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Introduction

(INAOE)

Introduction

Markov Chains are another class of PGMs that
represent dynamic processes

For instance, consider that we are modeling how the
weather in a particular place changes over time

A simple weather model as a Markov chain in which
there is a state variable per day, with 3 possible values:
sunny, cloudy, raining; these variables are linked in a
chain
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Markov Chain

Introduction

A e

This implies what is known as the Markov property, the state
of the weather for the next day, S;. 1, is independent of all
previous days given the present weather, S;, i.e.,

P(Sti1 | St, St-1,...) = P(St11 | St)
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Hidden Markov Models

Introduction

e The previous model assumes that we can measure the
weather with precision each day, that is, the state is
observable

¢ In many applications we cannot observe the state of the
process directly, so we have what is called a Hidden
Markov Model, where the state is hidden

¢ In addition to the probability of the next state given the
current state, there is another parameter which models
the uncertainty about the state, represented as the
probability of the observation given the state, P(O; | St)
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Definition

Markov

Chains ¢ A Markov chain (MC) is a state machine that has a
discrete number of states, g1, @, ..., n, and the
transitions between states are non-deterministic

e Formally, a Markov chain is defined by:

Set of states: Q ={qg1,92,...,qn}

Vector of prior probabilities: M = {7y, 72, ..., T}, where
mi = P(So = q;)

Matrix of transition probabilities: A = {a;},
i=1[1..n],j=[1..n], where
aj=P(St=qj| St—1=q))

e In a compact way, a MC is represented as A\ = {A, I}
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Properties

Markov
Chains

@ Probability axioms: > ;7 = 1 and Z,’ aj =1
@® Markov property: P(S; = g | Si—1 = qi, St—2 = Gk, ...) =
P(St=qj | St-1 = qi)
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Example - simple weather model

Markov

Chains sunny cloudy raining
0.2 0.5 0.3

Table: Prior probabilities.

| sunny cloudy raining
sunny 0.8 0.1 0.1
cloudy | 0.2 0.6 0.2
raining | 0.3 0.3 0.4

Table: Transition probabilities.
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State Transition Diagram

Markov
Chains

e This diagram is a directed graph, where each node is a
state and the arcs represent possible transitions
between states
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Basic Questions

Basic Questions

Given a Markov chain model, there are three basic
questions that we can ask:

e What is the probability of a certain state sequence?
e What is the probability that the chain remains in a
certain state for a period of time?

e What is the expected time that the chain will remain in a
certain state?
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Basic Questions

Probability of a state sequence

e The probability of a sequence of states given the model
is basically the product of the transition probabilities of
the sequence of states:

P(qi7 qju qk7 ) - anajjajk.... (1)

e For example, in the weather model, we might want to
know the probability of the following sequence of states:
Q = sunny, sunny, rainy, rainy, sunny, cloudy, sunny.

(INAOE) 11/50



Basic Questions

Probability of remaining in a state

e The probability of staying d time steps in a certain state,
qg;, is equivalent to the probability of a sequence in this
state for d — 1 time steps and then transiting to a
different state.

P(d) =al (1 - ay) (2)

e Considering the weather model, what is the probability
of 3 cloudy days?
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Basic Questions

Average duration

e The average duration of a state sequence in a certain
state is the expected value of the number of stages in
that state, thatis: E(D) = ), d;P(d))

E(d)=>_dal (1 -a) 3)
i
e Which can be written in a compact form as:

E(d)=1/(1 — ai) (4)

e What is the expected number of days that the weather
will remain cloudy?
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Parameter Estimation

Parameter Estimation

e The parameters can be estimated simply by counting
the number of times that the sequence is in a certain
state, /; and the number of times there is a transition
from a state i to a state j:

Initial probabilities:

i = i/ N (5)

Transition probabilities:

aj = i/ i (6)

¢ ~o; is the number of times that the state j is the initial
state in a sequence, ~; is the number of times that we
observe state /, and -; is the number of times that we
observe a transition from state i to state j
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Parameter Estimation

Weather Example - data

Consider that for the weather example we have the
following 4 observation sequences:

Q2,Q2,03,Q3, 03,43, G4

g1,043,92,43,03,43,q3

Q3,q3,Q2, Q2

42,01, 92,Q2,41, 93, 41
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Parameter Estimation

Weather Example - parameters

sunny cloudy raining
0.25 0.5 0.25

Table: Calculated prior probabilities for the weather example.

| sunny cloudy raining
sunny 0 0.33 0.67
cloudy | 0.285 0.43 0.285
raining | 0.18 0.18 0.64

Table: Calculated transition probabilities for the weather example.
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Convergence

Convergence

e If a sequence transits from one state to another a large
number of times, M, what is the probability in the limit
(as M — o) of each state, g;?

e Given an initial probability vector, I, and transition
matrix, A, the probability of each state,

P = {p1,po, ..., pn} after M iterations is:

P =AM 7)

e The solution is given by the Perron-Frobenius theorem
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Convergence

Perron-Frobenius theorem

e Conditions:

@ !Irreducibility: from every state i there is a probability
a; > 0 of transiting to any state j.

@® Aperiodicity: the chain does not form cycles (a subset of
states in which the chain remains once it transits to one
of these state).

e Then as M — oo, the chain converges to an invariant
distribution P, suchthat P x A= P

e The rate of convergence is determined by the second
eigen-value of matrix A
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Convergence

Example

e Consider a MC with three states and the following
transition probability matrix:
0.9 0.075 0.025
A= 015 0.8 0.05
025 0.25 0.5

¢ |t can be shown that in this case the steady state
probabilities converge to P = {0.625,0.3125,0.0625}

e An interesting application of this convergence property
of Markov chains is for ranking web pages
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Hidden
Markov
Models
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HMM

A Hidden Markov model (HMM) is a Markov chain
where the states are not directly observable.

A HMM is that it is a double stochastic process: (i) a
hidden stochastic process that we cannot directly
observe, (i) and a second stochastic process that
produces the sequence of observations given the first
process.

For instance, consider that we have two unfair or
“piased” coins, My and M>. M; has a higher probability
of heads, while My has a higher probability of fails.
Someone sequentially flips these two coins, however
we do not know which one. We can only observe the
outcome, heads or tails
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Example - two unfair coins

Aside from the prior and transition probabilities for the states
(as with a MC), in a HMM we need to specify the
observation probabilities

Hidden

Markov
Models ‘AIVT M B:
My M, 1 2 | My M
M |05 05 1102 08

Table: The prior probabilities (1), transition probabilities (A) and
observation probabilities (B) for the unfair coins example.

(INAOE) 21/50



Coins example - state diagram

Hidden
Markov
Models
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Definition

Set of states: Q ={q1,92, ..., qn}
Set of observations: O = {04, 02, ..., Om}

isden Vector of prior probabilities: M = {7y, 72, ..., mn}, where

Markov T = P(SO = q,)

Models

Matrix of transition probabilities: A = {a;},
i=1[1..n],j =[1..n], where
aj=P(St=qj| St—1 = q))

Matrix of observation probabilities: B = {bj},
i=1[1..n],j =[1..m], where
b = P(Or = ok | St = q;)

Compactly, a HMM is represented as A = {A, B, I}
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Properties

Markov property: P(St= qj | St—1 = q;, St—2 = Gk, ...) =
P(St=q; | Si-1 = qi)

Hidden

parkov Stationary process: P(Si_1 =qj | St—2 = q;) = P(St = q; |
St-1=gq;)and
P(Ot_1 = Ok ‘ St_1 = Qj) = P(So = Ok | St =
qi)’ V(t)

Independence of observations: P(O; = ok | St = q;, St—1 =
qj,---) = P(So = ok | St = q))
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Graphical Model

Hidden
Markov
Models
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Basic Questions

Questions

@ Evaluation: given a model, estimate the probability of a
sequence of observations.

® Optimal Sequence: given a model and a particular
observation sequence, estimate the most probable
state sequence that produced the observations.

© Parameter learning: given a number of sequence of
observations, adjust the parameters of the model.
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Basic Questions

Evaluation - Direct Method

¢ Evaluation consists in determining the probability of an
observation sequence, O = {04, 02, 03, ...}, given a
model, A, that is, estimating P(O | \)

¢ A sequence of observations, O = {0y, 02, 03, ...07}, can
be generated by different state sequences

¢ To calculate the probability of an observation sequence,
we can estimate it for a certain state sequence, and
then add the probabilities for all the possible state
sequences:

P(OX) = P(O.Qi[N) ®)

e Where:
P(O, Qi | X) = mbi(01)as2b2(02)...ac7—_1)rbr(071) (9)
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Basic Questions

Direct Method

e Thus, the probability of O is given by a summation over
all the possible state sequences, Q:

P(O|X) Zﬂ1b1 01)ai2b2(02)...a(T—1)rbr(07) (10)

e For a model with N states and an observation length of
T, there are N possible state sequences. Each term in
the summation requires 2T operations. As a result, the
evaluation requires a number of operations in the order
of 2T x NT

¢ A more efficient method is required!
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Basic Questions

Evaluation - iterative method

The basic idea of the iterative method, also known as
Forward, is to estimate the probabilities of the
states/observations per time step

Calculate the probability of a partial sequence of
observations until time ¢, and based on this partial
result, calculate it for time t + 1, and so on ...

Until the last stage is reached and the probability of the
complete sequence is obtained.
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Basic Questions

lterative method

¢ Define an auxiliary variable called forward.
Oét(i):P(O1,02,...,Ot,8t:qi‘ )‘) (11)

e The iterative algorithm consists of three main parts:
e [nitialization: the « variables for all states at the initial

time are obtained
¢ Induction: calculate a1 (f) in terms of ay(/)
e Termination: P(O | \) is obtained by adding all the ot
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Basic Questions

Complexity

e Each iteration requires N multiplications and N
additions (approx.), so for the T iterations, the number
of operations is in the order of N> x T

e The time complexity is reduced from exponential in T
for the direct method to linear in T and quadratic in N
for the iterative method
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Basic Questions

State Estimation

¢ Finding the most probable sequence of states for an
observation sequence, O = {01, 02, 03, ...}, can be
interpreted in two ways: (i) obtaining the most probable
state, S; at each time step t, (ii) obtaining the most
probable sequence of states, sg, s1,...57

¢ First we solve the problem of finding the most probable

or optimum state for a certain time ¢, and then the
problem of finding the optimum sequence
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Basic Questions

Auxiliary variables

The backward variable is analogous to the forward one,
but in this case we start from the end of the sequence,
that is:

Bt(i) = P(Ot41, 0t42,...,07, St = qi | A) (12)

In a similar way to «, 5¢(f) can be calculated iteratively
but now backwards:

Bi(i) = Z Ber1()ajbj(or) (13)
)

The 3 variables for T are defined as 7(j) = 1

So P(O | A) can be obtained in terms of 5 or a
combination of o and 3
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Basic Questions

Most probable state

~, that is the conditional probability of being in a certain
state g; given the observation sequence:

(i) = P(st = g | O,A) = P(st = q;, O | A)/P(O) (14)

Which can be written in terms of o and 5 as:

V() = ae(1)Be(1)/ Zat(i)ﬂt(i) (15)

This variable, v, provides the answer to the first
subproblem, the most probable state (MPS) at a time t;
we just need to find for which state it has the maximum
value:

MPS(t) = ArgMax;y:(i) (16)
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Basic Questions

Most probable sequence

The most probable state sequence Q given the
observation sequence O, such that we want to
maximize P(Q | O, \)

By Bayes rule: P(Q | O,\) = P(Q, O | \)/P(O). Given
that P(O) does not depend on Q, this is equivalent to
maximizing P(Q, O | \)

The method for obtaining the optimum state sequence
is known as the Viterbi algorithm
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Basic Questions

Viterbi Algorithm

 gives the maximum value of the probability of a
subsequence of states and observations until time ¢,
being at state g; at time t; that is:

ot(1) = MAX[P(s1, S2,...5t = Qj, 01,02, ...,0t | A)] (17)
Which can also be obtained in an iterative way:
5t+1 (I) = [MAX(St(/)a;j]bj(Ot+1) (18)

The Viterbi algorithm requires four phases: initialization,
recursion, termination and backtracking. It requires an
additional variable, (i), that stores for each state i at
each time step t the previous state that gave the
maximum probability - used to reconstruct the
sequence by backtracking

36/50



Basic Questions

Algorithm

FOR i = 1 to N (Initialization)
o 01(i) = mibi(Oy)
e ¥1(i) =0
FORt=2to T (recursion) FORj=1to N
* 51(j) = MAXi[6t-1(/)a;]b;( O)
e U1(j) = ARGMAX;[6:—1(i)ay]
P* = MAX;[o7(/)] (Termination)
qr = ARGMAX;[o7 (/)]
FOR t = T to 2 (Backtracking)
* 91 = i(ar)
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Learning

Parameter Learning

¢ This method assumes that the structure of the model is
known: the number of states and observations is
previously defined; therefore it only estimates the
parameters

e The Baum-Welch algorithm determines the parameters
of a HMM, X = A, B, 1, given a number of observation
sequences, O = Oy, 05, ...0k

¢ It maximizes the probability of the model given the
observations: P(O | \)

(INAOE) 38/50



Learning

Auxiliary Variables

&, the probability of a transition from a state i at time t to
a state j at time t + 1 given an observation sequence O:

§(i,)) = P(st = qi,8t41 = G | O, N) (19)
(i, j) = P(st = qi, st11 = q;, O | \)/P(O) (20)

In terms of « and g:
&1, J) = ar(i)ajbj(01+1)Bt+1 () / P(O) (21)

7 can also be written in terms of £: (i) = >, &:(7, /)

By adding (/) for all time steps, > ;~:(/), we obtain an
estimate of the number of times that the chain is in state
i; and by accumulating &:(/,j) over t, >, &i(i,f), we

estimate the number of transitions from state i to state j
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Learning

Baum-Welch Algorithm

@ Estimate the prior probabilities — the number of times
being in state / at time t.

mi =11 (i)

@® Estimate the transition probabilities — the number of
transitions from state / to j between the number of times
in state /.
aj = > &1, 1)/ 221 (i)

@ Estimate the observation probabilities — the number of
times being in state j and observing k between the
number of times in state ;.

bjx = Zt,O:k V(1)) 3¢ i)
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Learning

Expectation-Maximization

Notice that the calculation of v and £ variables is done
in terms of a and 3, which require the parameters of the
HMM, I, A, B. So we have encountered a “chicken and
egg” problem!

The solution to this problem is based on the EM (for
expectation-maximization) principle

The idea is to start with some initial parameters for the
model (E-step), A = {A, B, N}, which can be initialized
randomly or based on some domain knowledge

Then, via the Baum-Welch algorithm, these parameters
are re-estimated (M-step)

This cycle is repeated until convergence
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Learning

Extensions
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Applications

¢ Markov chains for ordering web pages with the
PageRank algorithm

Applications ¢ Application of HMMSs in gesture recognition
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WWW as a HMM

e We can think of the World Wide Web (WWW) as a very
large Markov chain, such that each web page is a state
and the hyperlinks between web pages correspond to
state transitions

e Each outgoing link can be selected with equal
probability; the transition probability from w; to any of
the web pages with which it has hyperlinks, w;, is

Applications A’./ — 1/m
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PageRank

e Given the transition probability matrix of the WWW, we
can obtain the convergence probabilities for each state
(web page) according to the Perron-Frobenius theorem

e The convergence probability of a certain web page can
be thought to be equivalent to the probability of a

Applications person, who is navigating the WWW, visiting this web
page.

e Based on the previous ideas, L. Page et al. developed
the PageRank algorithm which is the basis of how web
pages are ordered when we make a search in Google
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Gestures

Gestures are essential for human-human communication, so
they are also important for human-computer interaction. For
example, we can use gestures to command a service robot

Applications
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Gesture Recognition

e For recognizing gestures, a powerful option is a hidden
Markov model

¢ Before we can apply HMMs to model and recognize
gestures, the images in the video sequence need to be
processed and a set of features extracted from them;
these will constitute the observations for the HMM

Applications e To recognize N different gestures, we need to train N
HMMs, one for each gesture

e For recognition, the features are extracted from the
video sequence. The probability of each model given
the observation sequence, P(O | \;), are obtained using
the Forward algorithm. The model with the highest
probability, Ay, is selected as the recognized gesture
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Gesture Recognition

¥y v v
N

Applications
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Chapter 5
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