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Abstract. Bitcoin is a payment system that eliminates trusted inter-
mediaries in the exchange of digital currencies. To process transactions,
Bitcoin uses a set of nodes with different specialized roles that func-
tion as a trusted third party. The Bitcoin confirmation transaction is
a slow process that can take up to 72 hours. However, in fast payment
scenarios, products are delivered immediately. These scenarios in Bitcoin
are vulnerable to double-spending attacks. Different strategies have been
proposed to mitigate the double-spending attack on Bitcoin, such as al-
lowing transactions to propagate freely in the network, inserting a new
node role to detect attacks, and penalizing malicious users for revealing
their identities. To the best of our knowledge, there are no works to avoid
double-spending attacks on fast Bitcoin payments. This article is a guide
that shows how easy it is to perform double-spending attacks on fast
Bitcoin payments and highlights the vulnerability of Bitcoin when the
transaction is unconfirmed. The experiments run on the Bitcoin Testnet,
an environment where coins are worthless, and developers can experi-
ment on a distributed network infrastructure. The experiments show an
analysis of the speed of Bitcoin to process transactions, the low invest-
ment that a malicious user needs to make to carry out the attack, and
the high probability of success of a double-spending attack in fast Bitcoin
payment scenarios.
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1 Introduction

Bitcoin is a payment system created by Satoshi Nakamoto that uses distributed
systems and cryptography to eliminate trusted intermediaries in the value ex-
change [1]. Bitcoin does not have a central server that serves as a control point to
process transactions and uses a set of nodes with different specialized roles that
work as a trusted third party [2]. The confirmation of a transaction in Bitcoin is
a slow process that can take up to 72 hours and is a process irreversible once the
transaction is processed and confirmed in the Blockchain [3]. Bitcoin developers
designed the payment system for internet sales where it is possible to wait for
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confirmation before delivering the product.

However, in fast payment scenarios, products are delivered immediately (in
seconds order), for example, in ATMs [4] or takeaway restaurants [5]. These sce-
narios are vulnerable to Bitcoin double-spending attacks because the payment
must be confirmed when the product or service is delivered, and the Bitcoin con-
firmation process is not fast enough, which increases the probability of successful
double-spending attacks. In a successful double-spending attack, a malicious Bit-
coin user pays twice with the same currencies, i.e., pays a seller and reverses the
transaction so that the currencies go back to an address of his own [6].

Recently, have been proposals in the literature to mitigate double-spending
attacks on fast Bitcoin payments. The first strategy is to propagate all transac-
tions in the network without restrictions so that the network nodes can identify
the double-spending attack [7] [8]. Another advance is to introduce observers
to alert attack nodes [9]. A third approach avoids network isolation to ensure
a higher probability of seeing inconsistencies related to double-spending attacks
on the system [10]. Finally, another strategy is to reveal the identity of malicious
users attempting double-spending attacks [11]. Currently, Bitcoin does not guar-
antee a complete solution for double-spending attacks on fast Bitcoin payments.

This article is a guide to a double-spending attack on fast Bitcoin payments.
This guide is based on Karame’s requirements for a successful double-spending
attack [7] and shows in detail how a malicious user can take advantage of the dis-
tributed nature of the system to purchase products and services without spend-
ing their coins. The experiments run on the Bitcoin Testnet [12], an environment
where coins are worthless, and developers can experiment on a distributed net-
work infrastructure. The experiments show an analysis of the speed of Bitcoin
to process transactions, the low investment that a malicious user needs to make
to carry out the attack, and the high probability of success of a double-spending
attack in fast Bitcoin payment scenarios.

2 Background

2.1 Bitcoin Overview

Bitcoin is a peer-to-peer payment system based on cryptography and distributed
systems. The network’s peers have various roles, such as mining nodes, full
blockchain nodes, full nodes and lightweight nodes [13, p. 172]. The purpose
of peers is to propagate, verify, and confirm transactions that transfer value be-
tween network users without needing a trusted entity.

Transactions are data structures cryptographically signed by the owner that
can exchange value on Bitcoin. The data structure is composed of an identifier, a
pointer to the previous transition called input, and outputs that define the new
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owners of the coins. To launch a transaction in Bitcoin it is necessary to connect
through a node. Every time a node receives a transaction, it verifies that:

1. The transaction has enough Bitcoins to consume, i.e., the output must not
exceed the input.

2. The input is spent once.
3. The digital signature is authentic.

Once the transaction is verified, the nodes store it in a memory space called a
Mempool [14], where it waits for confirmation. The confirmation process refers
to inserting a transaction into the Blockchain through “mining” a new block.
The miners are a set of nodes that reach a consensus through a non-deterministic
process to insert the new blocks in the Blockchain. The mining process is beyond
the scope of this article, as a successful double-spending attack on fast Bitcoin
payments does not need computational power.

2.2 Karame’s Model

The Karame model consists of a malicious user and a seller connected to the
Bitcoin network. The malicious user wants to buy a product from the seller
without spending his coins. To achieve this, the malicious user carries out a
double-spending attack. The double-spending attack concerns spending the same
currency twice [7]. In Karame’s model, the malicious user controls multiple nodes
that help execute the attack since he cannot sign two transactions that spend
the same currency on a single node. The malicious user does not have enough
computational power to create a block, and a transaction belonging to a block
is considered irreversible [8].

Necessary Conditions for Successful Double-Spending A successful double-
spending attack is performed as follow: Alice creates two transactions that spend-
ing the same currency Tr(A) and Tr(B), the transaction Tr(B) pays Bob for
the product Alice wants to buy, while transaction Tr(A) returns the coin to
Alice. Notice that the double-spending attack is a competition in the propaga-
tion of the two transactions to belong to the Blockchain. To achieve a successful
double-spending attack, Alice must ensure that Tr(A) belongs to the Blockchain
before transaction Tr(B) by meeting the following requirements:

– Requirement 1 - Tr(B) is added to Bob’s Mempool. If Tr(B) is not added
to Bob’s Mempool, then there is no product delivery because there is no
evidence that Alice wants to pay Bob.

– Requirement 2 - Tr(A) is confirmed on the Blockchain. If transaction Tr(B)
is confirmed before transaction Tr(A), Alice will not be able to get her coins
back and, Bob will receive payment for the product.

– Requirement 3 - Bob’s product delivery time is less than Alice’s misbehavior
detection. Bob needs to be in a fast-payment scenario to ensure the product
is delivered before the Blockchain confirmation.
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3 Analysis of Bitcoin Transactional Processing

We analyze the Bitcoin Mempool with 30,000 transactions between blocks 753957
and 753965. We show this data in Figure 1, where gray dots are confirmed trans-
actions and red dots are unconfirmed transactions. On the x-axis, we show the
observation and data capture time, while on the y-axis, we see the amount of
fee a transaction pays per byte. Finally, the colored bars represent the instant
in time where a block is added to the blockchain.

Fig. 1. Confirmation of transactions in the blockchain and stagnation of transactions
in the Mempool. This graph can be generated with the repository by publishing in [15].

Analyzing Figure 1 we find that there are two scenarios where a malicious
user can perform successful double-spending attacks:

First Scenario: in Bitcoin, each transaction pays a fee for the number of bytes
added to the Blockchain. Fees are rewarding for miners to receive for the compu-
tational power invested in the network. Most nodes adjust the Satoshi/Byte fee
(Satoshi is the smallest unit of a Bitcoin that can be sent, that is, hundredth of
a millionth Bitcoin) based on the number of transactions in the Mempool [16].
Figure 1 shows from 10:30 to 10:53 GMT-5 the increase in fees for the number of
transactions in the Mempool. Note that Bitcoin’s transaction processing capac-
ity is a bottleneck for the system, causing many transactions to remain on hold
without confirmation for up to 72 hours or eventually be discarded [3]. During
the propagation and confirmation time of a transaction, a malicious user has the
advantage of performing a double-spending attack on Bitcoin, propagating two
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transactions with low-fee that spend the same currency and obtaining a product
or service from a merchant who does not wait for the confirmation.

Second Scenario: Bitcoin creates a block every 10 minutes on average. How-
ever, Figure 1 shows that there are long time intervals in the creation of new
blocks, i.e., the standard deviation is high, which means that sometimes there
are time intervals of up to 40 minutes between one block and another [17]. This
standard deviation also increases the risk of a successful double-spending attack
in fast payment scenarios. Because if a malicious user spreads two transactions
that spend the same currency with a high fee, he would still have the long con-
firmation times, which are sufficient in scenarios where the exchange of products
and services is immediate.

4 Related Work

The double-spending attack on Bitcoin fast payments is a vulnerability detected
by Karame et. al in [7] [8]. The author identifies the necessary requirements for
a successful double-spending attack based on his Bitcoin fast-payment model.
They propose that all transactions, including inconsistent ones, propagate with-
out restrictions in the network so that every node can detect double-spending
attacks. However, the mechanism proposed by Karame could generate inconsis-
tencies in the network for a prolonged period, affecting the consensus between
the nodes and causing a denial of service attacks.

Based on the fast payments of Bitcoin and the vulnerability proposed in the
Karame model, T. Bamert et. al in [10] propose a strategy to identify double-
spending attacks by connecting to random nodes and listening for transactions in
the network that have inconsistencies. This solution can identify double spending
attacks with a high percentage as long as the set of nodes is permissioned and
limited. However, the Bitcoin network is permissionless, and its pool of nodes
tends to grow over time.

C. Pérez-Solà et. al in [11] proposes to mitigate the double spending attack by
penalizing malicious users. For this, it uses a vulnerability of the digital signature
scheme based on the elliptic curve to reveal the private key of the attackers.
However, revealing the users’ private key in an asymmetric encryption scheme
is undermining the security foundation of Bitcoin, and this would cause a risk
to possibly not malicious users.

The works mentioned before are the most relevant in the literature on double-
spending attacks on fast Bitcoin payments. However, the proposed strategies do
not guarantee 100% attack detection, opening a topic for future research.

5 Double-spending attacks on Bitcoin Testnet

In Bitcoin, transactions have no temporal constraints, and the confirmation pro-
cess starts when a transaction is added to a block. Bitcoin payments are slow
and refer to a scenario where the merchant waits for up to 6 confirmations from
the Blockchain to deliver the product. However, the double spending attacks
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shown in this section are based on Karame’s model, they set up a scenario of
fast payments without waiting for any confirmation to deliver the product, and
this scenario runs our attacks.

The section is organized as follows: first, the differences between the Bitcoin
Mainnet and the Testnet. Second, the hardware and software used in the attacks.
Third, a description of the transactions that spend the same currency, then the
attacks are described, and finally, a discussion about the results found.

5.1 Difference between Bitcoin Testnet and Bitcoin Mainnet

Bitcoin has two disjoint Blockchains: Bitcoin Mainnet and Bitcoin Testnet. De-
velopers used Bitcoin Testnet as environment to test without spending money
or causing inconsistencies in the Bitcoin Mainnet. Coins on Testnet are separate
from real Bitcoins and never have value. The differences are shown below:

Bitcoin Testnet Bitcoin Mainnet

No monetary value Real value

The difficulty restarts The difficulty is variable

Port 18333 Port 8333

Transaction Frequency Low Transaction Frequency High

No economic benefit for mining Economic incentive for mining

The data is periodically deleted Traceability from the Genesis Block

Connection Port RPC 18332 Connection Port RPC 8332
Table 1. Bitcoin Testnet vs Bitcoin Mainnet

The transactional verification process, from creating a transaction to adding
it to the blockchain, is similar on both Blockchains [13]. Therefore, a double-
spending attack on fast Bitcoin payments runs the same on Testnet and Mainnet.
However, since the frequency of transactions is higher on the Mainnet, the fee
for each transaction is more expensive. The scenario posed in the Karame model
[8] refers to a fruit seller who receives fast Bitcoin payments. This scenario is not
profitable for a malicious user since executing a double-spending attack on the
Bitcoin Mainnet would be more expensive than the product. However, not all fast
payment scenarios handle low amounts. For example, an ATM [4] exchanging
Bitcoin for cash can be a high-money-loss scenario if a malicious user achieve a
successful double-spending attack, as shown in section 5.4 Figure 8.

5.2 Hardware and Software

We perform double-spending attacks on Bitcoin Testnet [12] following Karame’s
model with the two scenarios seen before. The hardware used for these experi-
ments is an Orange pi PC [18] minicomputer show in Figure 2, under the Arm-
bian Buster [19] operating system. This minicomputer is chosen for its low cost,
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Fig. 2. Orange Pi PC minicomputer with hardware specifications [18].

and power consumption. It also meets technical specifications that require a
Bitcoin node to store the Blockchain.

For the implementation of the attacks, the Bitcoin Core software is installed
on 3 Orange pi PC in the role of lightweight nodes. The nodes simulate the
behavior of a malicious entity named Alice, an entity merchant named Bob,
and an Alice’s Helper Node. The process of synchronizing the nodes with the
network takes up to 3 hours. Subsequent, each node must be able to send and
receive Bitcoin transactions via a generated public address and private key. The
addresses are generated in the Bitcoin Core console with the getnewaddress com-
mand. The public key is similar to a bank account number and is used to receive
transactions. The private key signs transactions to be propagated on the Bitcoin
network.

5.3 Create and propagate Bitcoin transactions that spend the same
currency

Bitcoin transactions are created by pointing to the identifier txid of the previous
transaction and the output to be consumed. We assume that Alice makes two
transactions pointing to the same identifier txid and the same output. Tr(A) is a
malicious transaction that returns the coins to Alice, and Tr(B) is a transaction
that tries to pay Bob for the product. Figure 3 and Figure 4 show the creation
of two transactions Tr(A) and Tr(B).
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Fig. 3. Creation of the malicious transaction Alice Tr(A).

Fig. 4. Creation of the transaction that trying to pay Bob Tr(B).

Note that in Figures 3 and 4, transactions point to the same identifier txid
and have a different recipient, i.e., the two transactions spend the same currency.
After the transactions are created and signed, be propagated on the network.
The propagation of the transactions to the network is done through the sendraw-
transaction command. Figure 5 shows the propagation of the transaction Tr(B),
the result is a new identifier for the created transaction.

Fig. 5. Propagation of Tr(B) transaction to the Bitcoin Testnet network.

Bitcoin software does not allow signing two transactions that spend the same
currency [3]. Therefore, Alice uses the Helper Node to sign the Tr(A) transac-
tion. In the next section, multiple transactions spending the same currency will
be created and propagated according to the Karame model to observe the prob-
ability of success of double-spending attacks on fast Bitcoin payments.
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5.4 Experiments

To satisfy Karame’s requirements, we connect Alice’s node directly to Bob’s
node, which satisfies requirement 1. We assume that Bob delivers the product to
Alice once he sees transaction Tr(B) in his Mempool, which satisfies requirement
3. Finally, to observe the probability of confirmation of transaction Tr(A) to the
blockchain, we will modify Alice’s Helper Node connections and the propagation
time of transaction Tr(A) versus transaction Tr(B).

The propagation of transactions Tr(A) and Tr(B) are made with a time
difference shown on the x axis of Figure 6. For example, if the time is equal to
1 second, it means that Tr(A) propagated 1 second after Tr(B), and if time
is equal to -4 seconds means that Tr(A) propagated 4 seconds before Tr(B).
Therefore, when the time difference is 0, it means that the two transactions
were propagated at the same time. For every time difference, 10 attacks on Bit-
coin Testnet [12], the probability that Tr(B) belongs to the blockchain is equal
to Tr(A)− 1.

In the first set of attacks, Bob is connected to eight nodes, including Al-
ice, and the Alice’s Help Node connect to eight nodes without relationship to
Bob’s connections. The experiment aims to observe the probability of success of a
double-spending attack in an uncontrolled environment with the Karame’s model
using the default configuration of the Bitcoin Core Testnet. Figure 6 shows that

t(s)
1 0.5 0 −0.5 −1 −1.5 −2 −3 −4

Probability

0.2

0.4

0.6

0.8

1 Tr(A)

Fig. 6. Probability of success of the malicious transaction, when the attacking node
and Bob’s node connect to the same number of nodes.



10 F. Author et al.

although Bob and Alice’s Helper Node have the same eight connections, they are
under an uncontrolled environment. Because when the difference in propagation
time of transactions is 0, the malicious transaction Tr(A) propagated by Alice’s
Helper Node has only a 20% chance of confirmation in the Blockchain. Also,
when the propagation time of transaction Tr(B) is delayed, the probability of
adding transaction Tr(A) to the blockchain increases.

In the second set of attacks, Alice’s Helper Node connects to 50 nodes. We
emphasize that increasing the number of connections increases the waiting time
between the connections of each node. The connection timeout parameter in this
experiment is 15 seconds per node. This experiment aims to observe the proba-
bility of confirmation of Alice’s Tr(A) malicious transaction when connections to
Alice’s Helper Node are increased. Although the environment is not controlled,
the probability of confirmation of the transaction Tr(A) should increase com-
pared to the graph before.

Figure 7 shows a relevant increase in the probability of success of the ma-
licious transaction. For attacks with one second of difference, the confirmation
increased by 10% compared to attacks in the previous experiment. Also, the time
the malicious transaction Tr(A) reaches 100% of the probability of confirmation
is reduced. However, the advantage of transaction Tr(B) continues with a high
percentage of success when the two transactions propagate at the same time.
This modification of Alice’s Helper Node connections shows how easy it is to
give the malicious transaction Tr(A) an advantage to satisfy requirement 2.

In the third set of experiments, Alice’s Help Node connections increase to
100 nodes. The wait parameter between node connections is the same as in
the previous experiment. We find that Orange pi’s resources are limited to run
this experiment, and a more powerful computer is used (Laptop Core I7 9th
Generation with 16 Gb Ram and 1 Gigabit Ethernet Port). The experiment
aims to increase the connections of Alice’s helper node to 100 nodes and to
observe if the probability of confirmation of the malicious transaction Tr(A)
increases proportionally. Figure 8 shows the result of increasing the connections
of Alice’s Help Node, increasing the probability of confirmation of the malicious
transaction Tr(A). However, the advantage obtained is low compared to the
previous experiment, and the change in the hardware and software is costly.

Discussion Finally, the experiments are an implementation following Karame’s
model for double-spending attacks successfully and supported by the analysis of
the Bitcoin Mempool. We modify the variables to satisfy requirement 2, such
as the propagation time difference between the malicious transaction Tr(A) and
the transaction trying to pay Bob Tr(B), also the number of connections. We
note that there is a high probability of success of the double-spending attacks
on fast Bitcoin payments under an uncontrolled environment such as the Bitcoin
Testnet. The probability of confirmation Tr(A) can increase with more complex
attacks. We highlight that the experiments used hardware with limited resources
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Fig. 7. Probability of success of the malicious transaction, when the attacking node
connects to fifty nodes and Bob connects to eight nodes.

t(s)
1 0.5 0 −0.5 −1 −1.5 −2 −3 −4
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Fig. 8. Probability of success of the malicious transaction, when the attacking node
connects to hundreds of nodes and Bob connects to eight nodes.

Orange pi PC, and only necessary to modify the hardware in the last experiment.
However, the probability did not increase as expected. Finally, it is possible to
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increase the probability of success of these attacks if the network connections
are analyzed.

6 Conclusions

In this article, Bitcoin’s vulnerability to double-spending attacks in fast payment
scenarios was shown at a low level. The attacks were implemented on Karame’s
model and the analysis of transactional processing. The number of connections
of Alice’s Helper Node and the transactions’ propagation time were modified
to measure the attack success probability. The experiments showed a 70% suc-
cess probability using a low-cost device such as Orange pi PC. This vulnerability
stops the massive adoption of Bitcoin and leaves an open issue to develop mecha-
nisms that avoid double-spending attacks, as future work remains to analyze the
Karame model from a time-based logical distributed view and find the necessary
and sufficient requirements for a double spending attack.

References

1. S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system (2009).

2. M. Rosenfeld, Analysis of hashrate-based double spending (2014).

3. S. Nakamoto, Bitcoin web, https://developer.bitcoin.org/ (01-06-2020).
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