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Introduction

Introduction

The Classification task consists in associating objects with predefined
categories (e.g. Text classification). Among the variety of classification
models proposed so far, nearest-neighbors (NN) methods are among the

most popular ones.
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Figure: Example of the kNN method.
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Introduction

Altough NN methods are highly effective, and easy to implement, they

present some issues that hinder their application to certain types of
problems:

m High computational time requirements.
m High storage requirements.

m Sensitivity to noisy (e.g., misclassified instances and outliers).
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There are different techniques for data reduction.
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Figure: Techniques for data reduction.
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Related Work

m There are a number of approaches for prototype generation (PG) such

as incremental, decremental, mixed (e.g., GENN, PSCSA, PSO
methods).

m Triguero et al. review and classify most of the existing PG methods
up to 2012, additionally, a taxonomy and experimental comparison of
these methods is also reported.

m On the other hand, for the feature extraction there are several
approaches such as evolutionary algorithms.

Both tasks, prototype generation and feature extraction, are performed
independently due to computational cost. However, there are methods
that try to combine both techniques.
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Multi-Objective Approach

m We present a extension of the Simultaneous Generation of
Prototypes and Features through Genetic Programming
(SGPFGP) method. The goal is to learn class-specific prototypes and
features for pattern classification by NN throgh multi-objective
optimization.

m The method is based on NSGA-II algorithm and SGPFGP method.

m We use genetic programming to the generation of prototypes and
features by combining instances and features, respectively.

m Our proposal tries to find a good trade-off between accuracy,
reduction of instances and features.

m The main difference of the multi-objective approach against the
SGPFGP method is the multi-objective optimization.
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Simultaneous Prototype and Feature Generation
through Multi-Objective Genetic Programming
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Figure: Flow chart of the multi-objective approach.
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Figure: Representation of an individual: class-specific prototype-feature trees.
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Figure: Prototype repersentation (left): instances are combined, feature
representation (right): features are comblned

B The function set for combining instances and features is the following set of operators:
{+.,-.*,/(Protected), Min, Max}.

m The Fitness function was the classification performance obtained by a 1NN when classify
in all instances in a validation set.
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Table: Summary of features for the 59 data sets of the considered benchmark.

Small Large
# data sets 40 19
# Classes [2, 15] [2, 28]
# Instances  [101, 1,728] [2,201, 19,020]
# Attributes [3, 90] [2, 85]

B Number of generations is 100.

Population size is set to 200.

Maximum tree depth is fixed to 3.

m Statistically test: Wilcoxon signed-rank, with confidence level of 95 %.
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Experimental Results

Table: Average classification accuracy for SGPFGP and reference methods.

Multi-Objective SGPFGP INN
Small 70,84 +1724 7197+1576 73,48+ 16,64
Large 76,19+2125 80,25x+19,93 80,60+ 22,24

* statistically significant difference.

Table: Average instance reduction rates obtained by the considered methods.

Multi-Objective SGPFGP
Small  98,434+1,65 98,39 % +1,37
Large 99,82+0,16 99,43 x 0,09

* statistically significant difference.
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Experimental Results

Table: Average feature reduction rates obtained by the considered methods.

Multi-Objective SGPFGP
Small 88,65 + 7,52 42,62 x +5,13
Large 89,74 4+1236 41,45x 412,76

* statistically significant difference.

Hugo Jair (IEEE XVI ROPEC) Prototype and Feature Generation INAOE 18 / 27



[SOEANEIEINAEETISI  Accuracy vs. Instance reduction tradeoff

Experimental Results

77,5
75 BGENN IICPL.PSo
>
§ 725 | INN mDepur E@ERGA3 @MSE
8 T BHYB menpc *MCFOSGPFGP
< e BYQPRU - ?Multl-objectlve Approach
FARES s
67.5 1 DSMigeyian
' SA
avgtfs
65 - EPOC vQ
|
62,5 | i
|
|
60 w w w w w w w w w L 4

0 10 20 30 40 50 60 70 80 90 100

Instance Reduction

Figure: Average reduction (x—axis) vs. accuracy (y—axis) for small data sets.
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Figure: Average reduction (x—axis) vs. accuracy (y—axis).for large data sets.
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The Chess data set is associated to a binary classification task (2-classes)
that contains 3,196 instances described by 36 attributes.
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Figure: Feature space and prototype of
class 1.
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Figure: Pareto front of Chess data set (3-D)
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Figure: Pareto front of Chess data set (2-D) (Accuracy, Instance reduction)
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Conclusions

Conclusions

m The multi-objective is able to reduce data dimensionality and the
number of training instances without compromising the classification
performance.

m Instance-reduction performance of multi-objective approach is very
close to the optimal reduction rates (i.e., one instance per class).

m The multi-objective reduces about 90 % data sets dimensionality.
Building new features that are more informative for designing NN
classifiers.

m The multi-objective method outperforms statistically in terms of
instance and feature reduction rate to SGPFGP method.
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Future Work
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m Explore the use of distances for different types of data such as Value
Difference Metric or Heterogeneous Value Difference Metric.

m Use other metrics to evaluate the classification performance such as
the area under the curve.

m Mixing the different solutions obtained for each Pareto front, in order
to exploit each of the solutions generated.

Hugo Jair (IEEE XVI ROPEC) Prototype and Feature Generation INAOE 26 / 27



Questions

Questions ?

Thank you for your attention!
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