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What do you see?What do you see?

What we see depends on our previous knowledge 
(model) of the world and the information (data) form 

the images Bayesian perception
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Bayesian visual perceptionBayesian visual perception
• The perception problem is characterized by 

two main aspects:
– The properties of the world that is 

observed (prior knowledge)
– The image data used by the observer 

(data)
• The Bayesian approach combines these two 

aspects which are characterized as 
probability distributions

• The perception problem is characterized by 
two main aspects:
– The properties of the world that is 

observed (prior knowledge)
– The image data used by the observer 

(data)
• The Bayesian approach combines these two 

aspects which are characterized as 
probability distributions
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RepresentationRepresentation

• Scene properties – S
• Model of the world – prior probability 

distribution – P(S)
• Model of the image – probability distribution 

of the image given de scene (likelihood) –
P(I|S)

• Scene properties – S
• Model of the world – prior probability 

distribution – P(S)
• Model of the image – probability distribution 

of the image given de scene (likelihood) –
P(I|S)
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RecognitionRecognition

• The scene (object) is characterized by the 
posterior probability distribution – P(S|I)

• By Bayes theorem:
P(S|I) = P(S) P(I|S) / P(I)

• The denominator can be consider as a 
normalizing constant:

P(S|I) = k P(S) P(I|S) 

• The scene (object) is characterized by the 
posterior probability distribution – P(S|I)

• By Bayes theorem:
P(S|I) = P(S) P(I|S) / P(I)

• The denominator can be consider as a 
normalizing constant:

P(S|I) = k P(S) P(I|S) 
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ExampleExample
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ExampleExample

• Prior distribution of objects – P(O)
– Cube 0.2
– Cylinder 0.3
– Sphere 0.1
– Prism 0.4

• Prior distribution of objects – P(O)
– Cube 0.2
– Cylinder 0.3
– Sphere 0.1
– Prism 0.4
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ExampleExample

• Likelihood function P(Silhouette|Object) – P(S|O)

Prism Cube Cylinder Sphere

Square 1.0 0.6 0.0 0.4
Circle 0.0 0.4 1.0 0.0
Trapezoid 0.0 0.0 0.0 0.6

• Likelihood function P(Silhouette|Object) – P(S|O)

Prism Cube Cylinder Sphere

Square 1.0 0.6 0.0 0.4
Circle 0.0 0.4 1.0 0.0
Trapezoid 0.0 0.0 0.0 0.6
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ExampleExample

• Posterior distribution P(Object|Silhouette) – P(O|S)
• Bayes rule:

P(O|S) = k P(O) P(S|O)
• For example, given S=square

P(Cube | square)= k 0.2 * 1 = k 0.2 = 0.37
P(Cylinder | square)= k 0.3 * 0.6 = k 0.18 = 0.33
P(Sphere | square)= k 0.1 * 0 = 0
P(Prism | square)= k 0.4 * 0.4 = k 0.16 = 0.30

• Posterior distribution P(Object|Silhouette) – P(O|S)
• Bayes rule:

P(O|S) = k P(O) P(S|O)
• For example, given S=square

P(Cube | square)= k 0.2 * 1 = k 0.2 = 0.37
P(Cylinder | square)= k 0.3 * 0.6 = k 0.18 = 0.33
P(Sphere | square)= k 0.1 * 0 = 0
P(Prism | square)= k 0.4 * 0.4 = k 0.16 = 0.30
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Graphical ModelGraphical Model

• We can represent the dependence relation in 
this simple example graphically, with 2 
variables and an arc

• We can represent the dependence relation in 
this simple example graphically, with 2 
variables and an arc

O

S

P(O)

P(S|O)
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Graphical ModelsGraphical Models

• This graphical representation of probabilistic 
models can be extended to more complex 
ones.

• There are several types of probabilistic 
graphical models (PGMs) that can be applied 
to different problems in perception

• This graphical representation of probabilistic 
models can be extended to more complex 
ones.

• There are several types of probabilistic 
graphical models (PGMs) that can be applied 
to different problems in perception
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Probabilistic Graphical ModelsProbabilistic Graphical Models
• A graphical model is specified by two aspects:

– A Graph, G(V,E), that defines the structure of 
the model

– A set of  local functions, f(Yi), that defines the 
parameters (probabilities), where Yi is a subset 
of X

• The joint probability is defined by the product of 
the local functions:

• A graphical model is specified by two aspects:
– A Graph, G(V,E), that defines the structure of 

the model
– A set of  local functions, f(Yi), that defines the 

parameters (probabilities), where Yi is a subset 
of X

• The joint probability is defined by the product of 
the local functions:

 )f(Y )X , ,X ,P(X
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Probabilistic Graphical ModelsProbabilistic Graphical Models

• This representation in terms of a graph and a set 
of local functions (called potentials) is the basis 
for inference and learning in PGMs
– Inference: obtain the marginal or conditional 

probabilities of any subset of variables Z given 
any other subset Y

– Learning: given a set of data values for X (that 
can be incomplete) estimate the structure 
(graph) and parameters (local function) of the 
model

• This representation in terms of a graph and a set 
of local functions (called potentials) is the basis 
for inference and learning in PGMs
– Inference: obtain the marginal or conditional 

probabilities of any subset of variables Z given 
any other subset Y

– Learning: given a set of data values for X (that 
can be incomplete) estimate the structure 
(graph) and parameters (local function) of the 
model
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Types of PGMsTypes of PGMs

• We will consider the following models and 
their applications in vision:
– Bayesian classifiers
– Bayesian networks
– Hidden Markov models
– Dynamic Bayesian networks
– Markov Random Fields

• We will consider the following models and 
their applications in vision:
– Bayesian classifiers
– Bayesian networks
– Hidden Markov models
– Dynamic Bayesian networks
– Markov Random Fields
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Bayesian ClassifierBayesian Classifier

• A Bayesian classifier is used to obtain the 
probability of certain variable (the class or 
hypothesis, H) given a set of variables known 
as the attributes or evidence (E = E1, …, EN)

• It is usually assumed that the attributes are 
independent given the class – Naive Bayesian 
Classifier – so its PGM is represented as a 
“star” with the class as the root and the 
attributes as the leafs

• A Bayesian classifier is used to obtain the 
probability of certain variable (the class or 
hypothesis, H) given a set of variables known 
as the attributes or evidence (E = E1, …, EN)

• It is usually assumed that the attributes are 
independent given the class – Naive Bayesian 
Classifier – so its PGM is represented as a 
“star” with the class as the root and the 
attributes as the leafs
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Naive Bayesian ClassifierNaive Bayesian Classifier

C

A2A1 An…
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Bayesian ClassifierBayesian Classifier

• The posterior probability of each hypothesis 
(H) based on the Evidence (E) is:

P(H | E) = P(H) P(E | H) / P(E)

• The posterior probability of each hypothesis 
(H) based on the Evidence (E) is:

P(H | EE) = P(H) P(EE | H) / P(EE)
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Naive Bayesian classifier 
Inference

Naive Bayesian classifier 
Inference

• Consider each attribute independent given the 
hypothesis:

P(E1, E2, ...EN | H) = 
P(E1 | H) P(E2 | H) ... P(EN | H) 

• So the posterior probability is given by:
P(H | E1, E2, ...EN) = 

[P(H) P(E1 | H) P(E2 | H) ... P(EN | H)] / P(E)
= k P(H) P(E1 | H) P(E2 | H) ... P(EN | H)

• Consider each attribute independent given the 
hypothesis:

P(E1, E2, ...EN | H) = 
P(E1 | H) P(E2 | H) ... P(EN | H) 

• So the posterior probability is given by:
P(H | E1, E2, ...EN) = 

[P(H) P(E1 | H) P(E2 | H) ... P(EN | H)] / P(EE)
= k P(H) P(E1 | H) P(E2 | H) ... P(EN | H)
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Naive Bayesian classifier 
Learning

Naive Bayesian classifier 
Learning

• Structure: 
– the structure is given by the naive Bayes assumption

• Parameters: 
– we need to estimate the prior probability of each 

class
P(Ci)

– and the individual conditional probabilities of each 
attribute given the class

P(Ak | Ci)

• Structure: 
– the structure is given by the naive Bayes assumption

• Parameters: 
– we need to estimate the prior probability of each 

class
P(Ci)

– and the individual conditional probabilities of each 
attribute given the class

P(Ak | Ci)
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ExampleExample

• Skin classification based on color
– Hypothesis: skin, no-skin
– Attributes: red, green, blue (256 values 

each)

• Probability function:
P(S|R,G,B) = k P(S) P(R| S) P(G| S) P(B| S)

• Skin classification based on color
– Hypothesis: skin, no-skin
– Attributes: red, green, blue (256 values 

each)

• Probability function:
P(S|R,G,B) = k P(S) P(R| S) P(G| S) P(B| S)
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Naive Bayes

S

GR B
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Skin detectionSkin detection

Detection of skin
pixels based on
color information
and a Bayesian
classifier
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Bayesian NetworksBayesian Networks

• Bayesian networks (BN) are a graphical 
representation of dependencies between a set of 
random variables. A Bayesian net is a Directed 
Acyclic Graph (DAG) in which:
– Node: Propositional variable. 
– Arcs: Probabilistic dependencies. 

• An arc between two variables represents a direct 
dependency, usually interpreted as a causal
relation.

• Bayesian networks (BN) are a graphical 
representation of dependencies between a set of 
random variables. A Bayesian net is a Directed 
Acyclic Graph (DAG) in which:
– Node: Propositional variable. 
– Arcs: Probabilistic dependencies. 

• An arc between two variables represents a direct 
dependency, usually interpreted as a causal
relation.
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An example of a BN

Drunk

Thirsty Headache

Wine
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ParametersParameters

Conditional probabilities of each node given 
its parents.

• Root nodes: vector of prior probabilities

• Other nodes: matrix of conditional 
probabilities 

Conditional probabilities of each node given 
its parents.

• Root nodes: vector of prior probabilities

• Other nodes: matrix of conditional 
probabilities 
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P(W)
0.8  0.2

Drunk

Thirsty Headache

Wine
P(D|W)
0.9  0.7
0.1  0.3

P(H|D)
0.7  0.4
0.3  0.6

P(T|D)
0.9  0.5
0.1  0.5
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InferenceInference

• Inference in a Bayesian Network consists on 
estimating the posterior probability of some 
variables (unknowns) given the values of 
some other variables (evidence)

• There are several algorithms for probability 
propagation in BN

• All the methods are based on Bayes theorem

• Inference in a Bayesian Network consists on 
estimating the posterior probability of some 
variables (unknowns) given the values of 
some other variables (evidence)

• There are several algorithms for probability 
propagation in BN

• All the methods are based on Bayes theorem
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Inference

C Causal:
C H

Evidential:
E H

Mixed:
C,E H

P(H|C)

H

E

P(E|H)
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BN in VisionBN in Vision

General Model
Example

General Model
Example
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A “general” BN model for VisionA “general” BN model for Vision

Part

Feature Feature

ObjectObject Object

Feature

Part Part Part

Feature
Feature

Feature
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Example - endoscopyExample - endoscopy

• Endoscopy is a tool for direct observation of 
the human digestive system

• Recognize “objects” in endoscopy images of 
the colon for semi-automatic navigation

• Main feature – dark regions
• Main objects – “lumen” & “diverticula”

• Endoscopy is a tool for direct observation of 
the human digestive system

• Recognize “objects” in endoscopy images of 
the colon for semi-automatic navigation

• Main feature – dark regions
• Main objects – “lumen” & “diverticula”
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Colon ImageColon Image
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Segmentation – dark regionSegmentation – dark region
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Features – pq
histogram

Features – pq
histogram
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BN for endoscopy (partial)BN for endoscopy (partial)
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Semi-automatic EndoscopeSemi-automatic Endoscope
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Endoscopy navegation systemEndoscopy navegation system
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Endoscopy navegation systemEndoscopy navegation system
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Dynamic Bayesian networks (DBN)Dynamic Bayesian networks (DBN)

• BN for modeling temporal processes
• A “static BN” is repeated at each time 

(discrete time)
• Dependencies (arcs) between temporal slices 

(Markov assumption)
• Dependencies and parameters between time 

slices are repeated (Stationary assumption)
• Hidden Markov models (HMMs) are a special 

case of DBN

• BN for modeling temporal processes
• A “static BN” is repeated at each time 

(discrete time)
• Dependencies (arcs) between temporal slices 

(Markov assumption)
• Dependencies and parameters between time 

slices are repeated (Stationary assumption)
• Hidden Markov models (HMMs) are a special 

case of DBN
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Example of a DBN

St St+1 St+2 St+3

Xt Xt+1 Xt+2 Xt+3

E E E E

T T+1 T+2 T+3
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Hidden Markov Models (HMM)Hidden Markov Models (HMM)

• A stochastic process in which the states are not 
directly observable 

• It consists of:
– A finite set of states
– A probability distribution for transitions between 

states
– A probability distribution for observations given 

the state

• A stochastic process in which the states are not 
directly observable 

• It consists of:
– A finite set of states
– A probability distribution for transitions between 

states
– A probability distribution for observations given 

the state
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HMM – Graphical ModelHMM – Graphical Model

P(S1) P(St+1|St)

EE E E

T T + 1 T + 2 T + 3

St St+3St+2St+1

P(E|St)
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HMMSHMMS

• Representation
– Usually one model (HMM) is used to represent 

each dynamic object
• Learning

– The structure is set by the designer and the 
parameters are learned from data

• Recognition
– The data is fed to all the models and the one with 

the highest probability is selected

• Representation
– Usually one model (HMM) is used to represent 

each dynamic object
• Learning

– The structure is set by the designer and the 
parameters are learned from data

• Recognition
– The data is fed to all the models and the one with 

the highest probability is selected
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Example HMMs: Gesture RecognitionExample HMMs: Gesture Recognition

• Motion features only
• HMMs

• Recognize 5 dynamic gestures with the right hand
• The gestures are for commanding a mobile robot
• Recognition based on HMM

• Motion features only
• HMMs

• Recognize 5 dynamic gestures with the right hand
• The gestures are for commanding a mobile robot
• Recognition based on HMM
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Come

attention

go-right

go-left

stop

Come

attention

go-right

go-left

stop
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Feature ExtractionFeature Extraction

• Skin detection
• Face and hand segmentation
• Hand tracking
• Motion features

• Skin detection
• Face and hand segmentation
• Hand tracking
• Motion features
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SegmentationSegmentation
Radial scan for
skin pixel detection

Segmentation by grouping
skin pixels in the scan lines
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TrackingTracking
Locate face and hand based on antropometric measures

Track the hand by using the radial scan
segmentation in region of interest
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FeaturesFeatures
• From each image we obtain the features:

– change in X (∆X)
– change in Y (∆Y)
– change in area (∆A)
– change in size ratio (∆R)

• Each one is codified in 3 values: (+, 0, -)

• From each image we obtain the features:
– change in X (∆X)
– change in Y (∆Y)
– change in area (∆A)
– change in size ratio (∆R)

• Each one is codified in 3 values: (+, 0, -)

X2,Y2

A2
X1,Y,1

A1
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RecognitionRecognition
• Recognition based on HMM
• One HMM for each gesture
• The probability of each model given the observations is estimated

(forward algorithm) and the one with highest probability is selected

• Recognition based on HMM
• One HMM for each gesture
• The probability of each model given the observations is estimated

(forward algorithm) and the one with highest probability is selected
P1
P2

P4

P3

P5



51

ResultsResults

• Training with 128 sequences per gesture
• Testing with 80 sequences for each gesture
• Correct recognition:

– come 75.3 %
– attention 70.7%
– stop 65.8 %
– go-right 100 %
– go-left 100 %
– Average: 82%

• Training with 128 sequences per gesture
• Testing with 80 sequences for each gesture
• Correct recognition:

– come 75.3 %
– attention 70.7%
– stop 65.8 %
– go-right 100 %
– go-left 100 %
– Average: 82%
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Example DBNs: Gesture recognitionExample DBNs: Gesture recognition

• Recognize 5 dynamic gestures with the right 
hand (same as for HMM)

• Recognition based on dynamic Bayesian 
networks

• Include more features:
– Motion
– Posture

• Recognize 5 dynamic gestures with the right 
hand (same as for HMM)

• Recognition based on dynamic Bayesian 
networks

• Include more features:
– Motion
– Posture
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Motion Features
(0,0) x

Image t

.. x'

∆a = 0

∆x = +

∆y = –

form = +

Image t+1

y'

y
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Posture features

Above

Right

Torso

Posture features are 
simple spatial relations 
between the user’s 
right hand and other 
body parts:
– Right
– Above
– Torso

Each one can take one 
of 2 values: (yes, no)

Posture features are 
simple spatial relations 
between the user’s 
right hand and other 
body parts:
– Right
– Above
– Torso

Each one can take one 
of 2 values: (yes, no)
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Dynamic naive Bayesian Classifier
with posture information

Dynamic naive Bayesian ClassifierDynamic naive Bayesian Classifier
withwith postureposture informationinformation

St

∆x, ∆y ∆a form above right torso

…

t
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ExperimentsExperiments

• 150 samples of each gesture taken from one 
user

• Laboratory environment with different 
lighting conditions

• Distance from the user to the camera varied 
between 3.0 m and 5.0 m

• The number of training samples varied 
between 5% to 100% of the training set

• 150 samples of each gesture taken from one 
user

• Laboratory environment with different 
lighting conditions

• Distance from the user to the camera varied 
between 3.0 m and 5.0 m

• The number of training samples varied 
between 5% to 100% of the training set
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Confusion matrix: 
DNBCs without posture information

Confusion matrix: 
DNBCs without posture information

come attention go-right go-left stop

come 98 % 2 %

attention 3 % 87 % 10 %

go-right 100 %

go-left 100 %

stop 4 % 39 % 1 % 56 %

TheThe average average recognitionrecognition raterate isis 87.75 %87.75 %
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Confusion matrix: BCs with posture informationConfusion matrix: BCs with posture information
come attention go-right go-left stop

come 100 %

attention 100 %

go-right 100 %

go-left 100 %

stop 11 % 6 % 83 %

TheThe average average recognitionrecognition raterate isis 96.75 %96.75 %
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come attention go-right go-left stop

come 100 %

attention 100 %

go-right 100 %

go-left 100 %

stop 8 % 92 %

Confusion matrix: HMMs with posture informationConfusion matrix: HMMs with posture information

TheThe average average recognitionrecognition raterate isis 98.47 %98.47 %
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Accuracy vs Training SizeAccuracy vs Training Size

Average recognition results of five repetitions of the experimenAverage recognition results of five repetitions of the experimentt
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Markov Random FieldsMarkov Random Fields
• A set of random variables indexed by nodes in a graph.

y1 y3 y5

y6y4y2

x1

x2

x3

x4

x5

x6

– Observations: labels generated by base classifier
– Prior knowledge: associations between labels



62

Markov Random FieldMarkov Random Field

Label’s association Confidence of the AIA method
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Markov Random FieldMarkov Random Field

• Representation
– The fields through a graph a set of objects (nodes) and 

their relations (arcs)
• Learning 

– Usually the structure (vicinity) and parameters 
(potentials) are specified by the designer, although  they 
could be learned from data

• Recognition
– Based on the observed data, recognition consists on 

obtaining the most probable values for all the objects
(configuration) via an optimization process

• Representation
– The fields through a graph a set of objects (nodes) and 

their relations (arcs)
• Learning 

– Usually the structure (vicinity) and parameters 
(potentials) are specified by the designer, although  they 
could be learned from data

• Recognition
– Based on the observed data, recognition consists on 

obtaining the most probable values for all the objects
(configuration) via an optimization process
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ExampleExample

• Use of a MRF to improve automatic image 
annotation by incorporating:
– Semantic associations
– Spatial relations

• Use of a MRF to improve automatic image 
annotation by incorporating:
– Semantic associations
– Spatial relations
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Semantic association between labelsSemantic association between labels
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Use of external corpusUse of external corpus
• Association:

• Association between two labels is given by the 
number of documents in which both labels occur 
within an external corpus of documents

• Association:

• Association between two labels is given by the 
number of documents in which both labels occur 
within an external corpus of documents

Occurrence frequency
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Label’s associationLabel’s association

• External corpus: IAPR-TC12-2006
– 20,000 manually annotated images
– Title, description, 
– location, date, notes

• External corpus: IAPR-TC12-2006
– 20,000 manually annotated images
– Title, description, 
– location, date, notes

<TITLE>National Palace in Asuncion</TITLE>

<DESCRIPTION>a white building with lots of
columns and arches, a neat lawn and neatly
cut trees and bushes in the foreground; the flag
of Paraguay is waving at the top of the building; 
there is a flower bed on the left;</DESCRIPTION>

<NOTES>The National Palace was build in 
Versaillan style from 1960 to 1992;</NOTES>

<LOCATION>Asunción, Paraguay</LOCATION>

<DATE>March 2002</DATE>
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Label’s associationLabel’s association
• External corpus: IAPR-TC12-2006• External corpus: IAPR-TC12-2006



69

Label’s associationLabel’s association
• External corpus: IAPR-TC12-2006• External corpus: IAPR-TC12-2006
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Label’s associationLabel’s association
• External corpus: IAPR-TC12-2006• External corpus: IAPR-TC12-2006
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Label’s associationLabel’s association
Occurrence frequency

Laplacian Smoothing

Interpolation smoothing
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Experiments: Corel data setExperiments: Corel data set
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ExperimentsExperiments
• Annotation method: knn

• Comparison of KNN against semi-supervised methods 
dML1,  dML10, gML1, gML10, gMAP1, gMAP1MRF

• Comparing error (e) at the top x-labels
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Experimental resultsExperimental results
k-NN versus others

Error at the 5-labelsError at the first label
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Experimental resultsExperimental results

14.7%
10.3%

18.9%
7.5%

COREL-A ncuts segmentation COREL-A grid segmentation
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Incorporating Spatial RelationsIncorporating Spatial Relations
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Considering spatial relationsConsidering spatial relations

trees 0.7

grass 0.3 sea 0.8

sky 0.2

sky 0.9

sea 0.1

sky disjoint to 
trees 0.4

sky adjacent to sea 0.5

sky below trees 0.0

sky below sea 0.0sea adjacent to sea 0.5 sea below sea 0.5

sea below trees 0.4
sea disjoint to 
trees 0.4

sea 0.6

sky 0.4

Sky below sea?

Sky below trees?

77
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Spatial RelationsSpatial Relations

• Types of relations:
– Topological
– Order
– Metric

• We use:

• Types of relations:
– Topological
– Order
– Metric

• We use:
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PotentialsPotentials

• Energy potentials are inversely proportional to 
the probability of each relation:

• Energy potentials are inversely proportional to 
the probability of each relation:
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Estimating potentialsEstimating potentials

• The probability of each relation is obtained 
by combining a subjective estimate (Ek) with 
data from labeled images (Relk):

• The probability of each relation is obtained 
by combining a subjective estimate (Ek) with 
data from labeled images (Relk):
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MethodologyMethodology
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ExperimentsExperiments
• Data set:

– Corel A database
– 205 landscape images, segmented with normalized 

cuts
– 137 training images and 68 test images
– 22 possible labels

• Data set:
– Corel A database
– 205 landscape images, segmented with normalized 

cuts
– 137 training images and 68 test images
– 22 possible labels
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ExperimentsExperiments
Expert
knowledge

Laplacian
smoothing

No
smoothing

Topological
relations
Vertical
relations
Horizontal
relations
All
relations

• We used kNN as base classifier for region annotation• We used kNN as base classifier for region annotation
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ParametersParameters

The best configuration is based on
MAP using simulated annealing:
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ResultsResults

Markov Random Fields and Spatial Information to Improve Automatic Image Annotation
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Improving segmentationImproving segmentation

Original 
segmentation

Segmentation
improvements after
kNN

Correct
segmentation

(manual)

Segmentation
improvements after
using spatial
relations and MRF
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