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What do you see?

What we see depends on our previous knowledge
(model) of the world and the information (data) form
the Images -> Bayesian perception



Bayesian visual perception

« The perception problem is characterized by
two main aspects:

— The properties of the world that Is
observed (prior knowledge)

— The Image data used by the observer
(data)

« The Bayesian approach combines these two
aspects which are characterized as
probability distributions




Representation

e Scene properties — S
» Model of the world — prior probability
distribution — P(S)

« Model of the image — probability distribution
of the image given de scene (likelthood) —
P(I[S)



Recognition

« The scene (object) Is characterized by the
posterior probability distribution — P(S|l)
» By Bayes theorem:
P(S|l) = P(S) P(I|S) / P(l)
e The denominator can be consider as a
normalizing constant:

P(S|I) = k P(S) P(I|S)



Example




Example

o Prior distribution of objects — P(O)
— Cube 0.2
— Cylinder 0.3
— Sphere 0.1
— Prism 0.4




Example

o Likelihood function P(Silhouette|Object) — P(S|O)

Prism Cube Cylinder Sphere
Square 1.0 0.6 0.0 0.4
Circle 0.0 0.4 1.0 0.0

Trapezoid 0.0 0.0 0.0 0.6



Example

o Posterior distribution P(Object|Silhouette) — P(O|S)

« Bayes rule:
P(O|S) = k P(O) P(S|O)
« For example, given S=square
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Graphical Model

 \We can represent the dependence relation in
this simple example graphically, with 2
variables and an arc
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Graphical Models

o This graphical representation of probabilistic
models can be extended to more complex
ones.

» There are several types of probabilistic
graphical models (PGMs) that can be applied
to different problems in perception



Probabilistic Graphical Models

A graphical model is specified by two aspects:

— A Graph, G(V,E), that defines the structure of
the model

— A set of local functions, f(Y;), that defines the
parameters (probabilities), where Y; IS a subset
of X

 The joint probability is defined by the product of
the local functions:

P(X1, Xz, ..., Xn) = ﬁf(Yi)



Probabilistic Graphical Models

 This representation in terms of a graph and a set
of local functions (called potentials) is the basis
for inference and learning in PGMs

— Inference obtain the marginal or conditional
probabilities of any subset of variables Z given
any other subset Y

— Learning given a set of data values for X (that
can be incomplete) estimate the structure

(graph) and parameters (local function) of the
model



Types of PGMs

 \We will consider the following models and
their applications In vision:

— Bayesian classifiers

— Bayesian networks

— Hidden Markov models

— Dynamic Bayesian networks
— Markov Random Fields



Bayesian Classifier

A Bayesian classifier is used to obtain the
probability of certain variable (the class or

hypothesis, H) given a set of variables known
as the attributes or evidence (E=E,, ..., E)

o |tis usually assumed that the attributes are
iIndependent given the class — Naive Bayesian
Classifier — so its PGM Is represented as a
“star” with the class as the root and the
attributes as the leafs



Naive Bayesian Classifier




Bayesian Classifier

 The posterior probability of each hypothesis
(H) based on the Evidence (E) Is:

P(H | E) = P(H) P(E | H) / P(E)



Naive Bayesian classifier
Inference

 Consider each attribute independent given the
hypothesis:
P(E;, By .Ey | H) =
P(E; | H) P(E; | H) ... P(Ey | H)

S0 the posterior probability is given by:
P(H|E,, E,, ...E\) =
[P(H) P(Ey | H) P(E, | H).... P(Ey | H)] / P(E)
=Kk P(H) P(E; | H) P(E; | H) ... P(Ey [ H)



Naive Bayesian classifier
Learning

o Structure:
— the structure Is given by the naive Bayes assumption
o Parameters:

— We need to estimate the prior probability of each
class

P(C)
— and the individual conditional probabilities of each
attribute given the class

P(A 1 C)



Example

 Skin classification based on color
— Hypothesis: skin, no-skin

— Attributes: red, green, blue (256 values
each)

 Probability function:
P(S|R,G,B) = k P(S) P(R| S) P(G| S) P(B| S)




Naive Bayes




Skin detection

Detection of skin
pixels based on
color information
and a Bayesian
classifier




Bayesian Networks

 Bayesian networks (BN) are a graphical
representation of dependencies between a set of
random variables. A Bayesian net is a Directed
Acyclic Graph (DAG) in which:
— Node: Propositional variable.

— Arcs: Probabilistic dependencies.

« An arc between two variables represents a direct
dependency, usually interpreted as a causal
relation.



An example of a BN




Parameters

Conditional probabilities of each node given
Its parents.

. vector of prior probabilities

: matrix of conditional
probabilities



P(W)

P(D|W)
0.9 0.7
0.1 0.3 -
P(T|D) P(H|D)
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Inference

e Inference in a Bayesian Network consists on
estimating the posterior probability of some
variables (unknowns) given the values of
some other variables (evidence)

* There are several algorithms for probability
propagation in BN
o All the methods are based on Bayes theorem



Inference

Causal:
C =->H
P(H|C)
Evidential:
E->H
AR Mixed:

CE->H




BN in Vision

General Model
Example



A “general” BN model for Vision




Example - endoscopy

Endoscopy Is a tool for direct observation of
the human digestive system

Recognize “objects” in endoscopy images of
the colon for semi-automatic navigation

Main feature — dark regions
Main objects — “ &



Colon Image

Y




Segmentation — dark region




Features — pg
histogram




BN for endoscopy (partial)
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Semi-automatic Endoscope
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Dynamic Bayesian networks (DBN)

« BN for modeling temporal processes

A “static BN” Is repeated at each time
(discrete time)

« Dependencies (arcs) between temporal slices
(Markov assumption)

» Dependencies and parameters between time
slices are repeated (Stationary assumption)

 Hidden Markov models (HMMs) are a special
case of DBN



Example of a DBN

3%

L
£



Hidden Markov Models (HMM)

A stochastic process in which the states are not
directly observable

» |t consists of:
— A finite set of states

— A probability distribution for transitions between
states

— A probability distribution for observations given
the state



HMM - Graphical Model

P(Sl) P (St+1|St)

P(EIS)




HMMS

¢ Representation

— Usually one model (HMM) is used to represent
each dynamic object

e |earning

— The structure Is set by the designer and the
parameters are learned from data

e Recognition

— The data Is fed to all the models and the one with
the highest probability is selected



Example HMMs: Gesture Recognition

Motion features only
HMMs

Recognize 5 dynamic gestures with the right hand
The gestures are for commanding a mobile robot
Recognition based on HMM



Come

attention

go-right

go-left

stop




Feature Extraction

Skin detection

Face and hand segmentation
Hand tracking

Motion features



Segmentation

Radial scan for
skin pixel detection

Segmentation by grouping
skin pixels in the scan lines




Tracking

Locate face and hand based on antropometric measures




Features
» From each image we obtain the features:

— change in X (AX)
— change in Y (AY)
— change in area (AA)

— change in size ratio (AR)
« Each one is codified in 3 values: (+, 0, -)
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Recognition

Recognition based on HMM
One HMM for each gesture

The probability of each model given the observations is estimated
(forward algorithm) and the one with highest probability is selected
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Results

e Training with 128 sequences per gesture
 Testing with 80 sequences for each gesture
o Correct recognition:

— come 5.3 %
— attention  70.7%
— stop 65.8 %

— go-right 100 %
— go-left 100 %
— Average:  82%



Example DBNs: Gesture recognition

e Recognize 5 dynamic gestures with the right
nand (same as for HMM)

 Recognition based on dynamic Bayesian
networks

» |nclude more features:
— Motion
— Posture
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Image t

Image t+1




Posture features

Posture features are Above
simple spatial relations

between the user’s Right
right hand and other

body parts:

— Right
— Above

— Torso

Each one can take one
of 2 values: (yes, no)

Torso




Dynamic naive Bayesian Classifier
with posture information

POD DOD



150 samples of each gesture taken from one
user

_aboratory environment with different
Ighting conditions

Distance from the user to the camera varied
netween 3.0 mand 5.0 m

The number of training samples varied
between 5% to 100% of the training set




Confusion matrix:
DNBCs without posture information

come | attention | go-right | go-left stop
come 98 % 2%
attention 3% 87 % 10 %
go-right 100 %
go-left 100 %
stop 4 % 39 % 1% 560 %

The average recognition rate is 87.75 %




Confusion matrix: BCs with posture information

come | attention | go-right | go-left stop
come 100 %
attention 100 %
go-right 100 %
go-left 100 %
stop 11 % 6 % 83 %

The average recognition rate 1s 96.75 %




Confusion matrix: HMMs with posture information

come | attention | go-right | go-left stop
come 100 %
attention 100 %
go-right 100 %
go-left 100 %
stop 8 % 92 %

The average recognition rate i1s 98.47 %




Accuracy vs Training Size
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Markov Random Fields

« A set of random variables indexed by nodes in a graph.

— Observations: labels generated by base classifier
— Prior knowledge: associations between labels

P(f:z?|fs—{'i}) — P(fi-|N(fi))



Markov Random Field

Label’s association Confidence of the AIA method



Markov Random Field

* Representation

— The fields through a graph a set of objects (nhodes) and
their relations (arcs)

e Learning

— Usually the structure (vicinity) and parameters
(potentials) are specified by the designer, although they
could be learned from data

« Recognition

— Based on the observed data, recognition consists on
obtaining the most probable values for all the objects
(configuration) via an optimization process



Example

+ Use of a MRF to Improve automatic image
annotation by incorporating:

— Semantic associations
— Spatial relations



Semantic assoclation between labels



Use of external corpus

o Association

« Association between two labels is given by the
number of documents in which both labels occur
within an external corpus of documents

Occurrence frequency

P(w;,w;) clw; ,w:)
P(wilwy) = —pre ~ et

P(w;) c(w;)



Label’s association

 External corpus: IAPR-TC12-2006
— 20,000 manually annotated images
— Title, description,
— location, date, notes

<TITLE>National Palace in Asuncion</TITLE>

<DESCRIPTION>a white building with lots of
columns and arches, a neat lawn and neatly

cut trees and bushes in the foreground; the flag
of Paraguay is waving at the top of the building;
there is a flower bed on the left;</DESCRIPTION>

<NOTES>The National Palace was build in
Versaillan style from 1960 to 1992;</NOTES>

<LOCATION>Asuncion, Paraguay</LOCATION>

<DATE>March 2002</DATE>




|Label’s association

« External corpus: IAPR-TC12-2006

beac dhore gt | wan | ight
light ange light buildings black light man

MOUNTAIN BLACK

| landscape SOW clouds street woman people
man | SIIOW man mountain man wall
cks | clouds people skyline buildings waves

"
people light light womat palm
Iz




Label’s association
External corpus: IAPR-TC12-2006

SEA | MOUNTAIN | LAKE || CITY || PEOPLE | BLACK
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Label’s association
« External corpus: IAPR-TC12-2006
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light man
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|Label’s association

Occurrence frequency

P(w;,w;) clw; ,ws;)
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Laplacian Smoothing
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Interpolation smoothing
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Experiments; Corel data set

A-NCUTS 125()

205 3288

T mh\
tiger I t| et
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Tiger, Grass, Water

Tiger, Grass, Water Tiger, Grass, Water




Experiments
« Annotation method: knn

« Comparison of KNN against semi-supervised methods
dML1, dML10, gML1, gML10, gMAP1, gMAPIMRF

« Comparing error (e) at the top x-labels

= ')




Experimental results

k-NN versus others

Error on data set "test" Error on data set "test”
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Experimental results
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Incorporating Spatial Relations



Considering spatial relations

trees 0.7
sea 0.8
grass 0.3 sea disjointto
sea below trees 0.4 trees 0.4 sky 0.2
sea adjacent to sea 0.5 - b(?_low —
sea 0.6

sky 0.4

Sky below sea?

Sky below trees?



Spatial Relations

Types of relations:
— Topological

— Order

— Metric




Potentials

Up(f) = a1 Vp(f) + aoVy(f) + a3V, (f) + A ) Vo(f)

« Energy potentials are inversely proportional to
the probability of each relation:

1
Zc Plc(f)l@ PQc(f)
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) PSc(f)EBP&:(f)EBP?c(f)




Estimating potentials

* The probability of each relation is obtained
by combining a subjective estimate (E,) with
data from labeled images (Rel,):

NR(i,;)+56100



Methodology

sistency checking and
. . improving using spatial
Automatic annotation relations and MRF

Irees 0.8
waler 0.2 ¢/

Improved
using spafial relations

A iz right of B
B is disjoint to C
C is above A




Experiments

Data set:
— Corel A database

— 205 landscape images, segmented with normalized
Cuts

— 137 training Images and 68 test Images
— 22 possible labels




Experiments

Expert Laplacian No
knowledge  smoothing  smoothing

Topological

relations

Vertical

relations

Horizontal

relations

All
relations

« We used kNN as base classifier for region annotation



Parameters

Parameter|Value

1
| Uhﬂ |||||'

4\I

“ H i
" ay my il \ | "ﬂ
\'u | | W ‘ I‘H'\ Y M
The best configuration is based on '||' H| ‘
\\

MAP using simulated annealing:
T



Results

Algorithm|Relation group|Smoothing Accuracy

kNN None None 36.81%
None 42.72%
Topological Laplacian 43.51%
Expert info. 43.25%
None 41.72%
Horizontal Laplacian 43.08%
Expert info. 43.58%
None 43.73%
Vertical Laplacian 44.93%
Expert info. 44.88%
None 43.29%
Laplacian 45.41%
Expert info.| 45.64%




Improving segmentation

Original
segmentation

Segmentation
Improvements after
KNN

Segmentation
Improvements after
using spatial
relations and MRF

Correct
segmentation

(manual)
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