
A Service Robot Named Markovito
Hector Avilés

Department of Information Technologies
Universidad Politécnica de Victoria
Cd. Victoria, Tamaulipas, Mexico

Email: hector hugo aviles@hotmail.com

E. Corona, A. Ramı́rez, B. Vargas, J. Sánchez,
L.E. Sucar and E.F. Morales

Department of Computer Science
Instituto Nacional de Astrofı́sica, Óptica y Electrónica (INAOE)

Tonantzintla, Puebla, Mexico
Email: {esucar,emorales}@inaoep.mx

Abstract—The idea of service robots to assist humans in every-
day life has been around for many years. Although there is much
work in developing different abilities for this kind of robots, little
attention has been paid for the integration of these behaviors into
a complete functional system. In this paper we present our service
robot called Markovito. Markovito integrates different skills to
interact with humans and its environment in order to: i) deliver
messages and objects between people, ii) search for an object, iii)
navigate to different destination points, and iv) follow a person
under user requests. Several experiments in real scenarios have
shown that Markovito is reliable in the execution of these tasks,
while keeping a simple and intuitive robot software architecture
able to incorporate new abilities in the near future.

Index Terms—Service mobile robot, MDP, navigation, percep-
tion, human-robot interaction.

I. INTRODUCTION

Service robots are mobile robots that help people in different
activities, such as helping elderly people in their home, serving
as hosts and guides in museums or shopping malls, aiding
in hospitals, etc. Such robots need different capabilities to
perform their tasks, such as navigation, mapping, localization
and obstacle avoidance to move around in an uncertain and
changing environment. They also need clear, simple and
natural interactive interfaces to exchange information between
robots and humans. Developing applications for service robots
requires a considerable effort, however, most of them share
a core of basic capabilities. It is then natural to develop
different modules that can perform such common capabilities
and combine them into a general architecture to produce
different applications. In this paper we present a service mobile
robot called Markovito. Markovito uses a general architecture
for building different service robots applications. We have
developed several components for performing common tasks,
such as, navigation and localization, human tracking, and
human-robot interaction. These modules are coordinated with
a decision–theoretic controller that serves as an orchestra
director. Different service robot applications can be easily
constructed by using different configurations of modules and
solving a Markov decision problem. Our framework is illus-
trated in four RoboCup@Home [1] tasks: navigation, follow
a human, lost & found and the Open Challenge.

II. RELATED WORK

Building service robots to help people has been the subject
of recent research. The challenge is to achieve reliable systems

that operate in highly dynamic environments and have easy to
use interfaces.

RHINO [2] was one of the most successful service robots
ever built, designed as a museum tour guide. RHINO suc-
cessfully navigated a very dynamic environment using laser
sensors and interacted with people using pre-recorded infor-
mation. A person could select a specific tour of the museum
by pressing one of many buttons on the robot. RHINO’s task
planning was specified using an extension to the GOLOG
language called GOLEX; GOLEX is an extension of first order
calculus, but with the added ability to generate hierarchical
plans and a run-time component monitoring the execution of
those plans. MINERVA [3] was the successor of RHINO.
It differed from RHINO in that it could generate tours of
exhibits in real-time as opposed to choosing one of several
pre-determined tours. MINERVA also improved on the inter-
action by incorporating a steerable head capable of displaying
different emotional states. The GOLOG language was com-
bined with decision theoretic planners in DTGOLOG, used
in the implementation of a service delivery robot [4]. More
recently, the robot PEARL escorted elderly people around an
assisted living facility [5]. Its navigation and localization used
probabilistic techniques with laser sensors. PEARL is more
focused on the interaction side with an expressive face and a
speech recognition engine. One of PEARL’s contributions is
the use of a hierarchical partially observable Markov decision
process (HPOMDP), which is an extension of hierarchical
MDPs (HMDPs) [6] to model uncertain observations. HMDPs
use an specified hierarchical decomposition of the domain,
and introduce abstract actions in higher level MDPs which
invoke the policies of lower-level MDPs. HOMER [7] is a
messenger robot also based in MDPs. The authors introduce
Multiply Sectioned Markov Decision Processes (MS-MDPs)
as a mechanism for efficient task coordination. The robot’s
task is partitioned into a number of subtasks, each assigned
to an MDP, such that each one can be specified and solved
independently; they all are executed concurrently, coordinated
implicitly by common state variables.

Contrary to previous approaches, that have focused on
solving a single application; in this work a 3-layer architecture,
several software modules with novel ideas to perform general
purpose tasks, and an MDP framework to act as coordinator
are proposed to efficiently build different service robots appli-
cations.



III. SOFTWARE ARCHITECTURE

Crucial to the design of a human-interactive mobile robot is
the ability to rapidly and easily modify the robot’s behavior.
This requires for a mobile robot to have a modular software
architecture, with a planning module that coordinates the
different software modules to achieve the goal.

Our software architecture is based on a Behavior-based
architecture [8]. A behavior is an independent software module
that solves a particular problem, such as navigation or face
detection. In this paper behaviors are also refereed as modules.
Behaviors exist at 3 different levels:

• Functional level: The lowest level behaviors interface
with the robot’s sensors and actuators, relaying com-
mands to the motors or retrieving information from the
sensors.

• Execution level: Middle level modules perform the main
functions, such as navigation, localization, speech recog-
nition, etc. These interface with the lowest level through
a shared memory mechanism. Each middle level module
computes some aspect of the state of the environment.
The outputs of these modules are typically reported to
the highest level modules.

• Decision level: The highest level coordinates the middle
level modules based on a global planner. The planner is
based on a Markov decision process (MDP). The MDP is
solved to obtain an optimal policy according to the tasks’
objectives, which is used to command the other modules.

This architecture can be implemented in a distributed plat-
form, such that each level and each module within a level could
be on a different processor. A transparent communication
mechanism permits different configurations without need to
modify the modules. Thus, some processing could be done
on board the robot (lower level modules) and other off board
(high level modules). Also a module can be changed without
affecting the rest of the system.

IV. COORDINATOR

Markov decision processes (MDPs) have become the se-
mantic model of choice for decision theoretic planning (DTP)
in the AI community [9]. They are simple for domain experts
to specify, or can be learned from data. They have many well
studied properties including approximate solution and learning
techniques. An MDP is a tuple {S,A, Pr, R}, where S is a
finite set of states and A is a finite set of actions. Actions
induce stochastic state transitions, with Pr(s, a, t) denoting
the probability with which state t is reached when action a is
executed at state s. R(s, a) is a real-valued reward function,
associating with each state s and action a. Solving an MDP
is finding a mapping from states to actions. Solutions are
evaluated based on an optimality criterion such as the expected
total reward. An optimal solution is one that achieves the
maximum over the optimality measure, while an approximate
solution comes to within some bound of the maximum.

The space and time complexity of MDPs increases with
the number of states. This problem can be reduced by using

Fig. 1. An example of a discontinuity extracted from laser scanner data.
Their is a large difference between on laser reading (T ) and the next (D); B

denotes the angle between the robot’s front and the discontinuity.

factored representations [10], in which the state is decomposed
in a set of variables or factors, and the transition functions
are represented using a factored representation (a two-stage
dynamic Bayesian network). In this paper we use a factored
representation to specify the MDPs and SPUDD [11] to solve
them.

The combination of a coordinator based on MDPs with a
3-level architecture can reduce the development costs of dif-
ferent service robots applications. By simply re-arranging the
modules, changing the goal (reward), and solving a new MDP,
different applications can be developed. Different software
modules of common tasks can be incorporated in a transparent
way. In the following sections, some of the general modules
that have been developed are briefly described.

V. MAP BUILDING AND LOCALIZATION

A mobile robot requires a model or map of its environment
to perform tasks. Our map building module uses information
from a laser scan, its odometer and a sonar ring to construct
an occupancy cells map using particle filters. Due to space
constraints, this module is not described in detail (see [12] for
more information).

The ability for mobile robots to locate themselves in an
environment is not only a fundamental problem in robotics
but also a pre-requisite to many tasks such as navigation.
There are two types of localization problems: local and global.
Local localization techniques aim to compensate for odometric
errors during navigation and require information about the
initial position of the robot. Global localization aims to locate
the robot’s position without prior knowledge of its current
location. These problems are particularly hard in dynamic
environments where new obstacles can corrupt the robot’s
sensor measurements [2].

In order to locate itself either during navigation or globally,
this module uses natural landmarks that have the advantage
that the environment does not need to be transformed. In this
work, discontinuities are used, that can be easily extracted
from laser scanner data with high accuracy, to solve the
local and global localization problem. A discontinuity is
defined as an abrupt variation in the measured distance of



Fig. 2. Global localization. Top left: a simulated environment, showing the
robot and some discontinuities. Top right: results of the 1st. stage, where
potential locations are shown as gray dots in the map. Bottom: the robot is
localized after the 2nd. stage, its position is depicted as a black point near
the center of the lower-left “room” in the map.

two consecutive readings of the laser, as shown in Figure 1.
Given a set of landmarks (discontinuities), a triangulation
process is performed between all the visible landmarks to
estimate the robot’s position. The information from all the
visible landmarks is combined considering the angle between
landmarks, the distance between the robot and its farthest
landmark, and if there are landmarks at both sides of the robot
or only one, to give more accurate estimates.

For the global localization problem, a ray tracing approach
is used to simulate laser readings on the map. Each cell is
associated with all its visible landmarks and their values. This
process is performed off-line once a map is constructed. To
match a cell with the current readings of the robot, an initial
stage filters out a large number of candidate positions with a
fast algorithm. It counts the number of discontinuities obtained
from the laser data that matches the distance, depth, and
orientation of the previously stored discontinuities associated
to each cell. A modified discrete relaxation algorithm is used
in a second stage to determine the similarity of each cell with
the observations of the robot, considering the distances be-
tween the discontinuities in this stage. Our global localization
algorithm is able to locate the robot even with new obstacles,
as can be seen in Figure 2, where five new obstacles are added
to the environment (see [13] for more details).

VI. NAVIGATION

We have developed different navigation modules. Initially,
we implemented a navigation module that uses a dynamic
programming algorithm, with exponential costs near obstacles,
to find the least expensive path. In order to avoid new
obstacles, the robot is sensing its environment while moving.

Fig. 3. Re-planning with obstructed paths. (1) shows the start position (robot)
and the goal (meta). (2) depicts the initial route obtained by the navigator.
(3) shows the simulated robot (near the middle) encountering that a door has
been blocked. In (4) we see the new route to the goal.

In case a new obstacle is placed in front of the robot the
module finds an alternative path, as shown in Figure 3 (see
[14] for more details).

In this paper, a novel navigation strategy using machine
learning techniques is presented. To illustrate more clearly
the motivation behind this work, imaging going to a new
place, e.g., a conference site. You would normally ask for
directions of places of interest, like the registration desk or a
toilet, and you will get general directions, like “at the end of
the aisle to your right” or possibly “in room 203”. You will
have then to navigate without collisions in an unknown and
dynamic environment to a particular destination point through
well known natural marks like walls and doors and expected
dynamic conditions, like walking people. Imagine you want
your robot to learn how to perform a similar skill. You place
your robot in an unknown environment and you want it to
navigate to a particular point, like a charging station, but the
robot is only given the general direction of its destination
point. The robot has to learn how to perform simple skills,
like obstacle avoidance and orientation towards a goal, and
use them to safely go to a particular goal in a dynamic and
unknown environment. This is the approach follow in this
paper for the navigation module.

The application of machine learning techniques with expres-
sive representation languages to domains like robotics have
received little attention due to the huge amount of low level
and noisy data produced by the sensors. The use of relational
representations in this area are novel, and their advantages
have just recently being addressed (e.g., [15]). In this paper,
first-order logic relations are learned to build the navigation
module. This module consists of a set of reactive rules that
sense the environment continuously and apply actions whose
continuous execution eventually satisfy a goal condition. These
rules are known as TOPs (Teleo-OPerators) [16], an effective
framework to achieve goals when unexpected events occur.

The objective of our learning process is to provide a mobile



robot with abilities to move through indoor environments and
to accomplish goals. In order to learn TOPs, we combine
three machine learning techniques: (i) behavioural cloning, (ii)
inductive logic programming (ILP), and (iii) a simple grammar
learning algorithm. Behavioural cloning is a technique to learn
skills from examples [17]. The key idea of this method is to
show the robot what to do instead of how to do a task. For
instance, in order to learn how to navigate without collisions,
the robot is presented with human traces steering the robot
and avoiding obstacles, simplifying the programming effort.

We introduced a two phase learning process to learn TOPs
for mobile robots in indoor environments: (i) learning of
basic TOPs, and (ii) learning of complex TOPs. In the first
phase, a system called TOPSY uses human-guided traces and
the natural landmark identification process, described in the
previous section, to reduce the information from the sensors
into a small set of ground predicates (landmarks) suitable for
an ILP system called ALEPH [18]. A small set of background
knowledge is given to the system from which other predicates
are learned and used in the induction of simple TOPs.

TOPSY was able to learn the following TOPs from human
traces:

• avoid(State,Action): to wander around without colli-
sions. Action can take the following values: go forward,
turn left, and turn right.

• orient(State,Action): Given a target point, the robot has
to turn until it is oriented towards the goal, only if it is
located in a safe turn zone. Action can take the following
values: turn right, turn left and nothing.

In order to learn how to combine TOPs to perform more
complex tasks (e.g., the goto TOP), previously learned TOPs
that apply to states in traces are identified, returning high-level
traces of applicable TOPs. The goal is to learn a grammar with
TOPs able to reproduce a set of traces. With this purpose,
FOSeq (First Order learning from Sequences), an algorithm
to learn grammars from sequences based on association rule
learning is introduced and applied to induce the goto TOP.
This algorithm is in its initial stage, however, the learned TOPs
were used for navigation tasks on different environments with
dynamic objects. Figure 4 shows some examples of the Goto
TOP under different scenarios.

A. Planning

The previous TOPs are used with a probabilistic road map
module that returns collision free paths. A probabilistic road
map (PRM) [19], [20] is built using a random generation of
points in the (free) configuration space. Each point is joined
to its neighbors if there is a straight free path between them,
and the information is stored in a graph, G. Given an initial
configuration s and a goal configuration g, the idea for path
planning is to connect s and g by finding a path in G. Given
the random nature of the algorithm, some paths in G may be
too long and irregular, so a smoothing algorithm, trying to find
shortcuts, is applied. This process is illustrated in figure 5. The
points (landmarks) in the path are given as intermediate goals

(a) Round obstacle (b) Several obstacles

(c) Goto in a corridor
Fig. 4. The “Goto” TOP guides the robot to the goal position in different
simulated scenarios.

Fig. 5. The different stages of the probabilistic road map (PRM). (a) shows
the learning phase, in which the graph is bulit. (b) depicts an initial path
between the start position (s) and the goal (g). (c) shows the final path after
the smoothing phase.

to the navigation algorithm. In this way, the combination of
PRMs and TOPs produces a robust navigation module.

VII. PERCEPTION

Service robots require a sophisticated perception to operate
in complex and dynamic environments. A multimodal ap-
proach is used, combining several types of sensors, such as
vision, sonar, laser, and sound. Some perception capabilities
are integrated within specific modules, while others are de-
veloped as specific modules such that they could be used by
different subsystems. Next we describe the human tracking
and object recognition modules.

A. Human Tracking

Human body tracking is important for the interaction be-
tween humans and service robots. In particular, several tasks
require the robot to follow a human to a particular destination
point. In this module we extract torso boundaries using a
histogram and the back projection image [21] coupled with



Fig. 6. Face and torso detection. The face of the person is shown as a white
circle and the torso as a black rectangle.

Haar functions [22] with a monocular camera. We estimate
the user position relative to the robot applying a distance
transform. Our torso detection and tracking system is divided
in two stages. The first stage is the torso localization process,
that uses a face detection algorithm based on color histograms
in RGB. Once the face is detected, the torso position is
estimated based on human biometry [23]. The color histogram
of the torso is registered by this module. The second stage con-
sists of tracking the torso using the color histogram obtained
at the first stage, coupled with detectors based on motion
and appearance information. Finally, a distance transform is
applied, considering a pinhole camera model.

Based on the torso’s color histogram obtained in the first
images, the application of the Camshift algorithm [21] with
this histogram as region of interest, produces a torso area
estimation. Knowing the distance l between the user and the
camera, the focal length f and a real torso area estimation
X , the pixel size p (typically 4-12 µm) is determined, using
Equation (1):

p =
f · X

(f − l) · x
(1)

where, x is the image area of the torso.
Once the torso region has been detected in an image

sequence, the next step consists of performing torso tracking.
For torso tracking we have to consider if a region detected
using the Camshift algorithm [21] is coincident with a region
detected using Haar detectors [22]. In this case, we obtain its
camera distance, using Equation (2), we calculate its center
point and finally its position by simple geometry.

z = f ·

(

1 −
X

x · p

)

(2)

Figure 6 shows the torso recognition system.

B. Object Recognition

For object recognition we have implemented a module based
on the SIFT algorithm (see [24] for more details). This module
can be easily trained to recognize any object, by just showing
the robot the object in front if its camera for a few seconds.
The object model, based on SIFT features, is stored in an
object database; and, if it is later seen by the robot, it can be
recognized.

Fig. 7. The environment used for the RoboCup@Home tasks.

VIII. SPEECH RECOGNITION AND SYNTHESIS

For speech synthesis, the Festival System [25], with a
Spanish dictionary, was used. For the speech recognition
a language model was used to restrict the combination of
words according to the vocabulary for the different tasks. This
language model was obtained via a series of “Wizard of Oz”
experiments, where different persons talked to a simulated
robot (the Wizard). The phrases were recorded, and from
them the statistics to build a probabilistic language model
were estimated. The robot recognizes keywords of the phrases
which are given as inputs to the coordinator.

IX. APPLICATIONS

The previously described modules can be combined to
perform different service robot tasks. As mentioned in Sec-
tion IV, the different modules are coordinated with an MDP.
In particular, Markovito was applied to four tasks of the
RoboCup@Home competition: navigate, lost & found, follow
a human, and the open challenge (deliver messages and
objects). Markovito first built a map of the environment (see
Figure 7)1. Next we describe each one of the 4 tasks, in
particular the MDP that coordinates the modules to perform
the task.

A. Navigate through three places and return to the starting
position

In this task, Markovito has to navigate safely through three
places, that are given by a user at the beginning, and then
return to its starting position. As soon as the robot reaches a
destination point it has to announce it. All the interaction is
made through natural language.

Six variables were defined for this MDP: localize indicates
when the robot’s position is know, get goals when the robot has
obtained the three places to visit, arrived at destination point,
has trajectory for navigation, end position when it returns to
the starting position.

1This is the home environment used at the Mexican RoboCup@Home
competition that took place in Puebla, Mexico, August 2007, see:
http://www.upaep.mx/cmr2007/



TABLE I
THE SIX ACTIONS USED TO COORDINATE THE MODULES FOR THE

NAVIGATION TASK.

Action Module Description

Localize Navigation Global localization

Wait for goals Speech Obtain the places to visit

Generate trajectory Navigation Path to a destination place

Go to next goal Navigation Navigate to reach the next place

Arrival to goal i Speech Announce that the robot has

reached a new place

Announce finish Speech Announce that the robot has

returned to the initial position

Fig. 8. Markovito navigating through the environment reaching different
destination points.

The MDP has six actions to coordinate the modules which
are described in Table I. Each action calls one of the previously
described modules.

Figure 8 shows a sequence of Markovito navigating through
the environment reaching different destination points.

B. Lost & Found

In this task, Markovito is shown an object which later has
to search for. The user places several objects, one by one, in
front of the camera. After wards the user indicates the robot
which object to search for and a destination area. Markovito
has to navigate to the indicated area and search for the object.
It sends a recognition message when the object is recognized.

This MDP has 11 variables: localize, has order, forget ob-
ject, confirm forgetting, learn object, confirm learning, object
in data base, found, reached destiny, is near, and confirm
object.

The actions consider in this MDP are: global localization,
wait for order, forget object, learn object, confirm learn
object, confirm forget object, go to search area, look for
object, get close to object, and confirm found object. All the
interactions in this task are in natural language. This task uses
the localization, navigation, planning, speech and perception
modules.

Figure 9 shows Markovito learning an object, in this case a
Teddy bear (left) and then searching for it (right).

Fig. 9. Markovito learning to recognize an object (left) and later searching
for it (right).

TABLE II
THE ACTIONS USED IN THE TASK TO FOLLOW A PERSON AND THE

DIFFERENT MODULES USED IN THIS TASK.

Action Module Description

Localize Navigation Global localization

Wait order to calibrate Speech Wait for a calibration order

Calibrate Vision Get information about

the person

Wait order to follow Speech Wait for a follow order

Follow Navigation Follow a person

Announce lost person Speech Announce that the robot

lost the person

Search the person Vision Search for a person

Announce found person Speech Announce that the robot

found the person

Wait order to stop Speech Wait for a stop order

Generate trajectory Navigation Give a path to

destination place

Return Navigation Navigate to the starting position

Announce arrive Speech Announce arriving to

the starting position

C. Follow a person under user request

For this task, Markovito has to follow a human through an
unknown track in a home-like environment. After reaching the
end position, the robot has to return to its starting position. The
task consisted of two stages. In the first step, the human stands
in front of the robot at a distance of one meter for about one
minute for calibration. At this state the torso detection module
was used. In a second step, the human starts walking towards
the end position, passing through a number of places. This task
used the navigation module based on TOPs to go dynamically
to the different places given by the torso tracking module.

This MDP has 13 variables: localize, person, calibrate
order, follow order, stop order, calibrate, follow, searching,
announce following, announce searching, announce finish, has
trajectory, and get destination. All the interaction is also in
natural language. Table II shows the actions that are used to
coordinate the different modules.

D. Deliver messages and objects between people

The goal in this task is to receive and to deliver a message,
an object or both, under user requests. The interaction again
is through natural language. The user gives an order to send a
message/object and the robot asks for the name of the sender



Fig. 10. Markovito delivering a beer in the RoboCup@Home scenario.

and the receiver. Markovito either records a message or uses
its gripper to hold an object, and navigates to the receiver’s
place and deliver the message/object.

An MDP with 12 binary variables was used for this task:
localized, greetings, sender, receiver, message, object, trajec-
tory, reached destiny, found receiver, object/message delivered,
message, and object. Two multi-valued variables were also
used for the battery level and for the type of delivery.

Thirteen actions were defined for this task: localize globally,
generate path to destination place, and execute trajectory, as
part of the navigation module. Wait for greeting, request type
of delivery, request sender’s name, request receiver’s name,
record message, deliver message and confirm delivery, as part
of the speech module. Grasp object and release object as part
of the delivery module. Detecting a person as part of the vision
module. Figure 10 shows Markovito delivering a beer to a
person in the home scenario.

X. CONCLUSIONS AND FUTURE WORK

A general framework for creating service robots applications
has been described. This framework uses several general
modules to perform common service robot tasks Some of
these modules include some novel ideas, in particular the
localization, navigation and human tracking modules. The
architecture uses an MDP framework to coordinate these
behaviors. Different service robot applications can be easily
constructed by combining the basic modules, and defining a
new MDP to obtain an optimal policy for each task. We have
illustrated the capabilities of this framework with four different
applications defined in the RoboCup@Home competition.

There are several research directions to follow. In particular,
we plan to incorporate a module that can be used to teach the
robot by example, to incorporate a face recognition module,
and to combine gesture recognition with the natural language
module to enhance our human-robot interface. We are also
improving the coordinator to deal with conflicting situations.
Finally, we plan to use this framework for developing other
applications.

REFERENCES

[1] “The robocup@home webpage.” [Online]. Available:
http://www.ai.rug.nl/robocupathome/

[2] W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz,
W. Steiner, and S. Thrun, “The interactive museum tour-guide robot,”
in Proceedings of the Fifteenth National Conference on Artificial Intel-
ligence (AAAI ’98), Madison, Wisconsin, July 1998.

[3] S. Thrun, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox,
D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and D. Schulz, “Minerva:
A second-generation museum tour-guide robot,” in Proceedings of
IEEE International Conference on Robotics and Automation (ICRA’99),
Detroit, Michigan, May 1999.

[4] C. Boutilier, R. Reiter, M. Soutchanski, and S. Thrun, “Decision-
theoretic, high-level agent programming in the situation calculus,” in
Proceedings of the AAAI National Conference on Artificial Intelligence
(AAAI ’00), 2000.

[5] M. Montemerlo, J. Pineau, N. Roy, S. Thrun, and V. Verma, “Expe-
riences with a mobile robotic guide for the elderly,” in Proceedings
of the AAAI National Conference on Artificial Intelligence (AAAI ’02),
Edmonton, Canada, 2002.

[6] T. Dietterich, “Hierarchical reinforcement learning with the maxq value
function decomposition,” Journal of Artificial Intelligence Research,
vol. 13, pp. 227–303, 2000.

[7] P. Elinas, L. Sucar, J. Hoey, and A. Reyes, “A decision-theoretic
approach for task coordination in mobile robots,” in Proc. IEEE Robot
Human Interaction (RoMan), Japan, September 2004.

[8] R. Arkin, Behavior-based Robotics. MIT Press, 1998.
[9] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming. New York, NY.: Wiley, 1994.
[10] L. Kaelbling, M. Littman, and A. Cassandra, “Planning and acting in

partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1-2, 1998.

[11] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier, “Spudd: Stochastic
planning using decision diagrams,” in Proc. of the 15th Conf. on
Uncertainty in AI, UAI-99, 1999, pp. 279–288.

[12] V. Jaquez, “Construcci ón de mapas y localizaci ón simult ánea con robots
m óviles,” Master’s thesis, ITESM Campus Cuernavaca, Mexico, 2005.

[13] S. Hern ández and E. Morales, “Global localization of mobile robots
for indoor environments using natural landmarks,” in Proceedings IEEE
Conference on Robotics, Automation and Mechatronics (RAM-2006),
2006.

[14] S. Hern ández, “Navegaci ón de un robot m óvil en ambientes interiores
usando marcas naturales del ambiente,” Master’s thesis, ITESM Campus
Cuernavaca, Mexico, 2005.

[15] A. Cocora, K. Kersting, C. Plagemann, W. Burgard, and L. De Raedt,
“Learning relational navigation policies,” in Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Beijing, China, 2006.

[16] S. Benson and N. J. Nilsson, “Reacting, planning, and learning in an
autonomous agent,” Machine Intelligence, vol. 14, pp. 29–62, 1995.

[17] D. Michie and C. Sammut, “Behavioral clones and cognitive skill
models,” Machine Intelligence, vol. 14, pp. 395–404, 1995.

[18] A. Srinivasan, “The aleph 5 manual
http://web.comlab.ox.ac.uk/oucl/research/areas
/machlearn/ aleph,” 2005.

[19] J. Barraquand and J. C. Latombe, “Robot motion planning: A distributed
representation approach,” Journal of Robotics Research, 1991.

[20] J. C. Latombe, Robot motion planning. Kluwer Academics Publishers,
1991.

[21] G. Bradski, “Computer vision face tracking for use in a perceptual user
interface,” Intel Technology Journal, 1998.

[22] D. Snow, M. Jones, and P. Viola, “Detecting pedestrians using patterns
of motion and appearance,” in Ninth IEEE International Conference on
Computer Vision (ICCV 2003), 2003, pp. 734–741.

[23] H. Aviles, L. E. Sucar, and C. Mendoza, “Visual recognition of similar
gestures,” in The 18th International Conference on Pattern Recognition
(ICPR-2006), 2006.

[24] D. Lowe, “Distint image features from scale-invariant keypoints,” Inter-
national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.

[25] “The festival speech synthesis system.” [Online]. Available:
http://www.cstr.ed.ac.uk/projects/festival/


