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ABSTRACT
In this paper we conduct a relatively complete study on how
to exploit spatial context constraints for automated image
region annotation. We present a straightforward method to
regularize the segmented regions into 2D lattice layout, so
that simple grid-structure graphical models can be employed
to characterize the spatial dependencies. We show how to
represent the spatial context constraints in various graphical
models and also present the related learning and inference
algorithms. Different from most of the existing work, we
specifically investigate how to combine the classification per-
formance of discriminative learning and the representation
capability of graphical models. To reliably evaluate the pro-
posed approaches, we create a moderate scale image set with
region-level ground truth. The experimental results show
that (i) spatial context constraints indeed help for accurate
region annotation, (ii) the approaches combining the merits
of discriminative learning and context constraints perform
best, (iii) image retrieval can benefit from accurate region-
level annotation.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Abstracting methods,Indexing meth-
ods; I.5.1 [Pattern Recognition]: Models—Statistical, Struc-
tural

General Terms
Algorithms, Experimentation, Performance

Keywords
Spatial Context, Image Region Annotation, Graphical Model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’07, September 23–28, 2007, Augsburg, Bavaria, Germany.
Copyright 2007 ACM 978-1-59593-701-8/07/0009 ...$5.00.

1. INTRODUCTION
In this paper we consider a special task of image anno-

tation, namely region annotation, which aims to automati-
cally assign semantic labels to individual segmented regions
rather than entire images.

1.1 Background and Motivation
The primary goal of image annotation is to facilitate im-

age retrieval through the use of text [6]. Many existing
image annotation approaches adopt part-based visual fea-
tures, either grids [10, 13, 19] or segmented regions [1, 11,
12], but they do not aim to establish the correspondences
between individual parts and semantic labels. Instead, they
focus on assigning labels to entire images. Image-level an-
notation seems sufficient for the purpose of image retrieval.
It is natural to ask whether region-level annotation (or ob-
ject recognition [1, 2, 8, 29]), which seems more challenging,
can bring some benefit to image retrieval. Recently, Fan
et al. [9] and Yang et al. [34] have proposed different ap-
proaches for image-level annotation by firstly establishing
correspondences between salient (or representative) regions
and semantic labels. Their experiments reveal that, if re-
gion annotation is accurate enough, it can effectively boost
the performance of image-level annotation. We continue this
idea and focus on improving the accuracy of region annota-
tion.

The first difficulty of region annotation is the lack of train-
ing set with region-level ground truth [2, 27, 32, 34]. In most
available image set, descriptive keywords are associated with
entire images rather than individual regions. Various ap-
proaches for learning from such weakly labeled data can be
employed, e.g., expectation maximization (EM) algorithm
[19, 8, 2] and multiple-instance learning (MIL)[4, 34]. How-
ever, image set with more detailed annotation is urgently
needed to quantitatively measure performances of different
approaches and focus research attention [27]. Some exist-
ing data set provides region-level annotation, but the scale
is too small, usually at most several hundred images [8, 29,
2]. In this paper, we create a moderate size image set with
mannually assigned region-level annotations and will study
region annotation in supervised learning setting.

The second significant challenge of region annotation is
how to exploit various context constraints to reduce ambi-
guities. It is frequent that regions with similar appearances
correspond to distinct semantic concepts. For example, a
smooth region in blue may be a part of sky or a part of
ocean. It is difficult for computers even for human observers
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to classify such regions without context. Previously, context
constraints such as scene context [24, 9, 33] and spatial con-
text [29, 2, 20] have been discussed. The former describes
the co-occurrence relationships of different concepts while
the latter characterizes the spatial layout constraints of con-
cepts. In this paper we focus on investigating the spatial
context.

Several methods exist to exploit spatial context constraints
for tasks similar to region annotation. Typical examples in-
clude 2D Hidden Markov Model (2D HMM) [19, 13], Markov
Random Fields (MRFs) [2] and Conditional Random Fields
(CRFs) [20]. The above work makes beneficial exploration
to exploit spatial context information, yet still several rea-
sons motivate the work in this paper. First, most of the
above work annotates fixed grids in images rather than seg-
mented regions. Second, there is no comparative evaluation
on context methods versus non-context ones previously. The
problem to what extent spatial context can help remains un-
clear. Third, previous methods usually employ generative
graphical models for the convenience of characterizing sta-
tistical dependencies among semantic labels. Nevertheless,
some practical evaluations show that discriminative learning
is preferable to generative approach in terms of classification
performance [25, 15]. We wonder whether it is possible to
combine the merits of both ideas, that is, integrating the
classification performance of discriminative learning and the
representation capability of graphical models. This idea has
been explored in several other applications [15, 18]. Our goal
is to investigate it in the scenario of image region annotation.

1.2 The Major Work
1. We present a straightforward yet effective method

to regularize the segmented regions into 2D lattice layout,
so that simple grid-structure graphical models can be em-
ployed.

2. We present a relatively complete study on how to ex-
ploit spatial context constraints for image region annotation.
We show how to represent the spatial context constraints in
graphical models and present related learning and inference
algorithms. It is the first time for CRFs model with plugged-
in SVMs to be used for region annotation.

3. We create a moderate scale image set with region-level
annotation. We carry out extensive experiments to evalu-
ate both the context versus non-context methods and the
generative versus discriminative approaches. To our best
knowledge, our experiment is so far the largest scale eval-
uation for region annotation in supervised learning setting.
We also show the potential applications of region annotation
in image retrieval.

1.3 Organization
The structure of this paper is as follows. In Section 2

we present the method of adjusting segmented regions into
regular lattice layout. In Section 3 we formulate our task
as a probabilistic inference problem. In Section 4 and Sec-
tion 5, we present the representation, learning and inference
algorithms for the models without context and with con-
text constraints respectively. In Section 6, we describe the
detailed procedure of creating image set with region-level
annotation. In Section 7, we carry out the comparative ex-
periments. Finally, we conclude the paper in Section 8.

2. REGULARIZING THE SPATIAL LAYOUT
OF REGIONS INTO 2D LATTICE

We will only consider four types of neighboring dependen-
cies (i.e., left, top, right and bottom). Such simple layout
relationships are robust to familiar transformations. More-
over, they are convenient for representation,learning and in-
ference (details in Section 5). However, it is not easy to ob-
tain such neighborhood dependencies among segmented re-
gions. On the one hand, the shapes of regions are so complex
that usually no accurate top-bottom and left-right spatial
relationships exist. On the other hand, the arbitrary sizes
of regions often lead to the fact that several small regions
may share the same large neighboring region in the same
direction. These difficulties may explain why region-based
representation has seldom been adopted in existing work
exploiting spatial context information. For example, only
symmetrical adjacency relation rather than unsymmetrical
location relation of regions has been considered in [2, 23].
Singhal et al. [29] employ a modified weighted walktrhough
algorithm to quantify the spatial relationship of two regions,
and then define a set of rules to obtain spatial arrangement
of regions. However, it is computation expensive and the
resultant layout of regions is too complex to describe.

Algorithm 1: Convert Regions to 2D lattice

Input : Region set {Ri}k
i=1 of image I

Output: Grid partition of image I

{ti, bi, li, ri}k
i=1 =BoundingBox({Ri}k

i=1)1

{hj}2k
j=1 =AscendingSort({ti, bi}k

i=1)2

{vj}2k
j=1 =AscendingSort({li , ri}k

i=1)3

repeat4

p = arg min
j>2

(hj−hj−1), q = arg min
j>2

(vj−vj−1)5

αi = hi−hi−1, i ∈ {p−1, p+1}6

βi = vi−vi−1, i ∈ {q−1, q+1}7

if αp−1 < αp+1 then remove hp−1 from {hj}8

else remove hp from {hj}9

if βq−1 < βq+1 then remove vq−1 from {vj}10

else remove vq from {vj}11

until stop criterion is true12

draw horizontal line at {hj} to I13

draw vertical line at {vj} to I14

We propose a straightforward approach as illustrated in
Algorithm 1 to adjust irregular regions into regular 2D lat-
tice. The basic idea is: (a) using quadrate grids to approx-
imate the regions so that exact left-right and top-bottom
relationships can be obtained, (b) if one-to-many neighbor-
ing relationship occurs, partitioning large region into several
grids to get one-to-one neighboring correspondence. In the
algorithm, {ti, bi, li, ri} indicates the top, bottom, left and
right coordinates of the i-th region’s bounding box. The rou-
tine BoundingBox gets the coordinates of the given region’s
bounding box, and the routine AscendingSort sorts the co-
ordinates into ascending order. To avoid over grid partition,
an iteration is designed to merge too thin slices. We can stop
the iteration once the width of the thinnest slice achieves a
threshold or the number of remaining slices is below a pre-
determined value. Figure 1 illustrates the above procedure
on an example image.

While preparing the training data, we do not manually
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(a) original image (b) segmentation (c) bounding box (d) grid partition (e) annotated grid (f) annotated region

Figure 1: Procedure of regularizing the spatial layout of regions. After image segmentation, the bounding
boxes of regions are obtained. With the help of the coordinates of bounding boxes, region adaptive grid
partition can be obtained. Automated grid annotation is firstly carried out, and then grid level labels are
propagated to the corresponding regions.
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Figure 2: (a) i.i.d generative approach, (b) i.i.d discriminative approach, (c) 2D Hidden Markov Model (2D
HMM), (d) Pairwise Markov Random Fields (MRFs), (e) Conditional Random Fields (CRFs).

Region segmentation by JSEG Region-adaptive grid partition

Figure 3: All the grids enclosed by the red polygon
in the right image will inherit the label and feature
from the region pointed by the arrow in the left
image.

assign semantic labels to grids or extract grid-based visual
features. Instead, we will firstly manually assign labels to
regions and extract features from each region. And then we
use Algorithm 1 to obtain region-adaptive grid partition and
each grid automatically inherits semantic label and region-
based visual features from the region to which most of its
pixels belong, as shown in Figure 3. Hence, the grids be-
longing to the same region will automatically have the same
labels and visual features. With above mappings between
grids and regions, the learning and inference can be firstly
carried out in regular grid-structure. Finally, by propagat-
ing the semantic labels from grids to regions, we can obtain
region-based annotation. It is worth noting that the above
strategy differs from the previous fixed grid partition meth-
ods [2, 13, 19, 20] in several aspects. Firstly, it is difficult
to determine suitable grid size for fixed grid partition [13].
The grid partition yielded by Algorithm 1 is region adap-
tive and most of partitioning positions lie close to the re-
gion boundaries. Secondly, the labels and features inherited
from regions avoid two obvious drawbacks of that of fixed
grid partition, in which grids simultaneously covering several

different objects lead to ambiguities for manually assigning
semantic labels to them, and furthermore, the features ex-
tracted from grids may mix the visual appearances of differ-
ent concepts. Finally, by propagating semantic labels from
grids to corresponding regions, we can get object-level anno-
tation rather than hard block-level annotation (e.g., example
in Figure 1).

3. FORMULATING REGION ANNOTATION
AS PROBABILISTIC INFERENCE

We denote random variables in upper-case letters while
denote the the realizations of random variables in lower-case
letters. Suppose we have N regions, let (xi, yi) denote the
pair of feature and semantic label for the i-th region, where
xi is a d-dimensional vector and yi is a discrete value in
{1, · · · , K}. Given the training data {(xi, yi), i = 1, · · · , N},
our task is to learn the mappings from region-based low level
features to high level semantic labels. Since there is no de-
terminate one-to-one correspondences between features and
semantic labels, the desired mapping can be characterized
by a posterior distribution of semantic labels conditioned on
features, from which the label can be determined by maxi-
mum a posteriori (MAP) criterion.

If we assume the training data are independent, identi-
cally distributed (i.i.d), we can learn posterior distribution
p(Y |X) for individual regions as shown in Figure 2(a) and
2(b). However, the above i.i.d assumption is over-simplified.
There actually exist strong spatial dependencies among the
features and semantic labels for the regions in the same im-
age. Let {(xi, yi), i = 1, · · · , R} denote features and se-
mantic labels of R regions in the same image, learning the
posterior distribution of label configuration p(Y1:R|X1:R) is
more reasonable, with examples shown in Figure 2(c),2(d)
and 2(e). There are basically two approaches to obtaining
posterior distribution, i.e., generative approach and discrim-
inative approach. Take the classifier under i.i.d assumption

597



as an example, generative and discriminative learning can
be interpreted graphically in terms of the edge direction be-
tween Xi and Yi in Figure 2. Generative approach firstly
learns the class-conditional density p(X|y) for each discrete
value y and the prior distribution p(Y ), and then employs
the Bayes rule to calculate the posterior distribution p(Y |X).
On the contrary, the discriminative approach directly mod-
els the posterior distribution p(Y |X). When classifying a
region, it simply plugs the corresponding feature vector x
into the conditional distribution and calculates p(Y |x) di-
rectly.

4. MODELS WITHOUT SPATIAL CONTEXT
CONSTRAINTS

Both Gaussian Mixture Models (GMM) and Support Vec-
tor Machines (SVMs) are models without considering spatial
context constraints. Since they are very familiar techniques
in many areas, in this section we will only present a brief
description on them. The two approaches will also act as
the baseline methods for the models exploiting the spatial
dependencies in Section 5. GMMs is a generative modeling
approach. We assume the prior probability p(Y ) obeys a
multinomial distribution and the the class conditional den-
sity of each concept p(x|k), k ∈ 1, . . . , K follows GMM. We
can learn the parameters via maximum likelihood estimates
(MLE) and expectation maximization (EM) algorithm. Fi-
nally, the label y of a region with feature vector x can be
determined by MAP criterion. The basic model of SVMs is
for binary-classification, while region annotation is a multi-
classification task. Cusano et al. [5] employ one-against-all
strategy to extend binary class to multi-class SVMs for im-
age region annotation. Here we adopt one-against-one ap-
proach [3].

5. MODELS WITH SPATIAL CONTEXT
CONSTRAINTS

2D HMM [19, 13], MRFs [23, 2] and CRFs [20] have been
previously proposed for tasks similar to region annotation.
In this section, we employ these models to region annota-
tion. We present the details on how to represent the spatial
dependencies among concepts as well as the related learning
and inference algorithms. We identify the major differences
between this work and the previous work.

5.1 2D Hidden Markov Model
Several versions of 2D HMM exist [19, 13], of which we

will adopt the one presented in [19]. Assuming homogeneous
state transitions and using the fact that 2D HMM is a di-
rected graphical model, we can factorize the log-likelihood
of training data {(xi, yi), i = 1, · · · , N} into

L(θ, λ) =

N�
i=1

log p(yi|yπi) +

N�
i=1

log p(xi|yi),

where πi is the set of parents of node i, e.g., in Figure 2(c),
π5 = {2, 4}. Suppose p(Yi|yπi) follows a multinomial dis-
tribution, the MLE can be obtained by counting the fre-
quencies of state transitions. The class conditional density
of each state can be further assumed as a GMM which can
be learned by EM algorithm. It is worth noting that it is a
supervised learning here rather than the unsupervised learn-
ing in [19]. Different from the MAP labeling for individual

1T

2T

3T

4T 5T

(a)

1T 2T 3T 4T 5T

(b)

1T 2T 3T 4T 5T

(c)

Figure 4: (a) Label-field of 2D HMM, (b) Full state
spaces of the corresponding chain-HMM, (c) State
spaces of the path-constrained chain-HMM.

region in Section 4, 2D HMM pursues an MAP label config-
uration for the regions in the same image

y∗
1:R = arg max

y1:R
p(y1:R|x1:R).

Li et al. show that path-constrained variable-state Viterbi
algorithm can be used to approximately infer the MAP con-
figuration [19]. We will present a brief introduction to the
idea, since we will also employ it to obtain the sub-optimal
MAP solutions for MRFs and CRFs.

As shown in Figure 4(a) 1, the nodes on the same diago-
nal are firstly isolated to form a novel super-node, acting as
the element of another chain-HMM. In this way, the MAP
labeling of 2D HMM becomes the decoding problem of a
chain-HMM. However, as shown in Figure 4(b), the scale
of state spaces of the constructed chain-HMM increases ex-
ponentially with the width of the diagonal. To reduce the
required computation, Li et al. propose to constrain the
path of Viterbi algorithm to get a sub-optimal solution as
shown in Figure 4(c). Concretely, only a sub-set of most
likely state sequences are chosen into the state space at each
phase. Following the notation in [36], let Td denote the
state sequence on diagonal d, the key problem is how to cal-
culate the |Td−1|×|Td| state transition matrix Md for the
constructed chain-HMM. Let Md(Td−1, Td) denote the tran-
sition probability from state sequence Td−1 to Td, we can
calculate it by

Md(Td−1, Td) =
�

y∈Td

p(y|yπ ∈ Td−1).

With the constrained state transition matrix Md, standard
dynamic programming algorithm (i.e., Viterbi) can be used
to obtain the approximate MAP solution.

5.2 Markov Random Fields
Different from 2D HMM, MRFs is a type of undirected

graphical models as shown in Figure 2(d). Carbonetto et
al. employ MRFs to perform generic object recognition [2].
Here we use it for region annotation with different represen-
tation, learning and inference algorithms. We adopt pairwise
MRFs model, with which the joint probability of regions in
the same image can be written as

p(x1:R, y1:R) =
1

Z

�
(i,j)

Ψ(yi, yj)
�
k

Φ(yk,xk),

1The figure originally appears in [19]
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where (i, j) indicates the indices of neighboring nodes yi and
yj , Z is known as the partition function, Ψ and Φ are pair-
wise potential functions characterizing the state-state inter-
actions and observation-state associations respectively. The
potential functions can be thought of as compatibility func-
tions. A good definition of potential function assigns high
values to the clique settings that are most compatible with
each other under the given distribution.

5.2.1 Definition of Potential Functions
We firstly define some binary feature functions to capture

the information on state transitions

hu′,u(Yi, Yj) = δ(Yi = u′)δ(Yj = u)δ(i�j)

vu′,u(Yi, Yj) = δ(Yi = u′)δ(Yj = u)δ(i⊥j), (1)

where hu′,u and vu′,u indicate the horizontal and vertical
transition functions respectively, u′ and u are discrete values
in {1, · · · , K}, i � j indicates the i-th node is to the left
of the j-th node and i⊥j indicates the i-th node is above
the j-th node, δ is an indicator function such that δ(·) is
1 only if the contained assertion is true, and 0 otherwise.
In the rest of this paper, we do not distinguish horizontal
and vertical transitions, but denote both hu′,u and vu′,u by
a single notation fu′,u. With the help of binary feature
functions, the state-state interaction potential Ψ(·) can be
defined as

Ψ(Yi, Yj)=exp

�
��

u′,u
λu′,ufu′,u(Yi, Yj)

�
� ,

where λu′,u is the weight indicating the importance of tran-
sition from u′ to u. These weights can be learned from the
annotated training set. It is easy to see that Ψ(·) may be
unsymmetrical, different from that of [2]. For observation-
state potential Φ(·), we directly define it as the probability
of generating Xk given label Yk

Φ(Yk, Xk) = exp (log p(Xk|Yk)) , (2)

where p(Xk|Yk) can be assumed to be the output of GMM.

5.2.2 Parameter Estimation
Given M i.i.d labeled images, the log-likelihood of the

training data can be written as

L(λ, θ)=
M�

m=1

�
��

(i,j)

log Ψ(yi, yj)−log Zm

�
�

� �	 

prior

+
N�

i=1

log p(xi|yi)

� �	 

c.c.d

,

where the parameters of class conditional density (c.c.d) and
prior distribution of label-fields can be separately estimated.
Again the GMM p(X|y) for each value of y can be learned
by EM algorithm firstly. The MLE of λ can be obtained
by maximizing the prior term of the log-likelihood. We use
gradient ascent method to solve the optimization problem.
The derivative of log-likelihood with respect to λu′,u can be
given by

∂L
∂λu′,u

= Ep̃(Y )[fu′,u] − Ep(Y )[fu′,u]

where Ep̃(Y )[·] is the expectation with respect to the em-
pirical distribution and can be computed by counting the

occurring of the corresponding event, Ep(Y )[·] is the expec-
tation with respect to the model distribution. For feature
functions fu′,u, we have

Ep(Y )[fu′,u] =
M�

m=1

�
(i,j)

p(yi, yj)fu′,u(yi, yj).

The major computation involved is to calculate the mar-
ginal probability p(yi, yj), which is needed at each itera-
tion of gradient ascent. However, due to the combinatorial
property of partition function Z, exact computation of mar-
ginal probability is problematic even for problems of mod-
erate size. Various approximate inference algorithms, e.g.,
Markov Chain Monte Carlo (MCMC), loopy belief propaga-
tion (LBP) and mean field (MF), can be used to obtain the
approximate marginal probabilities. We adopt MF to cal-
culate the approximate gradients and choose L-BFGS algo-
rithm to maximize the log-likelihood because of their recent
empirical success in training CRFs [28, 36].

5.2.3 MAP Labeling
Given the learned MRFs model and the feature vectors

x1:R of an image, the MAP label configuration can be ap-
proximately obtained by the approach similar to path-constrained
Viterbi algorithm in Section 5.1. Using the fact that the par-
tition function Z and the marginal probability p(x1:R) are
constant for the given image, it is straightforward to have

y∗
1:R = arg max

y1:R

�
(i,j)

Ψ(yi, yj)
�
k

Φ(yk, xk).

To use the path-constrained Viterbi algorithm, we only need
to change the calculation of the transition probability matrix
Md according to

Md(Td−1, Td) =
�
(i,j)

Ψ(yi ∈ Td−1, yj ∈ Td).

5.3 Discriminative Random Fields
Both 2D HMM and MRFs are generative frameworks that

model the joint probability of the observed data and the cor-
responding labels. For computation tractability, they make
strong assumptions on the data generating mechanism, that
is, p(x1:R|y1:R) is usually assumed to have a factorized form
p(x1:R|y1:R) =

�
k p(xk|yk), which may be oversimplified.

Lafferty et al. propose a better alternative, i.e., conditional
random fields (CRFs), which directly models the posterior
distribution p(x1:R|y1:R) as a Gibbs fields [17]

p(y1:R|x1:R) =
1

Z(x1:R)

�
(i,j)

Ψ(yi, yj , x1:R)
�
k

Φ(yk, x1:R),

where the notation Ψ(yi, yj , x1:R) and Φ(yk, x1:R) make it
explicit the fact that the potentials can depend on the fea-
tures of the entire image. It has shown superior perfor-
mance over the generative models in a variety of applica-
tions [17, 15]. Kumar et al. further clarify that the potential
Φ(yk,x1:R) can be the output of any discriminative classifier
and propose the discriminative random fields (DRFs)[15]

p(y1:R|x1:R)

=
1

Z(x1:R)

�
(i,j)

exp (I(yi, yj ,x1:R))
�
k

exp (A(yk,x1:R)) ,

599



where A is the association potential which decides the associ-
ation of a given site to a certain class ignoring its neighbors,
I is the interaction potential which serves as a data depen-
dent smoothing function. To sum up, there are three main
differences between DRFs and MRFs [15]. First, the associ-
ation potential in DRFs is a kind of discriminative classifier
while in MRFs it is a generative classifier. Second, in DRFs,
the association potential at any site, can be a function of all
the observations, i.e., X1:R while in MRFs it is the function
of the data only at that site, i.e., Xk. Third, the interaction
potential in MRFs is a function of only labels, while in DRFs
it can be a function of labels as well as the observations.

5.3.1 Definition of Potential Functions
Local Association Potential Both the output of logis-

tic function [15] and the probability output of SVMs [18]
have been previously adopted as the association potential
in DRFs. Nevertheless, the previous work [15, 18] limits
in binary classification applications. We extend it to multi
classification case

Al(Yk,X1:R) = log p(Yk|Xk), (3)

where p(Yk|Xk) is the probability output of multi-class SVMs
[3]. Note that although Al is allowed to be dependent on the
features of entire image X1:R, we still limit it to Xk to em-
phasize it is a local association potential. It is different from
the potential function in Equation 2 which is defined as the
log-likelihood output of GMM.

Global Association Potential DRFs relaxes the strong
assumption on the conditional independence of features, so
that arbitrary complex features are allowed while defining
the association potential. We design a simple method to ex-
plore this merit. We use k-means to group all the images
into B clusters based on the global image features. Let t
denote this assignment, we have t(x1:R) = b where b is the
index of the cluster to which the image with global features
x1:R belongs. We define a binary feature function to charac-
terize such association between global features and semantic
label

gu,b(Yk, X1:R) = δ(Yk = u)δ(t(X) = b).

With the help of binary feature, the global association po-
tential can be defined as

Ag(Yk,X1:R) =
�
u,b

ωu,bgu,b(Yk,X1:R). (4)

This global potential can be added to the potential in Equa-
tion 3 to form a combined potential reflecting the evidence
from both the local and global features.

Observation Independent Interaction Potential For
simplicity, we can directly adopt the binary feature functions
defined in Equation 1 to derive interaction potential

I(Yi, Yj ,X1:R) =
�
u′,u

λu′,ufu′,u(Yi, Yj). (5)

Note that this type of I is observation independent.
Observation Dependent Interaction Potential DRFs

provides the choices of defining observation dependent in-
teraction potentials. However, defining suitable such poten-
tials for multi-classification is difficult. Meanwhile, whether
observation dependent interaction potential will outperform
the above observation independent interaction potential re-
mains unclear [15, 16, 18]. Here, we make an initial attempt

to define and evaluate observation dependent interaction po-
tential in the task of region annotation. Following the way
in defining global association potential, we encode feature
vectors (Xi,Xj) of neighboring regions into discrete values
by k-means clustering. Assuming the assignment function
as s(Xi,Xj) = b, we can define binary feature function

fu′,u,b(Yi, Yj ,Xi,Xj) = δ(s(Xi,Xj) = b)δ(Yi = u′)δ(Yj = u).

With this feature function, the observation dependent inter-
action potential can be written as

I(Yi, Yj , X1:R) =
�

u′,u,b

λu′,u,bfu′,u,b(Yi, Yj ,Xi,Xj), (6)

which differs from the potential in Equation 5 that the pair-
wise feature vectors are encoded to force the label transitions
consistent with the observation in the pair of parts.

5.3.2 Parameter Estimation
We can learn the parameters of DRFs similar to that of

MRFs. We will only present the parameter estimation pro-
cedure for DRFs with association potential in Equation 3
and interaction potential in Equation 6. Other cases can be
derived in similar way. DRFs can be trained by maximizing
the log-likelihood of the M given images with respect to the
conditional distribution

L(λ,w)=

M�
m=1

�
��

(i,j)

I(yi, yj ,x1:R)+
�

k

log p(yk|xk)−log Z(x)

�
� .

The parameters in local association potential within SVMs
can be firstly learned by standard quadratic optimization.
The parameters in interaction potential can be obtained by
gradient ascent. The derivative of log-likelihood with respect
to λu′,u,b can be given by

∂L
∂λu′,u,b

= Ep̃(X,Y )[fu′,u,b] −
M�

m=1

Ep(Y |xm)[fu′,u,b],

where Ep̃(X,Y )[·] is the expectation with respect to the em-
pirical distribution and Ep(Y |X)[·] is the expectation with
respect to the conditional model distribution. It is straight-
forward that the techniques discussed in Section 5.2.2 can
also be applied here to obtain approximate the MLE of pa-
rameters.

5.3.3 MAP Labeling
Given the trained DRFs model and the feature vectors

x1:R of an image, the MAP label configuration can be ap-
proximately obtained by path-constrained Viterbi algorithm
similar to Section 5.1 [36]. Using the fact that the parti-
tion function Z(x1:R) is constant for the given image, it is
straightforward to get

y∗
1:R = arg max

y1:R

�
(i,j)

Ψ(yi, yj ,x1:R)
�
k

Φ(yk,x1:R).

To use the path-constrained Viterbi algorithm, we only need
to change the calculation of the transition probability matrix
Md according to

Md(Td−1, Td) =
�
(i,j)

Ψ(yi ∈ Td−1, yj ∈ Td,x1:R).
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Table 1: The number of images containing each concept and the number of regions for each concept.
Concept Name Sky Water Mountain Grass Tree Flower Rock Earth Ground Building Animal All

Image No. 3382 1690 1215 1660 2234 251 580 953 553 1852 477 4002
Region No. 13540 9257 9809 12820 19454 1701 6573 7598 1753 19422 2699 104626

Table 2: The Definition of Concept Lexicon.
Concept Description
Sky atmosphere, cloud, smoke, etc.
Water river, sea, lake, fountain, etc.
Mountain specifically for a distant sight of mountain
Grass any vegetation except trees and flowers
Tree trunks and leaves of trees
Flower colorful plants
Rock close observation of stone material
Earth bare and natural land surface
Ground manmade land surface such as road, square
Building manmade structures such houses, bridges, etc.
Animal skin of animals such as tigers, horses, etc.

6. DATA PREPARATION
To our best knowledge, no existing data corpora nicely

fit the needs of automatic region annotation by supervised
learning. To accurately study the context modeling ap-
proaches, here we create a novel moderate scale image set
with manually assigned region-level semantic labels.

6.1 Data Corpora
To narrow the scope of detected concepts, we confine the

selected images to those of outdoor scenes, including urban
and natural pictures. Totally 4002 images out of 60,000 are
chosen from Corel Stock Photo CDs. The Corel collection is
the most broadly adopted data set in the community of im-
age retrieval. Several drawbacks of using Corel set have been
pointed out, of which an obvious one is that, in Corel CDs,
every 100 images sharing the related semantics are stored in
the same directory. There is sometimes a lack of diversity
among the images in the same group. Therefore, we have
paid special attention to address this drawback by selecting
images in diverse appearances and prohibiting taking too
many images from the same directory.

6.2 Lexicon Definition
The detailed description of the defined concepts is shown

in Table 2. The lexicon is complete to cover all the concepts
occurring in the image set. Therefore, we do not need to
define an outlier class. The lexicon is also exclusive, that is,
different concepts are not intersectant. With completeness
and exclusiveness, each region has one and only one suitable
semantic label. To achieve the above goals, we define con-
cepts in the lexicon as the names of materials rather than the
names of objects [29]. For example, we do not distinguish
rivers, seas and lakes, but uniformly define the correspond-
ing regions as water. Similarly, we do not distinguish tigers,
lions, cows and horses, but uniformly define the correspond-
ing regions as animal skins. When ambiguities exist, we
categorize regions as concepts of the surface material. Take
a region with forest on mountain as an example, we con-
sider it as tree rather than mountain since trees cover on
the mountain.

6.3 Automatic Image Segmentation
We adopt a state-of-the-art color texture image segmen-

tation methods, i.e., JSEG [7]. Because of the integrated
seed growing mechanisms, each region yielded by JSEG is
spatially connected, which makes it convenient to describe
the spatial relationships among regions. We choose a fixed
set of parameters so that JSEG produces preferable over-
segmentation results. With such fixed set of parameter val-
ues for whole image set, JSEG works well on most images.
Finally, we get totally 104,626 regions for all the 4002 im-
ages, that is, average 26 regions for each image.

6.4 Manual Region Annotation
Manually assigning semantic labels to more than one hun-

dred thousand segmented regions is both time-consuming
and problematic. Nevertheless, it deserves the special labo-
rious treatment for the accurate study and reliable evalua-
tion of the proposed context modeling methods. We develop
a human-computer interaction tool to facilitate the man-
ual annotation of image regions. With this tool, users can
browse the image segmentation results and assign predefined
descriptive keywords to regions simply by mouse clicks. To
avoid the inevitable subjective judgement of different anno-
tators, all the images are annotated by the same person. For
under-segmented regions, we assign the concept occupying
the largest area to them. For too ambiguous regions, we
infer and determine the concepts by taking the surrounding
context into account. The region number of each concept is
shown in Table 1.

6.5 Region Feature Extraction
Region-based low level visual features can be extracted

to characterize visual appearance of corresponding regions.
Since adopting what kind of visual features is not the crucial
part of the proposed methods, here we simply extract two
kinds of features, i.e., 9-dimensional color moment in HSV
color space and 20-dimensional Pyramid-structured wavelet
texture, which are then combined into a 29-dimensional fea-
ture vector.

7. EXPERIMENT RESULTS
In the experiments, 4002 images are randomly grouped

into two sets in equal size as training and testing data re-
spectively. The common adopted recall, precision, F-score
and average precision (AP) are used to measure the perfor-
mance of different approaches.

7.1 Statistical Spatial Dependencies
We count the frequencies of four neighboring relationships,

i.e., above, below, left, right, among all the 11 concepts. The
statistical results show that strong spatial dependencies exist
among concepts. For example, Figure 5 shows the probabil-
ity of one concept being above sky, flower, building respec-
tively. Specifically, the first set of bars show that any region
above sky is most likely to be sky, followed by tree, and no
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Figure 5: The probability of all the concepts being
the above neighbor of sky, flower and building.

other options. The second set of bars show that the region
above flower is most probably flower, grass, and tree.

7.2 Fixed Grids vs. Region Adaptive Grids
We evaluate fixed grid partition and region adaptive grid

partition using both GMM and SVMs. In fixed grid parti-
tion, we partition each image into 9×9 grids in equal size, so
that the total number of grids can be almost equal to that of
region adaptive grid partition 2. For fixed grid partition, the
labels are inherited from corresponding regions while the vi-
sual features are extracted for each grid. Their performances
are evaluated by grid-level F-score. As shown in Figure 6,
region adaptive methods significantly outperform the ones
based on fixed grid partition.

7.3 Context Free vs. Spatial Context
We implement seven approaches, including gmm (GMM),

svm (SVMs), hmm (2D HMM), mrf (MRFs), drf 1 (DRFs
with potentials defined in Equation 3 and Equation 5), drf 2
(DRFs with potentials defined in Equation 3 and Equation
6 ) and drf 3 (DRFs with potentials defined in Equation 3,
Equation 4 and Equation 5). For gmm, 30 components are
determined and a diagonal covariance matrix is assumed for
each component. For svm, Gaussian kernel is adopted and
parameters are chosen by a 5-fold cross validation proce-
dure. The option of probability output is turned on and one-
against-one strategy is used to perform multi-classification.
For hmm and mrf, the class conditional density for each
concept directly adopts the models obtained in gmm ap-
proach. For drfs, the local association potentials directly
adopt the outputs of the trained SVMs models in svm ap-
proach. The cluster number B in Equation 4 and Equation
6 is fixed as 30. For the path-constrained Viterbi algorithm
in hmm,mrf and drfs, the maximum size of the state spaces
is restricted to 1000. While training MRFs and DRFs, we
adopt several special treatments. First, the likelihood ob-
jective is penalized with a spherical Gaussian weight prior
to avoid overfitting [28]. Second, mean field (MF) approach
is adopted for approximate learning, since we find MF usu-
ally yields superior performance though it converges slightly
slower than loopy belief propagation (LBP). Third, a simple
feature selection procedure is devised to filter out too rare
feature functions. L-BFGS algorithm is used to maximize
the log-likelihood for both MRFs and CRFs [21, 36].

Table 3 shows the evaluation results. Though no sin-
gle approach yields the best performance for all the con-
cepts simultaneously. We have two prominent observations
by comparing the overall performances. First, spatial con-

2The average number of region adaptive grids for each image
is different from that of regions for each image

Figure 6: Fixed grid partition versus region adaptive
grid partition.

text information indeed help. For example, hmm and mrf
have respectively gained 12.8% and 8% improvement of F-
score compared to gmm; drfs have gained 8% improvement
against svm. Second, discriminative approaches uniformly
outperform generative ones. For example, svm itself outper-
forms all the generative approaches, i.e., gmm, hmm, mrf.
The best performance is achieved by drfs, which combines
the merits of both discriminative learning and context con-
straints. drf 3 gains 41% improvement against gmm. With
a closer analysis to the results of drfs, we can also find,
(a) drf 3 outperforms drf 1, showing that the global associ-
ation potential helps a little, (b) drf 1 outperforms drf 2,
showing that observation dependent interaction potential
works worse than observation independent interaction po-
tential though the latter leads to improvement on specific
concepts, e.g., flower and rock. The possible reason is that
the former imports too many sparse feature functions, which
leads to a more challenging training problem.

7.4 Performance in Image Retrieval
We evaluate whether image retrieval can benefit from re-

gion annotation. The results are shown in Figure 7. g svm,
adopting global image feature and one-against-all strategy,
trains SVMs models for the 11 concepts. r svm and r drf
indicate the region annotation methods using SVMs and
DRFs respectively, in which the labels with maximum con-
fidence are propagated to image-level so that they can be
compared with the results of g svm. g svm r drf fuses the
results of g svm and r drf with equal weight. All the rank-
ing lists returned by querying the 11 concepts are measured
by average precision (AP). Note that sky is deliberately ex-
cluded since most of the images contain this concept(see sta-
tistics in Table 1). We have several observations according
to the results shown in Figure 7. First, region annotation
methods outperform g svm in most concepts, especially for
flower and ground, while for animal, g svm outperforms re-
gion annotation methods. Second, region annotation meth-
ods outperform g svm in overall performance, with nearly
16% improvement on mean-AP compared to g svm. Third,
the fusion of image-level annotation (g svm) and region-
level annotation (g svm r drf) performs best, with 21.2%
improvement of mean-AP with respect to g svm. A close
analysis to the ranking lists reveals why region annotation
significantly outperforms g svm on flower and ground while
performs poor on animal. Both flower and ground are rare
concepts (see the statistics in Table 1), and the region areas
containing these concepts are not dominant in the global
images. For such concepts, if the region annotation is ac-
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Table 3: Evaluation results of context free versus spatial context. Note that we abbreviate the concept names
to save space. The measures in the last row are the average metric of the corresponding columns.

Precision Recall F-score
gmm svm hmm mrf drf 1 drf 2 drf 3 gmm svm hmm mrf drf 1 drf 2 drf 3 gmm svm hmm mrf drf 1 drf 2 drf 3

sky .937 .961 .933 .914 .955 .908 .960 .832 .899 .889 .871 .909 .942 .921 .882 .929 .911 .892 .931 .925 .940
wat. .410 .583 .531 .390 .598 .613 .612 .449 .588 .489 .496 .639 .524 .607 .429 .585 .509 .437 .618 .610 .630
mnt. .134 .269 .215 .299 .395 .442 .374 .282 .392 .315 .313 .435 .393 .367 .182 .319 .255 .306 .401 .402 .408
grs. .616 .655 .651 .591 .661 .689 .671 .652 .757 .679 .696 .780 .670 .708 .633 .702 .665 .639 .715 .699 .719
tre. .709 .765 .611 .615 .755 .583 .745 .481 .538 .556 .532 .570 .570 .594 .573 .632 .582 .571 .650 .588 .650
flr. .475 .591 .584 .561 .615 .619 .622 .513 .694 .447 .411 .695 .808 .701 .494 .639 .507 .474 .653 .658 .672
rck. .033 .088 .198 .242 .220 .413 .300 .132 .281 .216 .189 .341 .235 .234 .050 .134 .207 .212 .268 .298 .309
ert. .230 .386 .337 .184 .294 .412 .351 .397 .497 .328 .372 .539 .417 .487 .291 .434 .332 .246 .445 .366 .423
grd. .099 .208 .433 .461 .379 .230 .372 .316 .569 .220 .187 .509 .513 .465 .151 .305 .292 .265 .424 .418 .413
bld. .610 .730 .484 .481 .625 .658 .725 .437 .569 .582 .550 .645 .646 .677 .509 .640 .529 .513 .687 .650 .687
anl. .096 .297 .295 .312 .480 .484 .495 .294 .573 .285 .204 .540 .751 .497 .144 .392 .290 .247 .508 .491 .520
avg. .395 .503 .479 .459 .560 .550 .566 .435 .578 .455 .438 .600 .586 .571 .414 .538 .467 .448 .579 .561 .583

Figure 7: Performance in concept retrieval. Mean
indicates the mean-AP over all the concepts.

curate, it will rank relevant images at the top positions in
the lists, that is why it beats the method using global image
features (i.e., g svm). animal possesses similar characteris-
tics, e.g., rare and not dominant. However, on the one hand,
due to both the simple 29-dimensional region-based features
and the limited local context (only first-order Markov prop-
erty considered in DRFs), region annotation is not accurate
enough for animal. On the other hand, animal has strong
correlations with the global scene. In the result, g svm using
global features beat region annotation methods.

We also compare DRFs with the state-of-art Cross Me-
dia Relevance Model (CMRM) [11], which employs region-
based visual features while performs image-level annotation.
CMRM does not support ranking, we can not evaluate them
by AP. Instead, we compare them in the cases of assigning
fixed number of keywords to images, which can be evalu-
ated by F-score. Again the keywords with maximum confi-
dence are propagated to image-level in DRFs. In CMRM, we
adopt the same parameter settings to [11]. Table 4 shows
that DRFs uniformly outperforms CMRM. The above re-
sults show that region-level annotation not only provides
the possibility of locating objects in images, but also brings
improvements to image-level CBIR.

8. CONCLUSIONS AND DISCUSSIONS
In this paper we present a relatively complete study on

how to exploit spatial context constraints for automated im-
age region annotation. We design a simple yet effective ap-
proach to regularize the segmented regions into 2D lattice

Table 4: CMRM versus DRFs for fixed length
image-level annotation.

1 word 2 words 3 words 4 words 5 words
cmrm 0.240 0.380 0.459 0.499 0.526
drf 0.281 0.469 0.584 0.635 0.642

layout, so that simple grid-structure graphical models can
be employed. We create a moderate size image set with
region-level annotation and carry out extensive experiments
to evaluate several classical methods. To our best knowl-
edge, our experiment is so far the largest scale evaluation for
region annotation in supervised learning setting. The exper-
imental results show that (i) spatial context constraints in-
deed help for accurate region annotation, (ii) the approaches
combining the merits of discriminative learning and context
constraints perform best. These experiments provide useful
guide for building real-world systems.

There are several limitations on current work. First, our
approach to combining SVMs and CRFs is not seamless.
The parameters in SVMs and CRFs are estimated sequen-
tially but not simultaneously, which may not be optimal.
There exist models unifiedly integrating the large margin
mechanisms into CRFs such as Max-margin Markov net-
work [30, 31], but the required computation is too expen-
sive to be used to large scale applications. Second, we have
only considered the local spatial constraints (i.e., first-order
Markov). Overall scene context [24, 9, 33] may be incor-
porated for further improvement. Finally, so far we have
only discussed models in supervised learning settings. How-
ever, manually annotating each region is rather tedious and
extremely costly. There are two possible solutions for this
problem. The first choice is to transform the tedious manual
annotation to an enjoyable game similar to Peekaboom[32].
Another choice seems more appealing, that is, using ad-
vanced machine learning techniques to learn the correspon-
dences between regions and labels from weakly labeled data
(i.e., image-level ground truth). Such machine learning ap-
proaches include multiple instance learning (MIL) [4, 34, 35]
and expectation maximization (EM) [2, 8, 19, 26].

Therefore, a critical problem is whether the supervised
training in our work is significantly better than those ap-
proaches without requiring region-level annotated training
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data (i.e., MIL and EM). Unfortunately, we have not con-
ducted the comparative study on this topic. We conjecture
that the supervised training will indeed significantly out-
perform both MIL and EM, based on the evidences from
the evaluation in related fields. Specifically, Jun Yang’s [35]
empirical evaluation on image retrieval shows that MIL al-
gorithms running on local region features only achieve com-
parable performance to that of SVMs running on global im-
age features, while in our experiments region annotation ap-
proach apparently outperforms SVMs on global image fea-
tures. As for EM algorithms, though no comparative study
exists for image region annotation, similar evaluation was
previously conducted on the task of part-of-speech tagging
(POS) [14, 22]. The evaluation results show that supervised
training HMM significantly outperforms the unsupervised
training HMM (i.e.,EM) on POS task (more than 10% im-
provement) [14, 22].
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