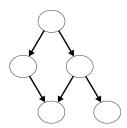
Representati

arameter


Interence Probability

Reference:

# Bayesian Networks: Representation and Inference

#### Probabilistic Graphical Models

L. Enrique Sucar, INAOE



(INAOE) 1 / 48

### **Outline**

Introduction

Representation Structure

Inference Probability propagation

Reference

- 1 Introduction
- 2 Representation Structure Parameters
- 3 Inference Probability propagation
- 4 References

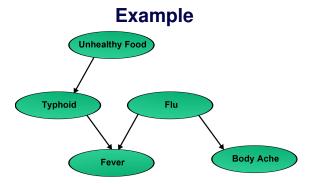
(INAOE) 2 / 48

#### Introduction

Representation

Inference Probability propagation

References


- Bayesian networks are directed graphical models that represent the joint distribution of a set of random variables
- In this graphs, the nodes represent random variables and the arcs direct dependencies between variables
- The structure of the graph encodes a set of conditional independence relations between the variables

(INAOE) 3 / 48

Representatio

Inference Probability propagation

Reference



- Fever is independent of Body ache given Flu (common cause)
- Fever is independent of Unhealthy food given Typhoid (indirect cause)
- Typhoid is independent of Flu when Fever is NOT known (common effect). Knowing Fever makes Typhoid and Flu dependent

(INAOE) 4 / 48

#### Introduction

Representation
Structure
Parameters

Inference Probability propagation

References

- In addition to the structure, a Bayesian network considers a set of local parameters, which are the conditional probabilities for each variable given its parents in the graph
- The joint probability of all the variables in the network can be represented based on these local parameters; this usually implies an important saving in the number of required parameters
- Given a Bayesian network we can answer several probabilistic queries. For instance, for the previous example: What is the probability of Fever given Flu? Which is more probable, Typhoid or Flu, given Fever and Unhealthy food?

(INAOE) 5 / 48

### **Bayesian Networks**

Introduction

Representation

raiailletei:

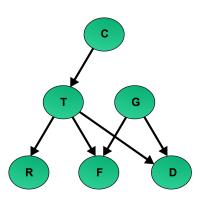
Probability propagation

References

- A Bayesian network (BN) represents the joint distribution of a set of n (discrete) variables,
   X<sub>1</sub>, X<sub>2</sub>,..., X<sub>n</sub>, as a directed acyclic graph (DAG) and a set of conditional probability tables (CPTs)
- Each node, that corresponds to a variable, has an associated CPT that contains the probability of each state of the variable given its parents in the graph
- The structure of the network implies a set of conditional independence assertions, which give power to this representation

(INAOE) 6 / 48

### An example


Introduction

#### Representation

Parameter

Interenco Probability

Reference



Joint distribution:

$$P(C, T, G, R, F, D) = P(C)P(G)P(T \mid C)P(R \mid T)P(F \mid T, G)P(D \mid T, G)$$

(INAOE)

### **Conditional Independence Assertions**

Introduction

Representation Structure

Inference Probability propagation

- The conditional independence assertions implied by the structure of a BN should correspond to the conditional independence relations of the joint probability distribution, and vice versa
- If X is conditionally independent of Z given Y:
  - In the probability distribution: P(X|Y,Z) = P(X|Y).
  - In the graph: I < X | Y | Z >.

### **D-Separation**

Introduction

Representation
Structure
Parameters

Probability propagation

- Conditional independence assertions can be verified directly from the structure of a BN using a criteria called D-separation
- 3 basic BN structures for 3 variables and 2 arcs:
  - Sequential:  $X \rightarrow Y \rightarrow Z$ .
  - Divergent:  $X \leftarrow Y \rightarrow Z$ .
  - Convergent:  $X \rightarrow Y \leftarrow Z$ .
- In the first two cases, X and Z are conditionally independent given Y, however in the third case this is not true

### **D-Separation**

Introduction

Representation Structure

Probability propagation

- Given a graph G, a set of variables A is conditionally independent of a set B given a set C, if there is no trajectory in G between A and B such that:
  - 1 All convergent nodes are or have descendants in C.
  - 2 All other nodes are outside C.

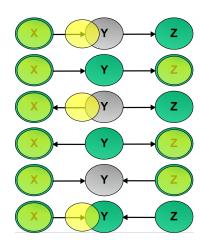
### Bayes Ball

Introduction

Representa Structure Parameters

Probability propagation

- Consider that we have a path from node X to Z with Y
  in the middle Y is shaded if it is known (instantiated),
  otherwise it is not shaded
- We throw a ball from X to Z, if the ball arrives to Z then X and Z are NOT independent given Y:
  - 1 If Y is sequential or divergent and is not shaded, the ball goes through.
  - 2 If Y is sequential or divergent and it is shaded, the ball is blocked.
  - **3** If *Y* is convergent and not shaded, the ball is blocked.
  - 4 If *Y* is convergent and shaded, the ball goes through.


## **Bayes Ball**

Introduction

Representation

Inference

propagation



#### **Contours**

Introduction

Representati Structure

Inference Probability propagation

- Markov assumption: any node X is conditionally independent of all nodes in G that are not descendants of X given its parents in the graph, Pa(X)
- The structure of a BN can be specified by the parents of each variable; thus the set of parents of a variable X is known as the contour of X
- Given this condition and using the chain rule, we can specify the joint probability distribution of the set of variables in a BN as the product of the conditional probability of each variable given its parents

### **Markov Blanket**

Introduction

Representation Structure

Inference Probability propagation

- The Markov Blanket of a node X, MB(X), is the set of nodes that make it independent of all the other nodes in G, that is P(X | G - X) = P(X | MB(X))
- For a BN, the Markov blanket of X is:
  - the parents of X,
  - the sons of X,
  - and other parents of the sons of X.

Representatior Structure Parameters

Probability propagation

References

### **Mappings**

 Given a probability distribution P of X, and its graphical representation G, there must be a correspondence between the conditional independence in P and in G mappings:

D-Map: all the conditional independence relations in *P* are satisfied (by D-Separation) in *G*.

I-Map: all the conditional independence relations in *G* are true in *P* 

P-Map: or perfect map, it is a D-Map and an I-Map.

 It is not always possible to have a perfect mapping of the independence relations between the graph (G) and the distribution (P), so we settle for what is called a Minimal I-Map: all the conditional independence relations implied by G are true in P, and if any arc is deleted in G this condition is lost

### **Independence Axioms**

Introduction

Representa Structure Parameters

Inference Probability propagation

References

- Given some conditional independence relations between subsets of random variables, we can derive other conditional independence relations axiomatically
- Independence axioms:

Symmetry:  $I(X, Z, Y) \rightarrow I(Y, Z, X)$ 

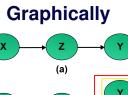
Decomposition:

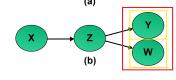
$$I(X,Z,Y\cup W)\to I(X,Z,Y)\wedge I(X,Z,W)$$

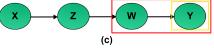
Weak Union:  $I(X, Z, Y \cup W) \rightarrow I(X, Z \cup W, Y)$ 

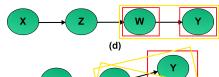
Contraction:

$$I(X,Z,Y) \wedge I(X,Z \cup Y,W) \rightarrow I(X,Z,Y \cup W)$$


Intersection:  $I(X, Z \cup W, Y) \wedge I(X, Z \cup Y, W) \rightarrow$ 


$$I(X, Z, Y \cup W)$$


Representation


Parameter

Probability









#### **CPTs**

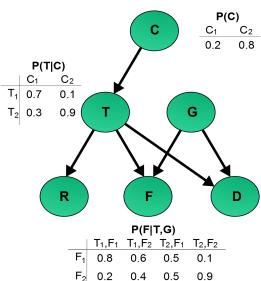
Introduction

Representati

Parameters

Probability Propagation

- In the case of a BN, the parameters are the conditional probabilities of each node given its parents in the graph
- If we consider discrete variables:
  - Root nodes: vector of marginal probabilities.
  - Other nodes: conditional probability table (CPT) of the variable given its parents in the graph.


# **Example**

Representatio

Structure Parameters

Probability

References



(INAOE)

### **Canonical Models**

Introduction

Structure

Parameters

Probability

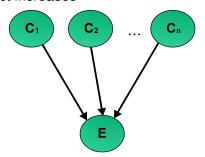
Reference

- Canonical models represent the relations between a set of random variables for particular interactions using few parameters
- There are several classes of canonical models, the most common are the *Noisy OR* and *Noisy AND* for binary variables, and their extensions for multivalued variables, *Noisy Max* and *Noisy Min*, respectively
- For example, consider a variable that represents a disease, D. In the case of the binary canonical models it has two values, True and False. For a multivalued model, it could be defined as D ∈ {False, Mild, Intermediate, Severe}, such that these values follow a predefined order

(INAOE)

### **Noisy-OR**

Introduction


Structure

Parameters

Probability propagation

References

 The Noisy OR model is applied when several variables or causes can produce an effect if any one of them is True, and as more of the causes are true, the probability of the effect increases



### **Conditions**

Introduction

Structure Parameters

Inference

Reference

 The following two conditions must be satisfied for a Noisy OR canonical model to be applicable:

Responsibility: the effect is false if all the possible causes are false.

Independence of exceptions: if an effect is the manifestation of several causes, the mechanisms that inhibit the occurrence of the effect under one cause are independent of the mechanisms that inhibit it under the other causes.

• The probability that the effect *E* is inhibited (it does not occur) under cause *C<sub>i</sub>* is defined as:

$$q_i = P(E = False \mid C_i = True)$$
 (1)

### **Parameters**

Introduction

Structure Parameters

Inferenc

Probability propagatio

References

 The parameters in the CPT for a Noisy OR model can be obtained using the following expressions when all the m causes are True:

$$P(E = False \mid C_1 = True, ...C_m = True) = \prod_{i=1}^{m} q_i$$
 (2)

$$P(E = True \mid C_1 = True, ...C_m = True) = 1 - \prod_{i=1}^{m} q_i$$
 (3)

• If k of m causes are True, then  $P(E = False \mid C_1 = True, ...C_k = True) = \prod_{i=1}^k q_i$ , so that if all the causes are False then the effect is False with a probability of one

# **Example**

Introduction

Representation

Parameters

Probability propagation

References

| <i>C</i> <sub>1</sub> | 0 | 0   | 0   | 0    | 1   | 1    | 1    | 1     |
|-----------------------|---|-----|-----|------|-----|------|------|-------|
| $C_2$                 | 0 | 0   | 1   | 1    | 0   | 0    | 1    | 1     |
| <i>C</i> <sub>3</sub> | 0 | 1   | 0   | 1    | 0   | 1    | 0    | 1     |
| P(E=0)                | 1 | 0.1 | 0.1 | 0.01 | 0.1 | 0.01 | 0.01 | 0.001 |
| P(E=1)                | 0 | 0.9 | 0.9 | 0.99 | 0.9 | 0.99 | 0.99 | 0.999 |

(INAOE) 24 / 48

### **Decision Trees**

Introduction

Structure

Parameters

Inferenc

- An alternative representation is based on the observation that in the probability tables for many domains, the same probability values tend to be repeated several times in the same table
- A decision tree (DT) could be used for representing a CPT in a compact way:
   Each internal node corresponds to a variable in the CPT, and the branches from a node correspond to the different values a variable can take. The leaf nodes in the tree represent the different probability values. A trajectory from the root to a leaf, specifies a probability value for the corresponding variables—values in the trajectory

# **Example - CPT**

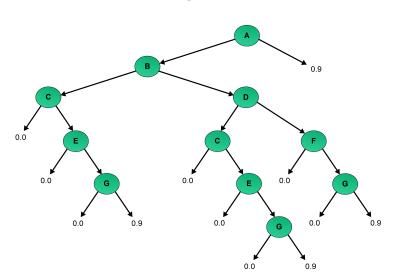
Introduction

Representation

Parameters

Probability propagation

| Α | В   | С   | D   | Ε   | F   | G   | X   |
|---|-----|-----|-----|-----|-----|-----|-----|
| Т | T/F | T/F | T/F | T/F | T/F | T/F | 0.9 |
| F | Τ   | T/F | Τ   | T/F | Τ   | Τ   | 0.9 |
| F | Τ   | T/F | Τ   | T/F | Τ   | F   | 0.0 |
| F | Τ   | T/F | Τ   | T/F | F   | T/F | 0.0 |
| F | Τ   | Т   | F   | Τ   | T/F | Τ   | 0.9 |
| F | Τ   | Т   | F   | Τ   | T/F | F   | 0.0 |
| F | Τ   | Т   | F   | F   | T/F | T/F | 0.0 |
| F | Τ   | F   | F   | T/F | T/F | T/F | 0.0 |
| F | F   | Т   | T/F | Τ   | T/F | Τ   | 0.9 |
| F | F   | Т   | T/F | Τ   | T/F | F   | 0.0 |
| F | F   | Τ   | T/F | F   | T/F | T/F | 0.0 |
| F | F   | F   | T/F | T/F | T/F | T/F | 0.0 |


# **Example - DT**

Introduction

Representation

Parameters

Probability



### **Decision Diagram**

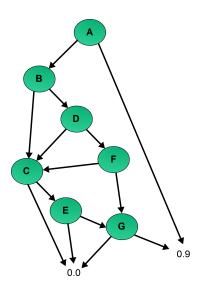
Introduction

Representa

Parameters

Inferenc Probability propagation

- A decision diagram (DD) extends a DT by considering a directed acyclic graph structure, such that it is not restricted to a tree
- This avoids the need to duplicate repeated probability values in the leaf nodes, and in some cases provides an even more compact representation


# **Example - DD**

Introduction

Representation

Parameters

Probability



#### Probabilistic inference

Introduction

Representat Structure

Inference Probability propagation

References

- Probabilistic inference consists in propagating the effects of certain evidence in a Bayesian network to estimate its effect on the unknown variables
- There are basically two variants of the inference problem in BNs:
  - Single query inference: obtaining the posterior probability of a single variable, H, given a subset of known (instantiated) variables, E, that is, P(H | E)
  - Conjunctive query inference: consists in calculating the posterior probability of a set of variables, H given the evidence, E, that is, P(H | E)

(INAOE) 30 / 48

### Inference algorithms:

Introduction

Representation

Parameters

Inference Probability propagation

Reference

- 1 Probability propagation (Pearl's algorithm).
- 2 Variable elimination.
- 3 Conditioning.
- 4 Junction tree.
- Stochastic simulation.

(INAOE) 31 / 48

### Complexity

Introduction

Representa Structure Parameters

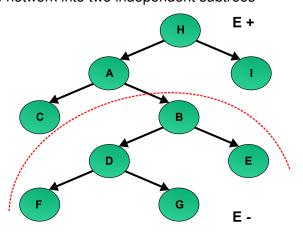
Inference Probability propagation

References

- In the worst case the inference problem is NP-hard for Bayesian networks
- There are efficient (polynomial) algorithms for certain types of structures (singly connected networks)
- For other structures it depends on the connectivity of the graph.
- In many applications, the graphs are sparse and in this case there are inference algorithms which are very efficient

(INAOE) 32 / 48

### **Probability propagation in trees**


Introduction

Representa Structure

Inference Probability

Reference

• Given that the BN has a tree structure, any node divides the network into two independent subtrees



### **Basic equations**

Introduction

Represen
Structure
Parameters

Probability propagation

References

• Given certain evidence, **E** (subset of instantiated variables), the posterior probability for a value *i* of any variable *B*, can be obtained by applying the Bayes rule:

$$P(Bi|\mathbf{E}) = P(Bi)P(\mathbf{E}|Bi)/P(\mathbf{E}) \tag{4}$$

We can separate the evidence into:

**E**-: Evidence in the tree rooted in *B*.

E+: All other evidence.

• Then:

$$P(Bi|\mathbf{E}) = P(Bi)P(\mathbf{E} -, \mathbf{E} + |Bi)/P(\mathbf{E})$$
 (5)

### **Basic equations**

Introductior

Represe

arameter

Probability propagation

Reference

 Given that E+ and E- are independent, by applying the Bayes rule again, we obtain:

$$P(Bi|\mathbf{E}) = \alpha P(Bi|\mathbf{E}+)P(\mathbf{E}-|Bi)$$
 (6)

Where  $\alpha$  is a normalization constant.

• We define the following terms:

$$\lambda(Bi) = P(\mathbf{E} - |Bi) \tag{7}$$

$$\pi(Bi) = P(Bi|\mathbf{E}+) \tag{8}$$

• Then:

$$P(Bi|\mathbf{E}) = \alpha \pi(Bi)\lambda(Bi) \tag{9}$$

### **Propagation algorithm**

Introduction

Representa Structure

Inference Probability propagation

- The computation of the posterior probability of any node B is decomposed into two parts: (i) the evidence coming from the sons of B in the tree ( $\lambda$ ), and the evidence coming from the parent of B, ( $\pi$ )
- We can think of each node B in the tree as a simple processor that stores its vectors  $\pi(B)$  and  $\lambda(B)$ , and its conditional probability table,  $P(B \mid A)$
- The evidence is propagated via a message passing mechanism, in which each node sends the corresponding messages to its parent and sons in the tree

# **Messages**

Introduction

Representat

raiailietei

Probability propagation

Reference

• A message sent from node B to its parent A:

$$\lambda_{B}(Ai) = \sum_{j} P(B_{j} \mid A_{i}) \lambda(B_{j})$$
 (10)

• A message sent from node B to its son  $S_k$ :

$$\pi_k(Bi) = \alpha \pi(B_j) \prod_{l \neq k} \lambda_l(B_j)$$
 (11)

where I refers to each one of the sons of B

# **Combination and Propagation**

Introduction

Representation
Structure
Parameters

Probability propagation

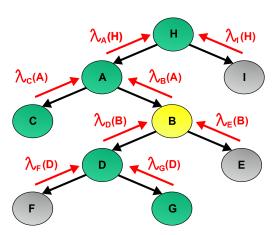
References

• Each node can receive several  $\lambda$  messages, which are combined via a term by term multiplication for the  $\lambda$  messages received from each son:

$$\lambda(Ai) = \prod_{j=1}^{m} \lambda_{Sj}(Ai)$$
 (12)

• The propagation algorithm starts by assigning the evidence to the known variables, and then propagating it through the message passing mechanism until the root of the tree is reached for the  $\lambda$  messages, and the leaves are reached for the  $\pi$  messages

#### **Bottom-up propagation**


Introduction

Representati

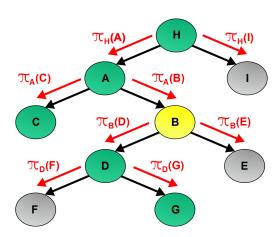
Parameter

Probability propagation

Reference



# **Top-down propagation**


Introduction

Representati

Paramete

Probability propagation

Reference



#### **Initial Conditions**

Introduction

Representation

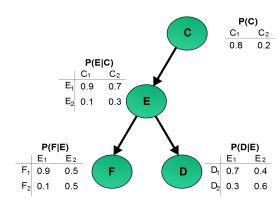
Probability propagation

References

Leaf nodes: If not known,  $\lambda = [1,1,...,1]$  (a uniform distribution). If known,  $\lambda = [0,0,...,1,...,0]$  (one for the assigned value and zero for all other values).

Root node: If not known,  $\pi = P(A)$  (prior marginal probability vector). If known,  $\pi = [0, 0, ..., 1, ..., 0]$  (one for the assigned value and zero for all other values).

## **Propagation - example**


Introduction

Representat

aramete

Probability propagation

Reference



Consider that the only evidence is F = false - initial conditions for the leaf nodes are:
 λ<sub>F</sub> = [1, 0] and λ<sub>D</sub> = [1, 1] (no evidence)

(INAOE)

# Example - $\lambda$ propagation

Introduction

Represer Structure

Inference Probability propagation

Reference

Multiplying the λ vectors by the corresponding CPTs:

$$\lambda_F(E) = [1,0][\begin{array}{c} 0.9,0.5\\ 0.1,0.5 \end{array}] = [0.9,0.5]$$

$$\lambda_D(E) = [1, 1]\begin{bmatrix} 0.7, 0.4 \\ 0.3, 0.6 \end{bmatrix} = [1, 1]$$

 Then, λ(E) is obtained by combining the messages from its two sons:

$$\lambda(E) = [0.9, 0.5] \times [1, 1] = [0.9, 0.5]$$

• Propagation to its parent, C:

$$\lambda_E(C) = [0.9, 0.5]\begin{bmatrix} 0.9, 0.7\\ 0.1, 0.3 \end{bmatrix} = [0.86, 0.78]$$

# Example - $\pi$ propagation

Introduction

Represen Structure

Inference Probability propagation

References

- Given that *C* is not instantiated,  $\pi(C) = [0.8, 0.2]$
- Propagate to its son, E, which also corresponds to multiplying the π vector by the corresponding CPT:

$$\pi(E) = [0.8, 0.2]\begin{bmatrix} 0.9, 0.7 \\ 0.1, 0.3 \end{bmatrix} = [0.86, 0.14]$$

We now propagate to its son D; however, given that E
has another son, F, we also need to consider the λ
message from this other son, thus:

$$\pi(D) = [0.86, 0.14] \times [0.9, 0.5] \begin{bmatrix} 0.7, 0.4 \\ 0.3, 0.6 \end{bmatrix} = [0.57, 0.27]$$

## **Example - posterior probabilities**

Introduction

Structure

nferenc

References

• Given the  $\lambda$  and  $\pi$  vectors for each unknown variable, we just multiply them term by term and then normalize to obtain the posterior probabilities:

$$P(C) = [0.86, 0.2] \times [0.86, 0.78] = \alpha[0.69, 0.16]$$
  
= [0.815, 0.185]

$$P(E) = [0.86, 0.14] \times [0.9, 0.5] = \alpha[0.77, 0.07]$$
  
= [0.917, 0.083]

$$P(D) = [0.57, 0.27] \times [1, 1] = \alpha[0.57, 0.27] = [0.67, 0.33]$$

# **Analysis**

Introduction

Represent Structure

Inference Probability propagation

Reference

- The time complexity to obtain the posterior probability of all the variables in the tree is proportional to the *diameter* of the network (the number of arcs in the trajectory from the root to the most distant leaf).
- The message passing mechanism can be directly extended to polytrees, as these are also singly connected networks. In this case, a node can have multiple parents, so the λ messages should be sent from a node to all its parents
- The propagation algorithm only applies to singly connected network

#### **Book**

Introduction

Representation

arameter

nterence Probability

References

Sucar, L. E, *Probabilistic Graphical Models*, Springer 2015 – Chapter 7

(INAOE) 47 / 48

### Additional Reading (1)

Introduction Representation Structure

Inference Probability propagation

References

- Cooper, G.F.: The Computational Complexity of Probabilistic Inference Using Bayesian Networks. Artificial Intelligence. 42, 393–405 (1990)
- Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, New York (2009)
- Díez, F.J., Druzdzel, M.J.: Canonical Probabilistic Models for Knowledge Engineering. Technical Report CISIAD-06-01. Universidad Nacional de Educación a Distancia, Spain (2007)
- Neapolitan, R. E.: Probabilistic Reasoning in Expert Systems. John Wiley & Sons, New York (1990)
- Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

(INAOE) 48 / 48