cost of 1. Figure 13 shows the cost of
warning cells based on their distance to the nearest
obstacles (up to 100 ¢m). This assignment for the
warning cells builds a high repulsive force when the
robot is very close to obstacles, 30 cm or less, accord-
ing to Equation 7.

4.1 Exploration results

Here we present some exploration results using only
the travel space. Section 4.2 considers the effect of
punishing robot rotations.

First, we considered experiments to observe the ef-

140

L L L L ! I T
10 20 30 40 50 60 70 80 90 100

Figure 13: Cost of warning cells depends on the dis-
tance (in em) to the nearest occupied cell.

fect of using the travel space. Figure 14 (a) shows
a PGM (of about 10x10m?) built by the simulated
robot without using the travel space (i.e., assigning
null costs to warning and travel cells). The lighter
trace on the map is given by the odometer and it
shows the path followed by the robot. Note that
sometimes the robot gets very close to obstacles.

In contrast, Figure 14 (b) shows the map built us-
ing the travel space. The costs associated to cells in
the travel space implement a kind of wall following
strategy to explore the environment, as can be ob-
served in the map. Also the robot does not get too
close to obstacles even in narrow passages. Instead, in
narrow passages (where there are only warning cells)
the robot tends to maximize the clearance between
the robot and the obstacles. The map of the Fig. 14
(b) is also more accurate than the built map without
using the travel space (Fig. 14(a)). This is because
the travel space approach tends to move the robot
to positions where the sensor readings are more reli-
able and hence the position tracking algorithm gives
better estimations.

Our next experiments consider the process to build
roadmaps. The travel space associated to the map of
Figure 14 (b) is shown in Figure 15(a). Travel cells
have the lowest cost and they are represented as white
pixels. Darker pixels represent free cells with higher
costs. For this map, the full set of free cells where

Figure 14: PGMs using the mobile robot simulator.
White areas represent cells with occupancy probabil-
ities near to 0. From left to right: (a) Without the
travel space. (b) Using the the travel space.

the robot can move is shown in Figure 15 (b). Figure
15 (c) shows the roadmap extracted from the travel
space, using the ideas described before. There is a
significant reduction from 6386 free cells of Figure
15, to only 371 cells in the roadmap.

EE]S

Figure 15: From left to right: (a) Travel space associ-
ated to map of Figure 14 (b). (b) Free cells extracted
from (a). (¢) Roadmap build upon the travel space
shown in (a).

We also test our exploration approach using the
real mobile robot. Figure 16 (a) shows a map of a
small house of 8 x 13m. The built map is accurate
enough to be useful for navigation. There are two
glass doors in the upper part of the environment that
are captured in the map. They are detected by sonars
but the laser range finder can see obstacles through
them. The roadmap associated to the built map is
shown in Figure 16 (b).

Finally we give an example of the three steps of the
navigation process. Figure 17(a) shows the roadmap
(simulated case) built with an uncertainty on the

Figure 16: Using the real robot. From left to right:

(a) PGM. (b) Roadmap.

Figure 17: Using the roadmap for navigation. From
left to right: (a) Roadmap with an uncertainty of
20 cm. in the position of the robot. (b) The cells
of the roadmap and the cells that connect the initial
and final cells. (c¢) Values of V' given by the value
iteration algorithm (dark pixels denote high values).

robot position of 20 cm. Figure 17 (b) shows two
circles that connect the initial and goal cells to the
roadmap (left and right circles respectively) and Fig-
ure 17 (c) shows the motion policy to reach the goal
cell given by the value iteration algorithm. In the
Figure 17 (c) darker pixels denote higher values of V
that represent higher accumulated costs to reach the
goal cell. Note that the goal cell has a cost of zero
and it is represented by a white pixel. From these V
values, a motion policy for each grid cell is computed
using Equation 6.

4.2 Punishing rotations

The idea of these experiments was to build maps of
a simulated environment and compare the total dis-
tance, dr, traveled by the robot wheels, including

rotations, for three different costs of making rota-
tions of the robot. If dj, is the distance traveled when
the robot moves forward and dg is the distance trav-
eled when the robot rotates, then the total distance
is given by dr = dr + dg. For a differential drive
robot with distance D, (the distance from a trac-
tion wheel to the center of the robot), dg is given by
dr = ”T{)Tgu, where g, is the rotation of the robot
(in units of 45°).

In these experiments we use a linear function to
compute C, (the cost of making rotations of the
robot), given by Cy = K49, where K, is a constant
and g is the rotation (in units of 45°) required by the
robot to move to an adjacent cell.

Figure 19 shows a simulated environment of 12 x
9m used for these tests. We build 10 maps for this
simulated environment with K, = 0, with K, = 50,
and with K, = 300.

Figure 18 shows the mean and standard deviation
for dg and dr of these experiments in the form of
normal distributions. It is evident the reduction of
dr and dr when K, increases.

These results show that higher K, values decrease
the number of movements that change the orientation
of the robot (dg), and hence the total distance (dr).

Typical cases of the path followed by the robot for
K, =0 and K, = 300 are shown in Figure 19. When
K, = 0 there were 49 orientation changes of the robot
(of 45°). When K, = 300 there were only 12 changes,
a significant reduction.

Statistical information (mean, m, and standard de-
viation, sd) about the time to compute policies of
movements (one computation after each movement
of the robot) when K, = 0 and K, = 300 are shown
in table 1. When K, = 0 the algorithm only uses one
V variable per cell, when K, > 0 the algorithm uses
the 8 values of V per cell. On average there were an
increment of about 5.3 times when K, changed from
0 to 300.

Figure 20 shows the PGMs built by the simulated
robot without using the position tracking procedure
for K, = 0 and K, = 300. The grid cells are 10 x
10cm?. The lighter trace on the map is given by
the odometer and it shows the path followed by the
robot. Note that the map is worse when K, = 0 (the
odometric error is higher).

200 400 600 800 1000

"26‘(;'13 28‘0;) \‘\3000 32‘00 34‘00 36‘00 3800
Figure 18: Results of the distance traveled by the
robot, for different &, values, in the form of normal
distributions: distance due to rotations, dr (top),
and total distance due to rotations and translations,
dr (bottom).

|

1

[}
3

Figure 19: Paths followed by the robot. (top) (a)
K, =0. (bottom) (b) K, = 300.

There is a trade of between computation time and
movements of the robot. There are fewer rotations
and better maps, when rotations are punished (K, >
0) in the value iteration algorithm.

5 Conclusions

A new approach for a mobile robot to explore and
navigate in an indoor environment that combines lo-
cal control (via costs associated to cells in the travel
space) with a global exploration and navigation strat-
egy (using a dynamic programming technique) has
been described. The new features of our approach
are to take explicit account of the actual direction
of the robot (reducing odometric errors and building
better maps) and an efficient and simple computa-
tion of safe paths (based on the cost of cells in the
travel space). The paths for the robot are safe be-
cause the perceptual limitation of sensors are taken
into account in the travel space, and when the robot
explores the environment better maps are built. Pre-
vious works does not consider the actual direction of

Table 1: Time (in ms) to compute a policy of move-
ments with different values of K, using a PC Pentium
ITI, 733 Mhz. m is the mean and sd is the standard
deviation of the measured data.

Case m | sd
t; with K, =0 80 | 40
to with K, =300 | 457 | 80

b2/t 5.3

Figure 20: Maps built without using odometric cor-
rections. Dark areas represent cells with occupancy
probabilities near to 1. (left) (a) K, = 0. (right) (b)
K, = 300.

the robot [Thrun, 1998, Roy et al., 1999], the com-
putation of safe paths [Thrun, 1998] or are suitable
only for exploration [Roy et al., 1999].

As the experimental results confirm, the explo-
ration follows a kind of wall following technique to
reduce uncertainty in terms of localization due to
sensors’ perceptual limitations, as well as to guide
the robot through narrow passages, maximizing the
distance between the robot and the obstacles. This
combination of local and global strategies takes the
advantages of both: robustness of local strategies and
completeness of global strategies.

In addition, this approach minimizes the number of
orientation changes, reducing odometric errors. Ex-
perimental results confirm that K, (the cost associ-
ated to rotations) is analog to the effect of an inertial
mass: it tends to keep the orientation of the robot
unchanged, reducing the total distance traveled by
the robot and building more accurate maps. The in-
crement of time to compute a policy of movements

is about 5.3 times the amount used without punish
rotations of the robot. However, with the reduction
in the number of cells included in the algorithm and
using the bounding boxr technique, the computation
time is small enough to be included within the whole
map building process.

A preprocessing of the travel space that results in
a roadmap is used for navigation purposes and it sig-
nificantly reduces the number of cells to be updated
in the value iteration algorithm, and consequently re-
duces the time to compute the motion policy for the
robot. The roadmap is a net of safe roads that the
mobile robot can use for navigation.

In the future, we plan to use this approach to build
maps of environments with long cycles. If odometric
errors are lower, the position tracking task should be
easier. Also we plan to use the roadmap to solve the
global localization problem in an efficient way.

References

[Borenstein et al., 1996] J. Borenstein, B. Everett,
and L. Feng. Navigating Mobile Robots: Systems
and Techniques. A.K. Peter, Ltd., Wellesley, MA,
1996.

[Elfes, 1989] A. Elfes. Using occupancy grids for mo-
bile robot perception and navigation. IEEE Com-
puter, 22(6):46-57, 1989.

[Fox and Burgard, 1998] D. Fox and W. Burgard.
Active markov localization for mobile robots.
Robotics and Autonomous Systems, 1998.

[Gutmann et al., 1998] J.-S. Gutmann, W. Burgard,
D. Fox, and K. Konolige. An experimental com-
parison of localization methods. In Proc. Interna-

tional Conference on Intelligent Robots and Sys-
tems (IR0OS’98), 1998.

[Howard and Kitchen, 1996] H. Howard and
L. Kitchen. Generating sonar maps in highly
specular environments. In Proceedings of the
Fourth International Conference on Control,
Automation, Robotics and Vision, 1996.

[Koenig et al., 2001] S. Koenig, C. Tovey, and
W. Halliburton. Greedy mapping of terrain. In
Proceedings of the International Conference on
Robotics and Automation, pages 3594-3599, 2001.

[Latombe, 1991] J-C. Latombe. Robot Motion Plan-
ning. Kluwer Academic Publishers, 1991.

[Lee, 1996] D. Lee. The Map—Building and Explo-
ration of a Simple Sonar—Equipped Robot. Cam-
bridge University Press, 1996.

[Lumelsky and Stepanov, 1987] V.J. Lumelsky and
A.A. Stepanov. Path-planning strategies for a
point mobile automation moving amidst obstacles
of arbitrary shape. Algorithmica, 2:403-430, 1987.

[McKerrow, 1991] P. J. McKerrow. Introduction to
Robotics. Addison-Wesley, 1991.

[Moravec, 1988] H. P. Moravec. Sensor fusion in
certainty grids on mobile robots. AI Magazine,
9(2):61-74, 1988.

[Romero et al., 2000] L. Romero, E. Morales, and
E. Sucar. Learning probabilistic grid—based maps
for indoor mobile robots using ultrasonic and
laser range sensors. In O. Cairo, E. Sucar, and
F.J. Cantu, editors, MICAI2000, LNAI Springer—
Verlag Berlin, 2000.

[Roy et al., 1999] N. Roy, W. Burgard, D. Fox, and
S. Thrun. Coastal navigation — mobile robot navi-
gation with uncertainty in dynamic environments.
In Proc. IEEE Conf. Robotics and Automation
(ICRA), May 1999.

[Thrun et al., 1998] S. Thrun, A. Bucken, W. Bur-
gar, et al. Map learning and high-speed navigation
in rhino. In D. Kortenkamp, R. P. Bonasso, and
R Murphy, editors, Artificial Intelligence and Mo-
bile Robots. AAAI Press/The MIT Press, 1998.

[Thrun, 1998] S. Thrun. Learning maps for indoor
mobile robot navigation. Artificial Intelligence,
99(1):21-71, 1998.

