Definitions

Types of Graphs

Trajectories and Circuits

Graph

Irees

Cliques

Perfect Ordering

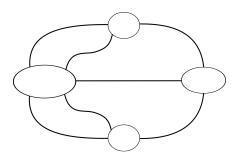
Ordering and Triangulation Algorithms

References

Graph Theory

Probabilistic Graphical Models

L. Enrique Sucar, INAOE



(INAOE) 1 / 32

Outline

Definitions

Types of Graphs

and Circuits

isomorphis

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Poforonoos

- 1 Definitions
- 2 Types of Graphs
- 3 Trajectories and Circuits
- 4 Graph Isomorphism
- 5 Trees
- 6 Cliques
- Perfect Ordering
- 8 Ordering and Triangulation Algorithms
- 9 References

(INAOE) 2 / 32

Graphs

Definitions

Types of Graphs

and Circuits

Isomorphis

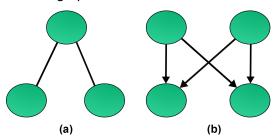
...

Perfect Ordering

Ordering and Triangulation

References

- A graph provides a compact way to represent binary relations between a set of objects
- Objects are represented as circles or ovals, and relations as lines or arrows
- There are two basic types of graphs: undirected graphs and directed graphs



(INAOE) 3 / 32

Directed Graphs

Definitions

Types of Graphs

Trajectories and Circuit

Graph Isomorphism

.....

Parfect

Ordering a

Ordering and Triangulation Algorithms

References

- A directed graph or digraph is an ordered pair,
 G = (V, E), where V is a set of vertices or nodes and E is a set of arcs that represent a binary relation on V
- Directed graphs represent anti-symmetric relations between objects, for instance the "parent" relation

(INAOE) 4 / 32

Undirected Graphs

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphisr

.....

Perfect

Ordering an

References

 An undirected graph is an ordered pair, G = (V, E), where V is a set of vertices or nodes and E is a set of edges that represent symmetric binary relations: (V_j, V_k) ∈ E → (V_k, V_j) ∈ E

 Undirected graphs represent symmetric relations between objects, for example, the "brother" relation

(INAOE) 5 / 32

More Definitions

Definitions

Types of Graphs

Graph

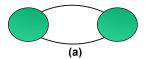
11000

Perfect

Ordering and Triangulation

References

- If there is an edge E_i(V_j, V_k) between nodes j and k, then V_j is adjacent to V_k
- The degree of a node is the number of edges that are incident in that node
- Two edges associated to the same pair of vertices are said to be parallel edges



(INAOE) 6 / 32

More Definitions

Definitions

Types of Graphs

and Circuit

Isomorphis

_...

Perfect

Ordering and Triangulation

References

- A vertex that is not an endpoint to any edge is an isolated vertex –it has degree 0
- In a directed graph, the number of arcs pointing to a node is its in degree
- The number of edges pointing away from a node is its out degree

(INAOE) 7 / 32

Types of Graphs (I)

Definitions

Types of Graphs

Graph

Isomorphis

Cliaues

Perfect Ordering

Ordering and Triangulation Algorithms

References

Chain graph: a hybrid graph that has directed and undirected edges.

Simple graph: a graph that does not include cycles and parallel arcs.

Multigraph: a graph with several components (subgraphs), such that each component has no edges to the other components, i.e., they are disconnected.

Complete graph: a graph that has an edge between each pair of vertices.

Bipartite graph: a graph in which the vertices are divided in two subsets, G_1 , G_2 , such that all edges connect a vertex in G_1 with a vertex in G_2 ; that is, there are no edges between nodes in each subset.

Weighted graph: a graph that has weights associated to its edges and/or vertices.

(INAOE) 8 / 32

Types of Graphs (II)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

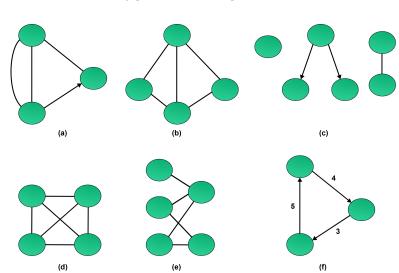
Trees

Clique

Perfect Ordering

Ordering and Triangulation Algorithms

References



(INAOE) 9 / 32

Trajectories

Definitions

Types of Graphs

Trajectories and Circuits
Graph

10011101 priic

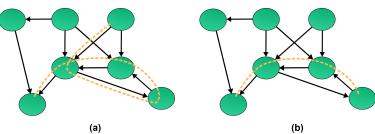
Cliano

Perfect Ordering

Ordering and Triangulation Algorithms

References

- A *trajectory* is a sequence of edges, $E_1, E_2, ..., E_n$ such that the final vertex of each edge coincides with the initial vertex of the next edge in the sequence
- A simple trajectory does not include the same edge two o more times; an elemental trajectory is not incident on the same vertex more than once



(INAOE) 10 / 32

Circuits

Definitions

Types of Graphs

Trajectories and Circuits
Graph

rrees

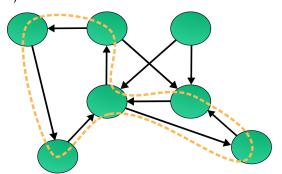
Cilques

Perfect Ordering

Ordering and Triangulation Algorithms

References

- A circuit is a trajectory such that the final vertex coincides with the initial one
- A simple circuit does not include the same edge two or more times; an elemental circuit is not incident on the same vertex more than once (except the initial/final vertex)



Directed Acyclic Graphs

Trajectories and Circuits

 A DAG is a directed graph that has no directed circuits (a directed circuit is a circuit in which all edges in the sequence follow the directions of the arrows)

Problems

Definitions

Types of Graphs

Trajectories and Circuits

Isomorphis

Cliano

Perfect Ordering

Ordering and Triangulation Algorithms

References

- Finding a trajectory that includes all edges in a graph only once (Euler trajectory).
- Finding a circuit that includes all edges in a graph only once (Euler circuit).
- Finding a trajectory that includes all vertices in a graph only once (Hamiltonian trajectory).
- Finding a circuit that includes all vertices in a graph only once (Hamiltonian circuit).
- Finding a Hamiltonian circuit in a weighted graph with minimum cost (Traveling salesman problem)¹.

¹ In this case the nodes represent cities and the edges roads with an associated distance or time, so the solution will provide a traveling salesman with the "best" (minimum distance or time) route to cover all the cities.

Isomorphism (I)

Definitions

Types of Graphs

Graph Isomorphism

Irees

Clique

Perfect Ordering

Ordering and Triangulation Algorithms

References

 Two graphs are isomorphic if there is a one to one correspondence between their vertices and edges, so that the incidences are maintained

- Types:
 - **1** Graph isomorphism. Graphs G_1 and G_2 are isomorphic.
 - 2 Subgraph isomorphism. Graph G_1 is isomorphic to a subgraph of G_2 (or vice versa).
 - 3 Double subgraph isomorphism. A subgraph of G_1 is isomorphic to a subgraph of G_2 .

(INAOE) 14 / 32

Isomorphism (II)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

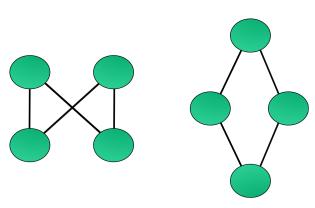
rrees

Ciiques

Perfect Ordering

Ordering and Triangulation Algorithms

References



• Determining if two graphs are isomorphic (type 1) is an NP problem; while the subgraph and double subgraph isomorphism problems (type 2 and 3) are NP-complete

(INAOE) 15 / 32

Undirected trees

Definitions

Types of Graphs

Graph

Trees

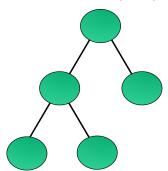
Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

Poforonoos

- An undirected tree is a connected graph that does not have simple circuits
- There are two classes of vertices or nodes in an undirected tree: (i) leaf or terminal nodes, with degree one; (ii) internal nodes, with degree greater than one



(INAOE) 16 / 32

Properties

Definitions

Types of Graphs

and Circuits

Trees

Cilques

Perfect Ordering

Ordering and Triangulation Algorithms

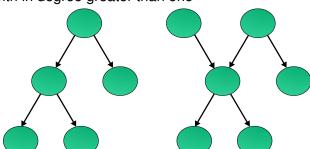
References

- There is a simple trajectory between each pair of vertices.
- The number of vertices, | V |, is equal to the number of edges, | E | plus one: | V |=| E | +1.
- A tree with two or more vertices has at least two leaf nodes.

(INAOE) 17/32

Directed trees

- A directed tree is a connected directed graph such that there is only a single directed trajectory between each pair of nodes
- A rooted tree has a single node with an in degree of zero (the root node) and the rest have in degree of one
- A polytree might have more than one node with in degree zero (roots), and certain nodes (zero or more) with in degree greater than one



Definitions

Graphs
Trajectories

Graph

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

(INAOE) 18 / 32

Terminology (I)

Definitions

Types of Graphs

Graph

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

Root: a node with in degree equal to zero.

Leaf: a node with out degree equal to zero.

Internal node: a node with out degree greater than zero. Parent / Child: if there is a directed arc from A to B, A is

parent of *B* and *B* is a child of *A*.

Brothers: two or more nodes that have the same parent. Ascendants /Descendants: if there is a directed trajectory from A to B, A is an ascendant of B and B is a descendant of A.

Subtree with root A: a subtree with A as its root.

Subtree of A: a subtree with a child of A as its root.

K-ary Tree: a tree in which each internal node has at most K children. It is a regular tree if each internal node has K children.

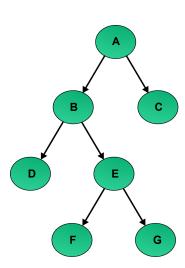
Binary Tree: a tree in which each internal node has at most two children.

(INAOE) 19 / 32

Terminology (II)

Trajectories and Circuits

Trees



Complete set and subsets

Cliques

- A complete graph is a graph, G_c , in which each pair of nodes is adjacent; that is, there is an edge between each pair of nodes
- A complete set, W_c is a subset of G that induces a complete subgraph of G. It is a subset of vertices of G so that each pair of nodes in this subgraph is adjacent

Cliques

Definitions

Types of Graphs

and Circuits

Isomorphis

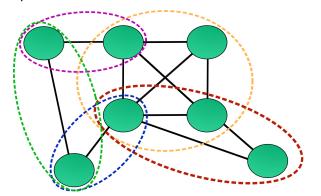
Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

 A clique, C, is a subset of graph G such that it is a complete set that is maximal; that is, there is no other complete set in G that contains C



(INAOE) 22 / 32

Ordering

Perfect Ordering

References

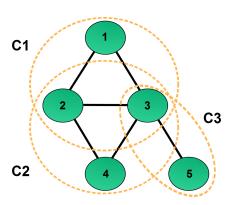
 An ordering of the nodes in a graph consists in assigning an integer to each vertex

- Given a graph G = (V, E), with n vertices, then $\alpha = [V_1, V_2, ..., V_n]$ is an ordering of the graph; V_i is before V_i according to this ordering, if i < j
- An ordering α of a graph G = (V, E) is a *perfect* ordering if all the adjacent vertices of each vertex V_i that are before V_i , according to this ordering, are completely connected

Perfect Ordering

Trajectories and Circuits

Perfect Ordering



Clique Ordering

Perfect

Ordering

 In an analogous way as an ordering of the nodes, we can define an ordering of the cliques. $\beta = [C_1, C_2, ..., C_n]$

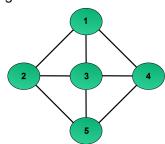
- An ordering β of the cliques has the *running intersection* property, if all the common nodes of each clique C_i with previous cliques according to this order are contained in a clique C_i ; C_i is the parent of C_i
- It is possible that a clique has more than one parent

Triangulated graphs

• A graph *G* is *triangulated* if every simple circuit of length greater than three in *G* has a chord

 A chord is an edge that connects two of the vertices in the circuit and that is not part of that circuit

 A condition for achieving a perfect ordering of the vertices, and having an ordering of the cliques that satisfies the running intersection property, is that the graph is triangulated



Definitions

Types of Graphs

and Circuits
Graph

isomorphis

Clienne

Perfect Ordering

Ordering and Triangulation Algorithms

References

(INAOE) 26 / 32

Maximum Cardinality Search

Definitions

Types of Graphs

Graph

nees

Cilques

Perfect Ordering

Ordering and Triangulation Algorithms

References

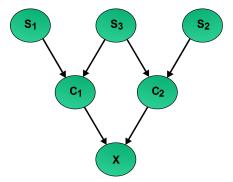
- Given that a graph is triangulated, the following algorithm guarantees a perfect ordering:
- 1 Select any vertex from *V* and assign it number 1.
- 2 WHILE Not all vertices in G have been numbered:
 - From all the non-labeled vertices, select the one with higher number of adjacent labeled vertices and assign it the next number.
 - 2 Break ties arbitrarily.

(INAOE) 27 / 32

Example

Trajectories and Circuits

Ordering and Triangulation Algorithms



Graph filling

Definitions

Types of Graphs

Graph

irees

Perfect

Ordering and Triangulation Algorithms

References

- The filling of a graph consists of adding arcs to an original graph *G* to make it triangulated
- The following algorithm makes the graph triangulated:
- Order the vertices V with maximum cardinality search: $V_1, V_2, ..., V_n$.
- **2** FOR i = n TO i = 1
 - 1 For node V_i , select all its adjacent nodes V_j such that i > i. Call this set of nodes A_i .
 - 2 Add an arc from V_i to V_k if k > i and $V_k \notin A_i$.

(INAOE)

Definitions

Types of Graphs

Trajectories and Circuits

Graph Isomorphism

11665

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

Example 1 4

5

*A*₅: ∅

*A*₄: 5

 $A_3: 4,5$

 A_2 : 3,5. An arc is added from 2 to 4.

 A_1 : 2,3,4. An arc is added from 1 to 5.

The resulting graph has two additional arcs 2-4 and 1-5

Book

Definitions

Types of Graphs

Trajectories and Circuits

Graph

. . . .

Clique

Perfect Ordering

Ordering and Triangulation Algorithms

References

Sucar, L. E, *Probabilistic Graphical Models*, Springer 2015 – Chapter 3

(INAOE) 31 / 32

Additional Reading

Definitions

Types of Graphs

Graph

Trees

Cliques

Perfect Ordering

Ordering and Triangulation Algorithms

References

- Aho, A.V., Hopcroft, J.E, Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley, Boston (1974)
- Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Elsevier, Netherlands (1994)
- Gould, R.: Graph Theory. Benjamin/Cummings, Menlo Park (1988)
- Gross, J.L, Yellen, J.: Graph Theory and its Applications. CRC Press, Boca Raton (2005)
- Neapolitan, R.: Probabilistic Reasoning in Expert Systems: Theory and Algorithms. Wiley, New York (1990)

(INAOE) 32 / 32